Top Banner
Bio-Inspired Design Wb2436-05 Biosticking – Part 1
48
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Bio-Inspired DesignWb2436-05

Biosticking – Part 1

Page 2: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

What is adhesion?Compensate forces from the environment

with the aim to

stay, or transposemove,

Page 3: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

What is adhesion?stay

Page 4: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

What is adhesion?move

Page 5: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

What is adhesion?transpose

Page 6: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Ideas from nature

Page 7: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2
Page 8: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

What is adhesion?

Solid intermediate layer Liquid intermediate layer

Shape gripElectrostaticVan der Waals Friction grip Suction

Adhesion without an intermediate layer

Adhesion with an intermediate layer

Page 9: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with an intermediate layer

Liquid intermediate layer

Shape gripElectrostaticVan der Waals Friction grip Suction

Adhesion without an intermediate layer

What is adhesion?

Solid intermediate layer

Page 10: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

TraditionalTissue adhesives

Bioinspired: Mussel Mytilus edulis

Page 11: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

TraditionalTissue adhesives

Waite. J Int J Adhesion & Adhesives 7 (1987) 9-14

Four pathways by which water undermines the performance of adhesive bonds

Bioinspired: Mussel Mytilus edulis

Page 12: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Bioinspired: Mussel Mytilus edulis

Adhesion with a solid interlayer

TraditionalTissue adhesives

amino acid L-3, 4- dihydroxy-phenylalanine (DOPA)

Page 13: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Bioinspired: Mussel Mytilus edulis

Adhesion with a solid interlayer

TraditionalTissue adhesives

Lee et al. (2006). PNAS 103, 12999–13003; Dalsin et al. (2003). JACS 125 , 4253–4258; Silverman et al. (2007). Mar Biotech 9, 661–681; Waite et al. (2005). J Adh 81, 297-317.

Page 14: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

Graham et al. (2006). In Smith & Callow (Eds.) Biological Adhesives (pp. 207-223), Springer-Verlag.

Traditional Bioinspired: Ground frog NotadenTissue adhesives

Adhesive Shear strengthMean±SD (MPa)

Notaden 1.7±0.3

Cyanoacrylate 1.7±0.7

PVA glue 1.3±0.2

UHU® Stic 0.9±0.4

Adhesive Peel strengthMean±SD (MPa)

Cyanoacrylate 0.15±0.03

Notaden 0.10±0.03

Gelatin 0.04±0.03

Fibrin 0.02±0.01

5 µm

Page 15: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

Stewart & Wang (2010). Biomacromolecules 11, 969–974.

TraditionalTissue adhesives

Bioinspired: Caddisfly larva

Page 16: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

Stewart & Wang (2010). Biomacromolecules 11, 969–974.

TraditionalTissue adhesives

Bioinspired: Caddisfly larva

Page 17: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

Stewart & Wang (2010). Biomacromolecules 11, 969–974.

TraditionalTissue adhesives

Bioinspired: Sandcastle worm Phragmatopoma californica

Page 18: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Bioinspired: Sandcastle worm Phragmatopoma californica

Adhesion with a solid interlayer

Stewart & Wang (2010). Biomacromolecules 11, 969–974.

TraditionalTissue adhesives

Glass beads Egg cells

Glass beads Bone chips

Page 19: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

Stewart & Wang (2010). Biomacromolecules 11, 969–974.

TraditionalTissue adhesives

Bioinspired: Sandcastle worm Phragmatopoma californica

Page 20: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

TraditionalTissue adhesives

Bioinspired: Caddisfly larva

Stewart & Wang (2010). Biomacromolecules 11, 969–974.

Page 21: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a solid interlayer

Smith et al. (2009). Comp Biochem Physiol B 152, 110–117.

TraditionalTissue adhesives

Bioinspired: Slug Arion subfuscus

Page 22: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Shape gripElectrostaticVan der Waals Friction grip Suction

Adhesion without an intermediate layer

Solid intermediate layer

Adhesion with an intermediate layer

Liquid intermediate layer

What is adhesion?

Page 23: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Upper endoscopy Camera pill

Page 24: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

10,000 bristles per foot

200x its own weight for short times

Bioinspired: Hemisphaerota cyanea

How to beat animals 200x heavier?

Eisner et al. (2000). PNAS 97, 6568–6573.

Page 25: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Hemisphaerota cyanea

Eisner et al. (2000). PNAS 97, 6568–6573.

Page 26: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Oily footprints during normal walking

Oily footprints when defending

Bioinspired: Hemisphaerota cyanea

Eisner et al. (2000). PNAS 97, 6568–6573.

Page 27: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Tarsus in contact with glass50 µm

10 µm

Bristle pads

Bioinspired: Hemisphaerota cyanea

Eisner et al. (2000). PNAS 97, 6568–6573.

Page 28: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Tissue

Pad

Silicone oilWet layer

Dry micropillars

Silicon-oil coated micropillars

Cheung & Sitti. (2008). J Adh Sci Technol 22, 569–589; Kwan et al. (2006). Biomed Mater 1, 216–220; Cheung et al. (2005). Proc IEEE/ASME Int Conf Adv Intel Mechatr MD5-04; Glass et al. (2008). IEEE Trans Biomed Eng 55, 2759–2767.

Bioinspired: Hemisphaerota cyanea

Page 29: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Hemisphaerota cyanea

Cheung & Sitti. (2008). J Adh Sci Technol 22, 569–589; Kwan et al. (2006). Biomed Mater 1, 216–220; Cheung et al. (2005). Proc IEEE/ASME Int Conf Adv Intel Mechatr MD5-04; Glass et al. (2008). IEEE Trans Biomed Eng 55, 2759–2767.

Page 30: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Hemisphaerota cyanea

Cheung & Sitti. (2008). J Adh Sci Technol 22, 569–589; Kwan et al. (2006). Biomed Mater 1, 216–220; Cheung et al. (2005). Proc IEEE/ASME Int Conf Adv Intel Mechatr MD5-04; Glass et al. (2008). IEEE Trans Biomed Eng 55, 2759–2767.

Page 31: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Limax maximus

How to move when having

one foot?

Page 32: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Limax maximus

High stress area:mucus liquifies

Rim

1 cm

Low stress area:mucus resolidifies

Non-newtonianbehaviour

Denny (1980). Nature 285, 160; Denny (1981). J Exp Biol91, 195; Ewoldt et al. (2007). Soft Matter 3, 634–643; Chan et al. (2007). J Intel Mat Sys Struct 18, 111–116.

Page 33: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Limax maximus

Denny (1980). Nature 285, 160; Denny (1981). J Exp Biol91, 195; Ewoldt et al. (2007). Soft Matter 3, 634–643; Chan et al. (2007). J Intel Mat Sys Struct 18, 111–116.

Page 34: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Limax maximus

Denny (1980). Nature 285, 160; Denny (1981). J Exp Biol91, 195; Ewoldt et al. (2007). Soft Matter 3, 634–643; Chan et al. (2007). J Intel Mat Sys Struct 18, 111–116.

Page 35: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Limax maximus

Denny (1980). Nature 285, 160; Denny (1981). J Exp Biol91, 195; Ewoldt et al. (2007). Soft Matter 3, 634–643; Chan et al. (2007). J Intel Mat Sys Struct 18, 111–116.

Page 36: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Tree frog Litoria caerulea

How to hang upside-down? How to keep being sticky?

Page 37: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Bioinspired: Tree frog Litoria caerulea

Page 38: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Bioinspired: Tree frog Litoria caerulea

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

100 µm

Toe pad

Page 39: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

5 µm

Surface cells

100 µm

5 µm

1 µm

Bioinspired: Tree frog Litoria caerulea

Page 40: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

5 µm1 µm

High-power view of one cell

100 µm

5 µm

1 µm

Bioinspired: Tree frog Litoria caerulea

Page 41: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Cross-section through cell surface 100 µm

5 µm

1 µm

Bioinspired: Tree frog Litoria caerulea

Page 42: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

100 µm

5 µm

1 µm

toe pad

liquid

W

W

v

h

h

h < W

h > W

Bioinspired: Tree frog Litoria caerulea

Page 43: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

100 µm

5 µm

1 µmPersson. J Phys: Condens Matter 19 (2007) 376110; Hanna & Barnes. J Exp Biol 155 (1991) 103-125; Federle et al. J Roy Soc Interface 3 (2006) 689-697; Barnes. Science 318 (2007) 203-204

hard solid

rubber

Young modulusTree frog pad 0 .004-0.02 MPaJellyfish jelly 0.01 MpaCartilage 20 MPaBone 18,000 MpaSilicone rubber 1-5 MpaSteel 200,000 MPa

Bioinspired: Tree frog Litoria caerulea

Page 44: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Adhesion with a liquid interlayer

TraditionalIn vivo microrobots

Page 45: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

Shape gripElectrostatic Friction grip Suction

Solid intermediate layer

Adhesion with an intermediate layer

Liquid intermediate layer

Van der Waals

Adhesion without an intermediate layer

What is adhesion?

Page 46: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2
Page 47: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2
Page 48: Bio Inspired Design - Lecture11. Biomotion bioclamping_part2

COMBINATIONS & HYBRIDS…