Top Banner
7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 1/38 TaMu2: Metode Ilmiah; Struktur dan Fungsi Sel 19/22 September 2011 Tahun Ajaran 2011/2012
38

biodasTaMu2 MetIl SFCell 19-22 Sep

Apr 14, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 1/38

TaMu2:

Metode Ilmiah;

Struktur dan Fungsi Sel

19/22 September 2011

Tahun Ajaran 2011/2012

Page 2: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 2/38

Scientists use two main forms of inquiry in

their study of nature

• There are two main types of scientific

inquiry

 – discovery science

 – hypothesis-based science

• Discovery science describes natural

structures and processes

 – This approach is based on observation and theanalysis of data

K3: Mahasiswa mampu menerangkan proses metode ilmiah; K4: Mahasiswa

mampu membedakan discovery science dari hypothesis-based science

Page 3: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 3/38

Types of Data

• Data are recordedobservations or itemsof information

 –  Qualitative, or 

descriptions rather than measurements

 –  Quantitative, or recordedmeasurements,

which aresometimesorganized into tablesand graphs

K3,K4

Page 4: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 4/38

Induction in Discovery Science

• Inductive reasoning draws conclusions

through the logical process of induction

• Repeat specific observations can lead to

important generalizations – For example, “All organisms are made of cells”

K3;K4; K5: Mahasiswa mampu membedakan induksi dari deduksi

Page 5: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 5/38

Hypothesis-Based Science

• Observations can lead us to ask questionsand propose hypothetical explanations

called hypotheses

K3;K4; K5; K6: Mahasiswa mampu merumuskan hipotesis ilmiah

The Role of Hypotheses in Inquiry

• A hypothesis is a tentative answer to a

well-framed question

• A scientific hypothesis leads to predictions

that can be tested by observation or 

experimentation

Page 6: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 6/38

• For example,

 – Observation: Your flashlight

doesn’t work

 – Question: Why doesn’t your 

flashlight work?

 – Hypothesis 1: The batteries

are dead

 – Hypothesis 2: The bulb is

burnt out• Both these hypotheses are

testable

Observations

Question

Hypothesis #1:

Dead batteries

Hypothesis #2:Burnt-out bulb

Prediction:

Replacing batterieswill fix problem

Prediction:

Replacing bulbwill fix problem

Test prediction Test prediction

Test falsifies hypothesis Test does not falsify hypothesis

K3;K4; K5; K6

Page 7: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 7/38

Deduction: The “If…Then” Logic of Hypothesis

Based Science

• Deductive reasoning uses general

premises to make specific predictions

• For example, if organisms are made of cells

(premise 1), and humans are organisms

(premise 2), then humans are composed of 

cells (deductive prediction)

K3;K4; K5; K6

Page 8: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 8/38

Theories in Science

• In the context of science, a theory is:

 – Broader in scope than a hypothesis

 – General, and can lead to new testable

hypotheses – Supported by a large body of evidence in

comparison to a hypothesis

Page 9: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 9/38

K7: Mahasiswa mampu membedakan sel prokariot dari sel eukariot

1. Eukaryotic cells have internal membranes that

compartmentalize their functions

• The basic structural and functional unit of every organism is one of two types of cells:prokaryotic or eukaryotic

• Basic features of all cells: – Plasma membrane

 – Semifluid substance called cytosol

 – Chromosomes (carry genes)

 – Ribosomes (make proteins)

Page 10: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 10/38

Fimbriae

Nucleoid

Ribosomes

Plasma membrane

Cell wall

Capsule

Flagella

Bacterialchromosome

(a) A typical rod-shapedbacterium

ENDOPLASMIC RETICULUM(ER)

Smooth ERRough ERFlagellum

Centrosome

CYTOSKELETON:

Microfilaments

Intermediatefilaments

Microtubules

Microvilli

Peroxisome

MitochondrionLysosome

Golgiapparatus

Ribosomes

Plasmamembrane

Nuclear envelope

Nucleolus

Chromatin

NUCLEUS

K7: Mahasiswa mampu membedakan sel prokariot dari sel eukariot

Comparing Prokaryotic and Eukaryotic Cells

Page 11: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 11/38

K7: Mahasiswa mampu membedakan sel prokariot dari sel eukariot

Comparing Prokaryotic and Eukaryotic Cells

• Prokaryotic cells are characterized by having – No nuclear envelope

 – DNA in an unbound region called the nucleoid

 – No membrane-bound organelles

• Eukaryotic cells are characterized by having

 – DNA in a nucleus that is bounded by a

membranous nuclear envelope

 – Membrane-bound organelles

• Eukaryotic cells are generally much larger 

than prokaryotic cells

Page 12: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 12/38

Eukaryotic Cells

ENDOPLASMIC RETICULUM (ER)

Smooth ERRough ER

Flagellum

Centrosome

CYTOSKELETON:

Microfilaments

Intermediatefilaments

Microtubules

Microvilli

Peroxisome

MitochondrionLysosome

Golgiapparatus

Ribosomes

Plasmamembrane

Nuclear envelope

Nucleolus

Chromatin

NUCLEUS

NUCLEUS

Nuclear envelope

Nucleolus

Chromatin

Rough endoplasmicreticulum

Smoothendoplasmicreticulum

Ribosomes

Central vacuole

Microfilaments

Intermediatefilaments

Microtubules

CYTO-SKELETO

Chloroplast

Plasmodesmata

Wall of adjacent cell

Cell wall

Plasmamembrane

Peroxisome

Mitochondrion

Golgi

apparatus

K7: Mahasiswa mampu membedakan sel prokariot dari sel eukariot

Page 13: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 13/38

2. The eukaryotic cell’s genetic instructions are housed in

the nucleus and carried out by the ribosomesFig. 6-10

NucleolusNucleus

Rough ER

Nuclear lamina (TEM)

Close-up o f nuclear envelope

1 µm

1 µm

0.25 µm

Ribosome

Porecomplex

Nuclear po re

Outer membraneInner membraneNuclear envelope:

Chromatin

Surface of nuclear envelope

Pore complexes (TEM)K7

Page 14: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 14/38

Cytosol

Endoplasmic reticulum (ER)

Free ribosomes

Bound ribosomes

Largesubunit

Smallsubunit

Diagram of a ribosomeTEM showing ER and r ibosomes

0.5 µm

K7;K8: Mahasiswa mampu membedakan ribosom bebas dari ribosom terikat

Function?

Page 15: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 15/38

3. The endomembrane system regulates protein traffic and

performs metabolic functions in the cell

• Components of the endomembrane

system:

 – Nuclear envelope, Endoplasmicreticulum, Golgi apparatus, Lysosomes,

Vacuoles, Plasma membrane

• These components are either 

continuous or connected via transfer by vesicles

K9; K11-12: Mahasiswa mampu mendeskrip struktur dan fungsi sistem endom.

Page 16: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 16/38

Fig. 6-16-1

Smooth ER

Nucleus

Rough ER

Plasmamembrane

Page 17: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 17/38

Fig. 6-16-2

Smooth ER

Nucleus

Rough ER

Plasmamembrane

cis Golgi

trans Golgi

Page 18: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 18/38

Page 19: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 19/38

K11-12; K9: Mahasiswa mampu membedakan ER halus dari ER kasar 

The Endoplasmic

Reticulum: Biosynthetic

Factory

Smooth ER

Rough ER Nuclear envelope

Transitional ER

Rough ERSmooth ER

Transport vesicleRibosomes

Cisternae

ER lumen

200 nm

• The ER membrane is

continuous with the

nuclear envelope

• There are two distinctregions of ER:

Smooth ER, which

lacks ribosomes

Rough ER, with

ribosomes studding

its surface

Page 20: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 20/38

• Functions of Smooth ER

 – Synthesizes lipids

 – Metabolizes carbohydrates

 – Detoxifies poison

 – Stores calcium

• Functions of Rough ER

 – Has bound ribosomes, which secrete

glycoproteins (proteins covalently bonded to

carbohydrates)

 – Distributes transport vesicles (proteinssurrounded by membranes)

 – Is a membrane factory for the cell

K9: Mahasiswa mampu membedakan ER halus dari ER kasar 

Page 21: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 21/38

The Golgi Apparatus: Shipping and

Receiving Center 

K11; K12

cis face(“ receiving” side of 

Golgi apparatus)Cisternae

trans face

(“ shipping” side of 

Golgi apparatus)TEM of Golgi apparatus

0.1 µm

Page 22: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 22/38

K11; K12

• The Golgi apparatus consists of flattened

membranous sacs called cisternae

• Functions of the Golgi apparatus: – Modifies products of the ER

 – Manufactures certain macromolecules

 – Sorts and packages materials into transport

vesicles

Page 23: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 23/38

K11; K12

Lysosomes: Digestive Compartments

Nucleus1 µm

Lysosome

Digestive

enzymesLysosome

Plasma

membrane

Food vacuole

(a) Phagocytosis

Digestion

(b) Autophagy

Peroxisome

Vesicle

Lysosome

Mitochondrion

Peroxisome

fragment

Mitochondrion

fragment

Vesicle containingtwo damaged organelles

1 µm

Digestion

Page 24: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 24/38

K11; K12

• A lysosome is a membranous sac of 

hydrolytic enzymes that can digestmacromolecules

 – Lysosomal enzymes can hydrolyze proteins,fats, polysaccharides, and nucleic acids

• A lysosome fuses with the food vacuoleand digests the molecules

• Lysosomes also use enzymes to recyclethe cell’s own organelles andmacromolecules, a process calledautophagy

Page 25: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 25/38

Vacuoles: Diverse Maintenance Compartments

K11; K12

Central vacuole

Cytosol

Centralvacuole

Nucleus

Cell wall

Chloroplast

5 µm

Page 26: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 26/38

K11; K12

• A plant cell or fungal cell may have one or several vacuoles

 – Food vacuoles are formed by phagocytosis

 – Contractile vacuoles, found in many

freshwater protists, pump excess water out of cells

 – Central vacuoles, found in many mature

plant cells, hold organic compounds and

water 

Page 27: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 27/38

•Mitochondria and chloroplasts – Are not part of the endomembrane

system

 – Have a double membrane – Have proteins made by free ribosomes

 – Contain their own DNA

4. Mitochondria and chloroplasts change energy

from one form to another 

K10: Mahasiswa mampu menerangkan peran mitokondria, kloroplas

Page 28: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 28/38

Page 29: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 29/38

K10: Mahasiswa mampu menerangkan peran mitokondria, kloroplas

Chloroplasts: Capture of Light Energy

• Chloroplast structure includes: – Thylakoids, membranous sacs, stacked to

form a granum – Stroma, the internal fluid

Ribosomes

Thylakoid

Stroma

Granum

Inner and outer membranes

1 µm

Page 30: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 30/38

5. Extracellular components and connections

between cells help coordinate cellular activities

• Most cells synthesize and secrete

materials that are external to the plasma

membrane

• These extracellular structures include:

 – Cell walls of plants

 – The extracellular matrix (ECM) of animal cells

 – Intercellular junctions

K11: Mahasiswa mampu mendeskripsikan empat macam hubungan antar sel

Page 31: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 31/38

Cell Walls of Plants

Secondary

cell wall

Primary

cell wall

Middle

lamella

Central vacuoleCytosol

Plasma membrane

Plant cell walls

Plasmodesmata

1 µm

K13

• Plant cell walls

are made of 

cellulose fibers

embedded in

other polysaccharides

and protein

Page 32: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 32/38

Page 33: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 33/38

Intercellular Junctions

• Neighboring cells in tissues, organs, or organ systems often adhere, interact, and

communicate through direct physical

contact

• Intercellular junctions facilitate this contact

 – Plasmodesmata

 – Tight junctions

 – Desmosomes – Gap junctions

K13

Page 34: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 34/38

Plasmodesmata in Plant Cells

• Plasmodesmata are channels that perforate

plant cell walls

• Through plasmodesmata, water and small

solutes (and sometimes proteins and RNA) can

pass from cell to cell

K13

Interior of cell

Interior of cell

0.5 µm Plasmodesmata Plasma membranes

Cell walls

Page 35: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 35/38

Tight Junctions,

Desmosomes, and

Gap Junctions in Animal Cells

K13

Tight junction

0.5 µm

1 µmDesmosome

Gap junction

Extracellular matrix

0.1 µm

Plasma membranesof adjacent cells

Spacebetweencells

Gap junctions

Desmosome

Intermediatefilaments

Tight junction

Tight junctions preventfluid from moving

across a layer of cells

Page 36: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 36/38

• At tight junctions,

membranes of neighboringcells are pressed together,preventing leakage of extracellular fluid

• Desmosomes (anchoring junctions) fasten cells together into strong sheets

• Gap junctions(communicating junctions)provide cytoplasmic channelsbetween adjacent cells

K13

Extracellular matrix

Plasma membranesof adjacent cells

Spacebetweencells

Gap junctions

Desmosome

Intermediate

filaments

Tight junction

Tight junctions preventfluid from movingacross a layer of cells

Page 37: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 37/38

Summary

1. Eukaryotic cells have internal membranes thatcompartmentalize their function

2. The eukaryotic cell’s generic instructions arehoused in the nucleus and carried out by theribosomes

3. The endomembrane system regulate proteintraffic and performs metabolic functions in thecell

4. Mitochondria and chloroplasts change energy

from one form to another 5. Extracellular components and connections

between cells help coordinate cellular activities

Page 38: biodasTaMu2 MetIl SFCell 19-22 Sep

7/27/2019 biodasTaMu2 MetIl SFCell 19-22 Sep

http://slidepdf.com/reader/full/biodastamu2-metil-sfcell-19-22-sep 38/38

Next Week

Sel II:

Struktur dan Fungsi Membran Sel;

Metabolisme