Top Banner
2. REVIEW STATISTIK 2.1. STATISTIK UNIVARIATE 2.1.1. Nilai Rata-rata Conto dan Mean Populasi Ekspektasi matematik atau disingkat ekspektasi dari variabel acak atau juga disebut mean populasi sangat erat berkait dengan nilai rata-rata suatu conto. Rata-rata = {} μ = = = n 1 i i x n 1 x x E 2.1.2. Variabilitas Salah satu cara untuk menyatakan suatu distribusi kemungkinan menjadi satu nilai adalah mengganti distribusi tersebut dengan ekspektasi atau mean variabel acaknya, tetapi mean tersebut tidak menyatakan sesuatu mengenai penyimpangan terhadap mean tersebut. Untuk mengukur penyebaran, penyimpangan, variabilitas atau dispersi suatu distribusi kemungkinan terhadap mean digunakan antara lain : - Jangkauan min maks x x - Simpangan rata-rata Ekspektasi nilai mutlak selisih antara masing-masing data atau ( ) dan mean-nya. Nilai mutlak dalam matematika karena tidak mempunyai sifat yang baik sekarang tidak banyak digunakan. i x Varians 2 2 x 2 n 1 i i 2 x ) x ( E ) x x ( n 1 S μ σ = = = Standar deviasi 2 x x 2 x x S S σ = σ = 1
128

Binder

Dec 24, 2015

Download

Documents

Andi Mercury
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Binder

2. REVIEW STATISTIK 2.1. STATISTIK UNIVARIATE 2.1.1. Nilai Rata-rata Conto dan Mean Populasi Ekspektasi matematik atau disingkat ekspektasi dari variabel acak atau juga disebut mean populasi sangat erat berkait dengan nilai rata-rata suatu conto.

Rata-rata = { } μ≈== ∑=

n

1iix

n1xxE

2.1.2. Variabilitas Salah satu cara untuk menyatakan suatu distribusi kemungkinan menjadi satu nilai adalah mengganti distribusi tersebut dengan ekspektasi atau mean variabel acaknya, tetapi mean tersebut tidak menyatakan sesuatu mengenai penyimpangan terhadap mean tersebut. Untuk mengukur penyebaran, penyimpangan, variabilitas atau dispersi suatu distribusi kemungkinan terhadap mean digunakan antara lain : - Jangkauan minmaks xx −

- Simpangan rata-rata

Ekspektasi nilai mutlak selisih antara masing-masing data atau ( ) dan mean-nya. Nilai mutlak dalam matematika karena tidak mempunyai sifat yang baik sekarang tidak banyak digunakan.

ix

Varians 22x

2n

1ii

2x )x(E)xx(

n1S μσ −=≈−= ∑

=

Standar deviasi 2xx

2xx SS σ=σ≈=

1

Page 2: Binder

2.1.3. Ukuran Tendensi Sentral Nilai rata-rata

Nilai rata-rata didefinisikan sebagai berikut : μ≈= ∑=

n

1iix

n1x , padamana fi adalah

frekuensi xi dan . Sebagai contoh berikut ini diberikan perhitungan nilai

rata-rata tinggi mahasiswa.

∑=

=n

1iifn

Tabel 2.1: Contoh Perhitungan Nilai Rata-rata

Titik tengah kelas xi (cm) Frekuensi fi fixi

153 158 163 168 173

5 20 42 26 7

765 3160 6846 4368 1211

100 16350

cm50,163100

16350)]173x7()168x26()163x42()158x20()153x5[(1001x ==++++=

Median Definisi : Nilai yang terletak di tengah (jika banyaknya data ganjil) atau rata-rata kedua nilai di tengahnya (jika banyaknya data genap) pada suatu kumpulan nilai yang telah diurutkan dalam satu jajaran. Contoh : Jajaran 3,4,4,5,6,8,8,9,10 mempunyai median 6 Jajaran 3,4,4,5,6,8,8,8,9,10 mempunyai median (6 + 8) / 2 = 7 Modus (Mode), diberi notasi x) Definisi : Nilai yang mempunyai frekuensi terbesar Modus mungkin tidak ada, atau jika ada, modus tidak unik. Contoh : - Kumpulan 3,4,4,5,6,8,8,8,9,10 mempunyai modus 8 - Kumpulan 3,4,4,5,6,8,8,9,10 mempunyai modus 4 dan 8, jika

banyaknya modus lebih dari 2 disebut multimodal.

- Kumpulan 3,4,5,6,8,9,10 tidak mempunyai modus.

2

Page 3: Binder

2.1.4. Koefisien Variasi (Coefficient of Variation) Perbandingan antara simpangan baku (standard deviation) terhadap rata-rata hitung (aritmatic mean), merupakan pendekatan statistik yang memberikan suatu besaran variabilitas alami suatu populasi data.

Koefisien variasi = xS

hitungrataratabakusimpangan

CV =−

=

Berikut ini adalah contoh beberapa harga CV untuk berbagai endapan emas dibandingkan terhadap endapan logam lainnya.

Tabel 2.2: Contoh Koefisien Variasi Harga Kadar Beberapa Endapan

MACAM ENDAPAN BIJIH KOEFISIEN VARIASI

Emas : Kalifornia, USA; placer Tersier Emas : Loraine, Afrika Selatan; Black Bar Emas : Norseman, Australia; Princess Royal Reef *) Emas : Norseman, Australia; Crown Reef *) Emas : Carlin, USA Tungsten, Alaska Emas : Shamva, Rhodesia Emas : Western Holdings, Afrika Selatan Uranium : Yeelirrie, Australia Emas : Mt. Charlotte, Australia **) Emas : Fimiston, Australia *) Emas : Vaal Reefs, Afrika Selatan Seng, Frisco, Meksiko Emas : Loraine, Afrika Selatan; Basal Reef Nikel, Kambalda Australia Tembaga Mangan Timbal: Frisko, Meksiko Bijih besi Bauksit

5,10 2,81 2,22 1,63 1,58 1,56 1,55 1,28 1,19 1,19 1,12 1,02 0,85 0,80 0,74 0,70 0,58 0,57 0,27 0,22

*) conto bijih dari daerah penambangan, **) conto dari pemboran inti Koefisien variasi yang tinggi menunjukkan nilai data yang mempunyai sebaran melebar. Pada mineralisasi emas, nilai data yang melebar tersebut umumnya dicirikan dengan sekelompok nilai pada kadar rendah dan merupakan ekor yang panjang pada kadar tinggi (ciri distribusi positive skewness).

3

Page 4: Binder

2.1.5. Histogram Dalam analisis statistik dikenal variabel acak atau peubah acak, yang artinya tidak ada hubungan antara harga conto dan lokasinya. Sebagai contoh,

Gambar 2.1: Contoh Sebaran Data dan Histogramnya

Lokasi data walaupun diacak namun tetap akan memberikan bentuk histogram yang sama, yang berarti distribusinya juga sama, demikian juga rata-rata hitungnya (arithmatic mean), modus (mode) dan nilai tengahnya (median).

n

xx

n

1ii∑

== = 17187 = 11

Pada sebaran data di atas, modus = 11 (terdapat 4 data, perhatikan puncak histogram). Nilai tengah dapat diurutkan sebagai berikut :

7,8,9,9,10,10,11,11,11,11,12,12,12,13,15,16 Sedangkan varians (variance) dan simpangan baku (standard deviation) adalah:

[ ]1n

xxn

1i

2

i2

−=σ∑= =

)117()1116(.....)118()117( 222

−−++−+− =

1684 = 5,25 ppm2

SD = 25,5 = ±2,29 ppm

4

Page 5: Binder

1 1 1 1 2 2 2 2 2 1 1 1

1 1 2 2 2 3 2 3 3 2 2 1

1 2 2 2 2 4 3 3 4 3 2 1

1 2 2 4 4 5 5 5 3 3 3 2

2 2 3 7 8 6 7 6 4 2 2 2

2 2 4 7 9 7 6 5 6 4 2 2

2 2 4 5 8 6 5 7 5 4 2 1

1 2 3 3 2 4 5 3 1 2 2 1

1 1 2 2 2 2 3 2 1 1 1 1

1 1 2 2 2 2 2 2 1 1 1 1

Gambar 2.2: Contoh Distribusi Data

Gambar 2.3: Histogram Contoh Distribusi Data pada Gambar 2.2

5

Page 6: Binder

Gambar 2.4: Contoh Distribusi Data pada Empat Blok

Gambar 2.5: Histogram Contoh Distribusi Data pada Gambar 2.4

6

Page 7: Binder

Pada suatu populasi jika dipilih daerah tertentu saja, maka akan menghasilkan bentuk histogram yang berbeda (bentuk distribusinya juga berbeda). Dari Gambar 2.2, jika diambil seluruh data akan menghasilkan histogram C pada Gambar 2.3, demikian juga, daerah yang diberi warna abu-abu muda bersama dengan abu-abu tua menghasilkan histogram A, daerah yang diberi warna abu-abu tua saja memberikan histogram B. Jika diketahui cut-off grade adalah 2%, maka blok dengan dimensi 50 x 50 m2 yang mempunyai kadar ≥ 2% mempunyai distribusi data seperti yang terlihat pada ke empat gambar pada Gambar 2.4 di atas. Untuk setiap daerah bentuk histogramnya adalah seperti pada Gambar 2.5. Jika karena alasan teknis tertentu penambangan bisa dilakukan pada daerah dengan luas minimum 100 x 100m2 (empat blok yang berdekatan), maka tidak semua daerah bisa ditambang. 2.2.1. Diagram Pencar Suatu pasangan data dapat diambil dalam bentuk diagram pencar yang menunjukkan hubungan antara kedua variabel tersebut. Misalkan pasangan data (x1,y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5), ........ (xn,yn) diplot dalam sistem koordinasi kartesian XY, maka akan menghasilkan diagram pencar antara lain sebagai berikut :

Gambar 2.1 Diagram Pencar Beberapa Pasangan Data yang Menunjukkan Hubungan Korelasi Antar Pasangannya Gambar paling kiri menunjukkan hubungan tersebut linier positif, yang berarti kenaikan harga x akan diikuti dengan kenaikan harga y, dan dinyatakan dalam suatu garis regresi linier. Gambar di tengah menunjukkan hubungan non-linier berbentuk parabolik, sedangkan gambar paling kanan menunjukkan tidak adanya hubungan antara variabel x dan y, yang berarti kedua variabel tersebut tidak berkorelasi satu dengan lainnya. Ukuran untuk menyatakan hubungan korelasi ini diekspresikan dalam suatu koefisien korelasi.

7

Page 8: Binder

2.2.2 Rata-rata, Varians, Kovarians dan Koefisien Korelasi

∑=

=n

1iix

n1x rata-rata variabel x

∑=

=n

1iiy

n1y rata-rata variabel y

(∑=

−−

=n

iix xx

nS

1

22

11 ) varians variabel x

(∑=

−−

=n

iiy yy

nS

1

22

11 ) varians variabel y

( )(∑=

−−−

=n

1iiixy yyxx

1n1S ) kovarians

yx

xy

SSS

r = koefisien korelasi

Tabel 2.3: Perhitungan Parameter Statistik

xi yi xxi − yxi − ( )2i xx − ( )2i yy − ( )( )yxxx ii −−

1 2 3

3 5 10

-1 0

+1

-3 -1 +4

1 0 1

9 1

16

3 0 4

6 18 0 0 2 26 7 S2 1 13 3,5 S 1 3,6

6y

2x

=

=

( )( ) 97,06,31

5,3r ==

8

Page 9: Binder

3. Variabel Terregional - Deterministik 3.1. Medan dan fungsi dari skalar dan vektor o Contoh medan skalar: head, kadar, konsentrasi, berat jenis, SG, topografi,

roof & floor batubara, permeabilitas, modulus elastisitas, nilai kalori, kadar abu, panas, tekanan udara, tekanan air, tegangan listrik dll.

o Contoh medan vektor: gradien medan skalar, misalnya: gradien head, gradien konsentrasi, gradien panas, gradien gaya (medan tegangan) dll.

o Fungsi skalar dan vektor: cara menyatakan distribusi skalar dan vektor di suatu garis, permukaan dan ruang

o Fungsi skalar: y = ƒ (x) → z = ƒ (x , y) → u = ƒ (x, y, z) z = ƒ ( x(t), y(t) )

o Fungsi vektor : ( ) [ ] k)t(vj)t(vi)t(v)t(v),t(v),t(,vtv 321321 ++==

( ) [ ] k)t(zj)t(yi)t(x)t(z),t(y),t(xtv ++== [ ]

k)z,y,x(vj)z,y,x(vi)z,y,x(v

)z,y,x(v),z,y,x(v),z,y,x(v)z,y,x(v

321

321

++=

=

3.2. Kalkulus skalar dan kalkulus vektor

)t(v ,

)tt(v Δ+ )t(v

f(x)

f’(x)

f(x) f(x + Δx)

x x + Δx x

Gambar 3.1: Turunan Fungsi Vektor (kiri) dan Fungsi Skalar (kanan)

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-1

Page 10: Binder

o Contoh : fungsi vektor posisi : parameterisasi fungsi

[ ])t(),t(),t()t( 321 νννν = atau

[ ])t(z),t(y),t(x)t(r =

z )(r t

x

y

Gambar 3.2: Vektor Posisi

o Contoh : parametarisasi persamaan garis

z

a

x

y

b

Gambar 3.3 : Parameterisasi Garis

tba)t(r += ,

[ ] posisivektor:a,a,aa 321=

[ ] (satuan)arahvektor:b,b,bb 321=

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-2

Page 11: Binder

3.3. Contoh medan dan fungsi Contoh 1

Diketahui medan skalar berupa medan konsentrasi dengan fungsi sbb:

z = f(x, y ) = 9x2 + 4y2 dan garis y = x + 1

konsentrasi dititik ( 2, 4) → f(2, 4) =( 9).(4) + (4).(16) = 100 Sketsa garis iso-konsentrasi digambarkan pada Gambar 4.5.

z = ƒ (x , y) = 9x2 + 4y2 = 36

13y

2x1

9y

4x 2222

=⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛⇒=+

z = ƒ (x , y) = (9x2 + 4y2) (4) = 36 (4)

16y

4x1

36y

16x 2222

=⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛⇒=+

Region antara konsentrasi 36 dan 144 terletak antara ellips 9x2 + 4y2 = 36 dan ellips 36x2 + 16y2 = 144. Nilai z pada garis y = x + 1 dinyatakan dengan

z = f(x) = 13 x2 + 8 x + 5

9x2 + 4y2 = 36

36x2 + 16y2 = 144 6

4

y

2 3 x x

Gambar 3.4 : Kurva Iso-Konsentrasi

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-3

Page 12: Binder

Contoh 2

Diketahui kurva iso-therm dengan fungsi T (x, y) = xy

T (x , y) = xy = 1 → y = x1 → x = 0 , y = ~

y = 0, x = ~

T (x , y) = xy = -1 → y = x1− → x = 0 , y = - ~

y = 0, x = - ~

Gambar 3.5 : Kurva Iso-Termal

y

x

Contoh 3

Diketahui medan vektor dengan fungsi ji +=ν Gambar medan vektor

)3()ji(,)3()ji()2()ji(,)2()ji()1()ji(,)1()ji(ν

−++−++−++

= Gambar 3.6 : Medan Vektor

y x

j− i− i

j

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-4

Page 13: Binder

3.4. Kalkulus skalar variabel majemuk o Aturan rantai

Aturan rantai pada fungsi medan skalar terhadap variabel sembarang :

))v,u(z),v,u(y),v,u(x(fW =

vz

zw

vy

yw

vx

xw

vw

uz

zw

uy

yw

ux

xw

uw

∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

=∂∂

∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

=∂∂

(3-1)

Aturan rantai pada fungsi medan skalar terhadap ruang dan waktu :

))t(z),t(y),t(x(fW =

⎟⎠⎞

⎜⎝⎛∂∂

∂∂

+⎟⎠⎞

⎜⎝⎛∂∂

∂∂

+⎟⎠⎞

⎜⎝⎛∂∂

∂∂

=∂∂

tz

zw

ty

yw

tx

xw

tw (3-2)

zw)t('z

yw)t(y

xw)t(x

tw

∂∂

+∂∂′+

∂∂′=

∂∂ (3-3)

o Variasi terhadap ruang

zzwy

ywx

xww ∂

∂∂

+∂∂∂

+∂∂∂

=∂

dzzwdy

ywdx

xwdw

∂∂

+∂∂

+∂∂

=

zzwy

ywx

xww ΔΔΔΔ

∂∂

+∂∂

+∂∂

= (3-4)

o Teori nilai rata-rata dalam kalkulus (linierisasi)

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-5

Page 14: Binder

Gambar 3.7: Teorema Rata-rata (Liniearisasi)

x(x)-Δx)(x

ΔΔ

fflim)x('f0x

+=

xfh)x(f)hx(f

h)x(f)hfff

xf

oo

o

∂∂

=−+

−+=

+=

∂∂ ox(

x(x)-x)x(

ΔΔ

y

f(x)

f(x) f(x +

D

(Xo,Yo)

(Xo+h , Yo+k) Δx)

x x

x + Δx

Δx

untuk fungsi majemuk berlaku:

zf

yfk

xfh)z,y,x(f)z,ky,hx(f oooooo ∂

∂+

∂∂

+∂∂

=−+++ ll

zf

yfk

xfh)z,y,x(fd

∂∂

+∂∂

+∂∂

= l (3-5)

atau

dzzfdy

yfdx

xffd

∂∂

+∂∂

+∂∂

= (3-6)

df merupakan variasi ƒ terhadap ruang. Persamaan (3-4), (3-5) dan persamaan (3-6) digolongkan sebagai persaman-persamaan yang identik.

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-6

Page 15: Binder

o Contoh : ekspreksi untuk kecepatan benda bergerak yang

merupakan fungsi dari ruang (posisi) dan waktu

v = v ( x,y,z,t)

Variasi kecepatan terhadap ruang dan waktu dinyatakan sebagai berikut :

dttvdz

zvdy

yvdx

xvdv

∂∂

+∂∂

+∂∂

+∂∂

= (3-7)

tv

zvv

yvv

xvv

DtDv

zyx ∂∂

+∂∂

+∂∂

+∂∂

= (3-8)

3.5. Gradien medan skalar (variasi spasial atau thdp ruang)

kzfj

yfi

xf

zf,

yf,

xffgrad

∂∂

+∂∂

+∂∂

=⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

= (3-9)

⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=∇zf,

yf,

xff

kz

jy

ixz

,y

,x ∂

∂+

∂∂

+∂∂

=⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=∇ (3-

10)

o Turunan berarah (directional derivative)

Gambar 3.8: Turunan berarah

X)x(f)xx(f

xf lim

0x ΔΔ

Δ

−+=

∂∂

: dalam arah x

S)s(f)ss(f

sf lim

0s ΔΔ

Δ

−+=

∂∂

: dalam arah s

S)P(f)Q(flim

0s ΔΔ

−=

(3-11)

P

Q C ΔS

b

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-7

Page 16: Binder

S)P(f)Q(f

sffD lim

0sb ΔΔ

−=

∂∂

=→

(3-12)

Persamaan garis dengan parameter

tba)t(r += atau k)t(zj)t(yi)t(x)t(r ++=

sba)s(r += atau k)s(zj)s(yi)s(x)s(r ++= Untuk kasus seperti pada Gambar 3.8, maka

sbPO)s(r += (3-13)

k)s(zj)s(yi)s(x)s(r ++= (3-14)

PO adalah vektor posisi, yang dibentuk antara titik P dan titik O (titik referensi). Persamaan (3-13) dan (3-14) ekivalen dan sama, sehingga

k)s(zj)s(yi)s(xsbPO)s(r ++=+= (3-15)

k)s('zj)s('yi)s('xb)s('r ++== (3-16)

Berdasar persamaan (3-2), (3-6) dan (3-12) didapatkan ekspresi sebagai berikut :

)s('zzf)s('y

yf)s(x

xf

sz

zf

sy

yf

sx

xf

sf

∂∂

+∂∂

+′∂∂

=∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

=∂∂ (3-17)

[ ] b f.)s(r.f)s(z),s(y),s(x.zf,

yf,

xf

∇=′∇=′′′⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=

fgrad.bf.bfDsf

fgrad.bf.b

b =∇==∂∂

=∇= (3-18)

Pada Gambar 3.8, b adalah vektor arah satuan. Untuk c vektor sembarang, maka turunan berarah (directional derivative) di arah c dinyatakan sebagai berikut :

f.c.c1

sffDc ∇=∂∂

= (3-19)

dari persamaan (3-18) nilai skalar perkalian vektor didapatkan sebagai berikut:

αcosf.bfDb ∇= (3-20)

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-8

Page 17: Binder

Dbƒ maksimum jika α = 0, arti fisik persamaan (3-20) dapat dijelaskan sebagai berikut. Berdasar persamaan (3-6), jika diketahui medan skalar φ , maka variasi φ terhadap ruang dinyatakan sebagai berikut :

dzz

dyy

dxx

d∂∂

+∂∂

+∂∂

=φφφφ

[ ]dz,dy,dx.z

,y

,x ⎥

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=φφφ

αφφφΔ cosrddr. ∇=∇=

φ φ + Δφ

φ + 2Δφ

Δφ ≈ dφ ≈ ∂φ

φ∇

b

c

Gambar 3.9: Arti Fisik Turunan Berarah

φΔ akan berharga maksimum jika φ∇ berimpit dengan rd atau b atau c o Gradien sebagai vektor normal dari garis (bidang) singgung

r∇

)t('r

)t(r

)t(r

)t(u

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-9(0,0,0)

Page 18: Binder

Gambar 3.10: Gradien Sebagai Vektor Normal

φ∇

n

φ3

rd

φ2

φ1

Δφ ≈ dφ ≈ ∂φ

Gambar 3.11: Vektor Normal pada Iso-Line

Bukti : Fungsi skalar dinyatakan dengan persamaan berikut ini :

)z,y,x(φ atau ))t(z),t(y),t(x(φ (3-21)

Persamaan parametrik kurva, permukaan dan ruang adalah

k)t(zj)t(yi)t(x)t(r ++= (umum)

k)t(zj)t(yi)t(x)t( ++=φ (3-22)

k)t('zj)t('yi)t('x)t(' ++=φ

Berdasar persamaan (3-6) didapatkan persamaan berikut :

z.z

y.y

x.x

dzz

dyy

dxx

d ′∂∂

+′∂∂

+′∂∂

=∂∂

+∂∂

+∂∂

=φφφφφφφ

[ ] [ ]z,y,x.z

,y

,x

dz,dy,dx.z

,y

,x

′′′⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=φφφφφφ

'r.dr. φφ ∇=∇=

0)90(cosr.)90(cosrd.d =′

∇=∇= φφφ (3-23)

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-10

Page 19: Binder

Jadi φ∇=N atau dengan demikian, maka :

φφ

∇∇

= .1n (3-24)

Contoh : 1) Hitung gradien φ(x,y,z) = 3x2 – 9y2 – 4xy + 2z + 7 dititik (1, 0, -1) dan

tentukan nilai skalarnya. Jawab :

[ ]2),x4y18(),y4x6(z

,y

,x

−−−=⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=∇φφφφ

[ ]2,4,6)1,0,1( −=−∇φ

483.7)1,0,1( =−∇φ

2) Diketahui : φ(x,y,z) = 3x2 – 9y2 – 4xy + 2z + 7. Hitung turunan φ pada arah

vektor [ 56,57/8,57/7a = ] dititik (1, 0, -1). Jawab :

[ ]2,4,6)1,0,1( −=−∇φ

[ ] [ 2,4,6.56,57/8,57/7571.fDb −=∇= φa ]

140.257122

==

3) Berikan vektor normal satuan bidang φ ( x, y , z) = 2x + 3y + 6z + 10

Jawab :

[ ]6,3,2)10z6y3x2( =+++∇=∇φ

[ ]6,3,2N =

[ ]6,3,271N.

N1n ==

Sifat – sifat gradien :

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-11

Page 20: Binder

o Gradien medan skalar searah dengan normalnya o Gradien mengarah ke penambahan nilai medan yang membesar o Harga skalar (modulus) gradien sama dengan harga maksimum dari turunan

berarah di suatu titik di dalam medan skalar ybs

3.6. Divergensi medan vektor (hasil: skalar)

[ ]321 v,v,vv =

v.vz

vy

vx

div 321 ∇=∂∂

+∂∂

+∂∂

= (3-25)

[ ]321 v,v,v.z

,y

,x ⎥

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=

Bandingkan :

fz

,y

,x

ffgrad ⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=∇=

Operator Laplace (∇ 2)

( ) ( ) ⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=∇=∇∇=∇z

,y

,x

.z

,y

,x

..div 2 φφφφφφ

2

2

2

2

2

2

zyxz,

y,

x.

z,

y,

x ∂∂

+∂∂

+∂∂

=⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=φφφφ (3-26)

3.7. Curl medan vektor (hasil: vektor)

[ ]321 v,v,vv =

kyv

xv

jxv

zv

izv

yv

vvvzyx

kji

vxvCurl

12

31

23

321⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−∂∂

+⎟⎠⎞

⎜⎝⎛

∂∂

−∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−∂∂

=∂∂

∂∂

∂∂

=∇= (3-27)

0xgradCurl =∇∇= φφ (3-28)

Catatan Kuliah – Dr.Ir. Lilik Eko Widodo, MS

3-12

Page 21: Binder

3. VARIABEL TERREGIONAL DAN SEMIVARIOGRAM

Suatu variabel dikatakan teregional jika terdistribusi dalam ruang dan biasanya mencirikan suatu fenomena tertentu, misalnya sebagai kadar logam yang merupakan karakteristik suatu mineralisasi. Secara matematik variabel terregional atau f(x) merupakan penyajian atau realisasi nilai fungsi F(x) yang menempati setiap titik x pada ruang. Umumnya pada semua endapan, perilaku karakteristik atau struktur variabilitas dalam ruang dari variabel terregional dapat dilihat / dikenali aspek erratic secara lokal (adanya zone lebih kaya dibandingkan lainnya). Conto yang diambil pada zone lebih kaya akan mempunyai nilai rata-rata lebih tinggi dibanding dengan yang diambil pada zone yang lebih miskin, sehingga nilai variabel terregional f(x) tergantung pada posisi atau letak dalam ruang x. Tetapi secara umum (rata-rata) akan menunjukkan aspek terstruktur dengan fungsi tertentu. 3.1 . KONSEP FUNGSI ACAK Variabel acak adalah variabel yang mempunyai nilai numerik tertentu berdasar distribusi probabilitas tertentu. Variabel yang terkait dengan lubang bor z(x1) mempunyai lokasi atau posisi pada titik x1. Fungsi acak Z(x) menyatakan kumpulan semua variabel acak z(x) di dalam endapan atau {Z(x), x ∈endapan}. Variabel terregional f(x) dapat dipandang sebagai realisasi variabel acak z(x). Definisi fungsi acak menyatakan aspek acak dan terstuktur dari suatu variabel terregional sebagai berikut: a. Secara lokal pada titik x1,z(x1) adalah variabel acak. b. Z(x) juga merupakan suatu fungsi acak untuk setiap kumpulan titik-titik x1

dan x1+h, sedangkan variabel acak z(x1) dan z(x1+h) itu sendiri tidak merupakan fungsi acak. Secara umum z(x1) dan z(x1+h) adalah independen, tetapi keduanya dihubungkan oleh korelasi struktur letak ruang dari variabel terregional f(x).

Page 22: Binder

3.2. HIPOTESIS PADA VARIABEL TERREGIONAL DAN SEMIVARIOGRAM

Karena adanya aspek erractic pada variabel terregional, maka kajian secara langsung terhadap variabel terregional ini tidak mungkin dapat dilakukan, oleh karena itu memerlukan beberapa hipotesis. 3.2.1 . Ekspektasi Matematik atau Momen Orde ke Satu Ekspektasi matematik didefinisikan sebagai sifat atau harga yang merupakan representasi dari suatu populasi. Jika distribusi fungsi acak Z(x) mempunyai ekspektasi, maka ekspektasi secara umum merupakan fungsi dari x, atau dapat dinyatakan sebagai berikut:

E {Z(x)} = m(x) x (1) ∀ 3.2.2 . Momen Orde ke Dua Tiga buah momen orde ke dua yang dipertimbangkan pada geostatistik adalah :

a. Varians dari Z(x) Varians didefinisikan sebagai ekspektasi di sekitar m(x),

Var {Z(x)} = E [{Z(x) – m (x)}2] ∀ x (2)

Varians secara umum juga merupakan fungsi dari x.

b. Kovarians Kovarians dari z(x1) dan z(x2) dinyatakan sebagai berikut:

C(x1,x2) = E [{Z(x1) - m(x1) - m(x2)}] (3) c. Semivariogram

Fungsi semivariogram didefinisikan sebagai varians dari increment atau perbedaan antara {z(x1) – z(x2)} dan ditulis sebagai berikut:

( ) ( ) ( )}xzxz{Varx,x2 2121 −=γ (4a)

atau

(4b) ( ) ( ) ( )[ ] ( )∑=

=−=N

ihii hNxzxzh

1

2 /2γ

N(h) adalah jumlah pasangan data, sedangkan h adalah jarak antara conto / lag semivariogram.

Page 23: Binder

3.2.3 . Hipotesis Stasionaritas Hipotesis ini muncul dari definisi bahwa fungsi kovarians dan semivariogram tergantung secara simultan pada dua support titik x1 dan x2. Oleh karena itu, beberapa realisasi dari kombinasi variabel acak {z(x1), z(x2)} dapat digunakan untuk menarik kesimpulan statistik. Di lain pihak, jika fungsi ini hanya tergantung pada jarak di antara dua support titik, yaitu pada vektor h = x1 - x2 yang memisahkan x1 dan x2, maka penarikan kesimpulan statistik menjadi mungkin, yaitu setiap pasangan data {z(xk), z(xk’)} terpisahkan oleh jarak (xk – xk’), sama dengan vektor h, dapat dipandang sebagai suatu realisasi yang lain dari pasangan variabel acak {z(x1),(z(x2)}. Secara penalaran menjadi jelas, pada suatu mineralisasi homogen, korelasi yang ada di antara dua nilai data z(xk) dan z(xk’) tidak tergantung pada posisi di dalam zone tetapi lebih tergantung pada jarak yang memisahkan mereka.

3.2.4. Stationaritas Orde ke Dua Sebuah fungsi acak dikatakan mempunyai stationaritas orde ke dua jika :

a. Ekspektasi matematik E {Z(x)} ada dan tidak tergantung pada support titik x dan dinyatakan sebagai berikut:

E {Z(x)} = m ∀ x (5) b. Setiap pasangan dari variabel acak {z(x), z(x+h)} muncul kovarians dan

tergantung pada jarak h dan dinyatakan sebagai berikut: C(h) = E [{Z(x+h) – m} · {Z(x) – m}] = E {Z(x+h) · Z(x)} – m E {Z(x+h)} – E {Z(x)} + m2

= E {Z(x+h) · Z(x)} – m2 – m2 + m2 C(h) = E {Z(x+h) · Z(x)} – m2 ∀ x (6)

h menyatakan suatu koordinat vektor (hu, hv, hw) pada ruang 3-D.

Stasionaritas dari kovarians mengandung arti stasionaritas dari varians dan variogram. Hubungan berikut bisa diturunkan dari definisi di atas :

a. C(0) = E [{Z(x) - m2 ] C(0) = E {Z(x) ·Z(x)} - m2

Var {Z(x)} = E [{Z(x) – m}2] = C(0) (7) b. γ (h) = ½ E [{Z(x+h) – Z(x) m}2]

= ½ E [{Z(x+h)·Z(x+h).Z(x+h)} – E [{Z(x+h)·Z(x)} + ½ E {Z(x)·Z(x)} γ (h) = E {Z(x)·Z(x)} – E{Z(x+h)·Z(x)} = C(0) + m2 – {C(h) + m2}

γ (h) = C(0) – C(h) (8)

Page 24: Binder

3.2.5. Hipotesis Intrinsik Suatu fungsi acak Z(x) dikatakan menjadi intrinsik jika :

a. Terjadi ekspektasi matematik dan tidak tergantung pada support titik x E {Z(x)} = m ∀ x (9)

b. Untuk semua vektor h, increment {Z(x+h)–Z(x)} mempunyai varians berhingga yang tidak tergantung pada x,

Var {Z(x+h) – Z(x)} = E [{Z(x+h) - Z(x)}2 = 2γ (h) x (10) ∀ 3.3. BEBERAPA CATATAN PENTING SEMIVARIOGRAM Berdasarkan hipotesis di atas terdapat beberapa catatan tentang semivariogram. 3.3.1. Stationaritas Semu Pada praktek, fungsi struktural kovarians atau variogram hanya digunakan untuk jarak terbatas │h│≤ a. Nilai a didefinisikan sebagai batas, misalnya menyatakan diameter dari penaksiran. Dua variabel acak z(x) dan z(x+h) tidak dapat dipandang berasal dari mineralisasi homogen suatu endapan yang sama jika │h│> a. Pada kasus ini berarti fungsi struktural C(x,x+h) atau γ (x,x+h), tidak lebih dari stationaritas secara lokal untuk jarak │h│kurang dari batasan a. 3.3.2. Tidak Terdapat Korelasi Sering dijumpai, bahwa korelasi antara dua variabel acak z(x) dan z(x+h) menghilang saat jarak h menjadi terlalu besar : C(h) → 0, jika │h│→ ∞ dan secara praktis, dapat diambil C(h) = 0, pada │h│≥ a. Dalam radius jarak a, dimana C(h) mempunyai korelasi disebut dengan range, di luar itu, dimana C(h) dapat dipandang menjadi sama dengan nol merupakan representasi dari fenomena transisi (perubahan) yang tidak memberikan korelasi pada │h│≥ a. 3.3.3. Sifat Semivariogram Definisi semivariogram sebagai varians dari increment, mengakibatkan sifat-sifat sebagai berikut :

( ) 00 =γ , 0)h()h( ≥−= γγ dan )0()h( γγ ≥

Page 25: Binder

Secara umum, tetapi tidak selalu harus, peningkatan h akan menyebabkan rata-rata kuadrat pada dua variabel acak z(x) dan z(x+h) cenderung meningkat dan oleh sebab itu γ (h) meningkat dari nilai awal (nol). 3.3.4. Fenomena Transisi Kurva semivariogram akan naik dan pada jarak tertentu menjadi kurang lebih stabil di sekeliling suatu nilai batas γ (∞ ) yang disebut nilai sill, yang merupakan apriori variance dari variabel acak. γ (∞ )= Var {Z(x)} = C(0)

Semivariogram yang dicirikan oleh nilai sill dan suatu range disebut model transisi, dan mencerminkan suatu fungsi acak yang tidak hanya intrinsik tetapi juga stationaritas orde ke dua. 3.3.5. Zone Pengaruh Pada suatu fenomena transisi, setiap nilai data dalam fungsi acak Z(x) akan terkorelasi dengan nilai data lainnya yang terletak pada radius a dari x. Radius a ini disebut juga range, yang merupakan batas stationaritas semu dari endapan yang homogen. Adanya korelasi seperti ini menyebabkan pengaruh suatu nilai terhadap nilai lainnya yang menurun pada jarak ke dua titik yang semakin jauh. Jadi range menghubungkan pada ide penalaran dari suatu zone pengaruh variabel acak, yaitu di luar jarak │h│= a, variabel acak z(x) dan z(x+h) selanjutnya tidak terkorelasi. 3.4. PERHITUNGAN VARIOGRAM Veriogram dihitung dengan suatu rumus yang sederhana, yaitu perbedaan rata-rata antara dua titik conto dengan jarak tertentu. Oleh karena itu perbedaan tersebut kemungkinan berharga < 0 atau > 0, agar perbedaan rata-rata tersebut selalu berharga > 0, maka perhitungan didasarkan pada perbedaan kuadrat. Delfiner mendefinisikan bahwa perbedaan kuadrat tersebut diasumsikan sebagai ekspektasi [Z(xi) – Z(xi+h)], sehingga definisi variogram menjadi : 2g(h) = Var [Z(xi) – Z(xi+h)] Dimana : 2g(h) = variogram Var = varians Dari fungsi tersebut dapat didefinisikan semivariogram sebagai berikut :

Page 26: Binder

( )( ) ( )[ ]

)h(N2

xzxzh

N

1i

2hii∑

=+−

dimana : g(h) = (semi)variogram untuk arah tertentu dari jarak h h = 1d, 2d, 3d, 4d (d = jarak antar conto) z(xi) = harga (data) pada titik xi z(xi+h) = data pada titik yang berjarak h dari xi

N(h) = jumlah pasangan data Sebagai contoh data kadar emas (dalam ppm) di sepanjang urat dengan jarak penganbilan conto (d) setiap 2 m : harga 7 9 8 10 9 11 11 13 11 12 16 12 10 11 10 12 15 ppm I__I__I___I__I___I___I___I___I___I___I___I___I___I___I___I___I I I I I I I I I I I I I I I I I I lokasi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Nilai Variogramnya adalah:

g(2) ( ) ( ) ( ) ( ) ( ) ( ) 2222222

ppm16x2

15121210......9101088997 −+−++−+−+−+−=

= (4+1+4+1+4+0+4+4+1+16+16+4+1+1+4+9) / 2x16 = 74/32 = 2.31 ppm2

g(4) = (1+1+1+1+4+4+0+1+25+0+36+1+0+1+25) / 2x15 = 101/30 = 3.36 ppm2

g(6) = (9+0+9+1+16+0+1+9+1+4+25+4+4+16) / 2x14 = 99/28 = 3.54 ppm2

g(8) = (4+4+9+9+4+1+25+1+1+1+25+0+16) / 2x13 = 100/26 = 3.85 ppm2

g(10) = (16+4+25+1+9+25+1+9+0+4+16+9) / 2x12 = 119/24 = 4.96 ppm2

g(12) = (16+16+9+4+49+1+1+4+1+0+1) / 2x11 = 102/22 = 4.64 ppm2

g(14) = (25+4+16+25+9+1+0+9+1+9) / 2x10 = 99/20 = 4.95 ppm2

g(16) = (16+9+64+4+1+0+1+1+16) / 2x9 = 112/18 = 6.22 ppm2

g(18) = (25+49+16+0+4+1+1+4) / 2x8 = 100/16 = 6.25 ppm2

g(20) = (81+9+4+1+1+1+16) / 2x7 = 113/14 = 8.07 ppm2

g(22) = (25+1+9+0+9+16) / 2x6 = 60/12 = 5.00 ppm2

g(24) = (9+4+4+4+36) / 2x5 = 57/10 = 5.70 ppm2

Page 27: Binder

Gambar 3.1: Variogram eksperimental dan varians populasi (garis mendatar, menunjukkan harga 5.25 ppm2) Perhitungan di atas dilakukan pada pasangan conto yang harus tepat pada jarak h dan tepat arah 0°, sedangkan pada prekteknya sering dijumpai pola pengambilan conto yang tidak reguler, untuk itu perlu diberikan suatu toleransi untuk kedua variabel tersebut, sehingga menurut David (1977) muncul istilah angle classes ( 2/αθ ± ) dan distance classes (h±∆h). Jadi semua titik conto yang berada pada search area didefinisikan dengan angle classes ( 2/αθ ± ) dan distance classes (h±∆h) akan dianggap sebagai titik-titik conto yang berjarak h dari x0 pada arah termaksud (Gambar 3.2).

Page 28: Binder

Gambar 3.2: Arah varioagram (θ ), search area dengan angle of classes

( 2/αθ ± ) dan distance classes (h±∆h) menurut David (1977) Alogaritma perhitungan variogram adalah sebagai berikut :

a. Setiap titik conto mempunyai kesempatan untuk menjadi titik origin (xi). Titik-titik lainnya dihitung dengan perbedaan kuadratnya [z(xi) - z(xi+h)]2. Jarak antara titik origin (xi) dan titik lainnya (xi+h) harus berada pada distance classes (h±∆h). Jika titik xi+h berada di luar daerah distance classes dan angle classes, maka perbedaan kuadrat tidak dihitung. Demikian perhitungan ini berulang-ulang di setiap titik xi+h.

b. Selanjutnya dengan prosedur pada butir 1 titik-titik lainnya juga diberi kesempatan menjadi titik origin xi.

c. Untuk prosedur 1 dan 2 hitung jumlah pasangannya N(h) yang memenuhi syarat di atas dan juga jumlahnya secara kumulatif semua perbedaan kuadratnya S[z(xi) - z(xi+h)]2. Dengan rumus di atas, maka dapat dihitung (semi)variogram untuk jarak pasangan h = id.

d. Variogram untuk jarak pasangan h selanjutnya (2d, 3d, 4d, .... dst) lakukan kembali dengan prosedur 1 sampai dengan 3. Dengan demikian akan didapati hasil perhitungan variogram untuk setiap jarak h.

e. Plot grafik variogram dengan sumbu X adalah h sedangkan sumbu Y nya adalah harga variogram untuk jarak h yang bersangkutan.

Page 29: Binder

3. VARIABEL TERREGIONAL DAN SEMIVARIOGRAM

Suatu variabel dikatakan teregional jika terdistribusi dalam ruang dan biasanya mencirikan suatu fenomena tertentu, misalnya sebagai kadar logam yang merupakan karakteristik suatu mineralisasi. Secara matematik variabel teregional merupakan penyajian atau realisasi nilai fungsi f(x) yang menempati setiap titik x pada ruang. Umumnya pada semua endapan, perilaku karakteristik atau struktur variabilitas dalam ruang dari variabel terregional dapat dilihat / dikenali aspek erratic secara lokal (adanya zone lebih kaya dibandingkan lainnya). Conto yang diambil pada zone lebih kaya akan mempunyai nilai rata-rata lebih tinggi dibanding dengan yang diambil pada zone yang lebih miskin, sehingga nilai variabel terregional f(x) tergantung pada posisi atau letak dalam ruang x. Tetapi secara umum (rata-rata) akan menunjukkan aspek terstruktur dengan fungsi tertentu. 3.1 . KONSEP FUNGSI ACAK Variabel acak adalah variabel yang mempunyai nilai numerik tertentu berdasar distribusi probabilitas tertentu. Harga parameter yang terkait dengan lubang bor z(x1) mempunyai lokasi atau posisi pada titik x1. Jadi kumpulan kadar z(x) untuk semua x di dalam endapan, yaitu variabel terregional z(x) dapat dipandang sebagai realisasi variabel acak {Z(x), x ∈endapan}. Kumpulan variabel terregional z(x) dinamakan fungsi acak dan ditulis Z(x). Definisi fungsi acak menyatakan aspek acak dan terstuktur dari suatu variabel terregional : a. Secara lokal pada titik x1,z(x1) adalah variabel acak. b. Z(x) juga merupakan suatu fungsi acak untuk setiap kumpulan titik-titik x1

dan x1+h, sedangkan variabel acak z(x1) dan z(x1+h) itu sendiri tidak merupakan fungsi acak. Secara umum z(x1) dan z(x1+h) adalah independen, tetapi keduanya dihubungkan oleh korelasi struktur letak ruang dari variabel terregional z(x).

Page 30: Binder

3.2. HIPOTESIS PADA VARIABEL TERREGIONAL

DAN SEMIVARIOGRAM Karena munculnya aspek yang erractic pada variabel terregional, maka kajian secara langsung terhadap variabel terregional ini tidak memungkinkan, oleh karena itu memerlukan beberapa hipotesis. 3.2.1 . Ekspektasi Matematik atau Momen Order ke satu Ekspektasi matematik didefinisikan Memandang suatu variabel acak pada titik x. Jika distribusi fungsi Z(x) mempunyai ekspektasi, maka ekspektasi secara umum merupakan fungsi x, atau dapat dinyatakan sebagai berikut:

E {Z(x)} = m(x) x (1) ∀ 3.2.2 . Momen Order ke dua Tiga buah moment order ke dua yang dipertimbangkan pada geostatistik adalah :

a. Varians dari Z(x) Jika varians ini muncul, maka pada moment order ke dua didefinisikan sebagai ekspektasi di sekitar m(x) dari variabel acak f(x), Var {Z(x)} = E[{Z(x) – m (x)}2] ∀ x (2) Sebagaimana ekspektasi m(x), varians secara umum juga merupakan fungsi dari x.

b. Kovarians Dapat dilihat bahwa jika dua variabel acak Z(x1) dan Z(x2) mempunyai varians dari titik x1 dan x2 ditulis, C(x1,x2) = E[{Z(x1) - m(x1) - m(x2)}] (3)

c. Semivariogram

Fungsi semivariogram didefinisikan sebagai varians dari increment {Z(x1) – Z(x2)} dan ditulis sebagai, ( ) ( ) ( )}var{,2 2121 xZxZxx −=γ (4a) atau

Page 31: Binder

(4b) ( ) ( ) ( )[ ] ( )∑=

=−=N

ihii hNxzxzh

1

2 /2γ

dimana N(h) adalah jumlah pasangan data dan h adalah jarak antara conto/lag semivariogram.

3.2.3 HIPOTESIS STATIONARITAS Hipotesis ini muncul dari definisi bahwa fungsi kovarians dan semivariogram tergantung secara simultan pada dua support titik x1 dan x2. Oleh karena itu, beberapa realisasi dari kumpulan variabek acak {Z(x1),(Z(x2)} dapat digunakan untuk menarik kesimpulan statistik. Dilain pihak, jika fungsi ini hanya tergantung pada jarak di antara dua support titik (yaitu pada vektor h = x1 - x2 memisahkan x1 dan x2), maka penarikan kesimpulan statistik menjadi mungkin, yaitu setiap pasangan data {Z(xk), Z(xk’)} terpisahkan oleh jarak (xk – xk’), sama dengan vektor h, dapat dipandang sebagai suatu realisasi yang lain dari pasangan variabel acak {Z(x1),(Z(x2)}. Secara penalaran menjadi jelas, pada suatu mineralisasi homogen, korelasi yang ada di antara dua nilai data Z(xk) dan Z(xk’) tidak tergantung pada posisi di dalam zone tetapi lebih tergantung pada jarak yang memisahkan mereka. 3.2.4. STATIONARITAS ORDER KE DUA Sebuah fungsi acak dikatakan menjadi stationaritas order ke dua jika :

a. Ekspektasi matematik E{Z(x)} ada dan tidak tergantung pada support titik x,

E{Z(x)} = m x (5) ∀

b. Setiap pasangan dari variabel acak {Z(x),Z(x+h)} muncul kovarians dan tergantung pada jarak h,

C(h) = E[{Z(x+h) – m · {Z(x) – m}] = E{Z(x+h) · Z(x)} – m E{Z(x+h)} – E {Z(x)} +m2

= E{Z(x+h) · Z(x)} – m2 – m2 + m2 C(h) E{Z(x+h) · Z(x)} - m2 ∀ x (6)

h menyatakan suatu koordinat vektor (hu, hv, hw) pada ruang 3D.

Stationaritas dari kovarians mengandung arti stationaritas dari varians dan variogram. Hubungan berikut bisa diturunkan dari definisi di atas :

a. C(0) = E[{Z(x) - m2 ] C(0) = E{Z(x) ·Z(x)} - m2

Var {Z(x)} = E [{Z(x) – m}2] = C(0) (7)

Page 32: Binder

b. γ (h) = ½ E[{Z(x+h) – Z(x) m}2] = ½ E[{Z(x+h)·Z(x+h)Z(x+h)} – E[{Z(x+h)·Z(x)} + 1/2E{Z(x)·Z(x)}

γ (h) = E{Z(x)·Z(x)} – E{Z(x+h)·Z(x)} = C(0) + m2 – {C(h) + m2} γ (h) = C(0) – C(h)

3.2.4 HIPOTESIS INTRINSIK Suatu fungsi acak Z(x) dikatakan menjadi intrinsik jika :

a. Muncul suatu ekspektasi matematik dan tidak tergantung pada support titik x

E{Z(x)} = m ∀ x (9)

b. Untuk semua vektor h, increment {Z(x)+(h) – Z(x)} mempunyai varians

berhingga yang tidak tergantung pada x,

Var {Z(x+h) – Z(x)} = E [{Z(x+h)-Z(x)}2 = 2γ (h) ∀ x (10) 3.3 BEBERAPA CATATAN PENTING SEMI-VARIOGRAM Berdasarkan hipotesis di atas, maka terdapat beberapa catatan penting semivariogram. 3.3.1 STATIONARITAS SEMU Pada praktek, fungsi struktural kovarians atau variogram hanya digunakan untuk jarak terbatas │h│≤ a. Sebagai batas a, misalnya diameter dari penaksiran. Dua variabel Z(x) dan Z(x+h) tidak dapat dipandang sebagai berasal dari mineralisasi homogen yang sama jika │h│> a. Pada kasus ini berarti fungsi struktural C(x,x+h) atau γ (x,x+h), tidak lebih dari pada stationaritas secara lokal untuk jarak │h│kurang dari batasan a. 3.3.2 TIDAK MUNCULNYA KORELASI Sering dijumpai, bahwa korelasi antara dua variabel Z(x) dan Z(x+h) menghilang saat jarak h menjadi terlalu besar : C(h) →0, jika │h│→∞

Page 33: Binder

dan secara praktis, dapat diambil C(h) = 0, pada │h│≥ a. Diluar jarak a, dimana C(h) dapat dipandang menjadi sama dengan nol disebut range dan ini menyajikan transisi (perubahan) yang tidak memberikan korelasi pada │h│≥ a. 3.3.3 SIFAT SEMIVARIOGRAM Definisi semi-variogram sebagai varians dari increment, mengakibatkan sifat-sifat sebagai berikut : ( ) 00 =γ , 0)()( ≥−= hh γγ dan )0()( γγ ≥h Secara umum, tetapi tidak selalu harus, peningkatan h akan menyebabkan rata-rata kuadrat pada dua variabel Z(x) dan Z(x+h) cenderung meningkat dan oleh sebab itu γ (h) meningkat dari nilai awal (nol). 3.3.4 PHENOMENA TRANSISI Kurva semi-variogram akan naik dan pada jarak tertentu menjadi kurang lebih stabil di sekeliling suatu nilai batas γ (∞ ) yang disebut nilai sill, yang merupakan a priori variance dari variabel acak. γ ( )= var {Z(x)} = C(0) ∞ Semi-variogram yang dicirikan oleh nilai sill dan suatu range disebut model transisi, dan mencerminkan suatu fungsi acak yang tidak hanya intrinsik tetapi juga stationaritas order ke dua. 3.3.5 ZONE PENGARUH Pada suatu fenomena transisi, setiap nilai data Z(x) akan terkorelasi dengan nilai data lainnya yang terletak pada radius a dari x. Radius a ini disebut juga range, yang merupakan batas stationaritas semu dari endapan yang homogen. Adanya korelasi seperti ini menyebabkan pengaruh suatu nilai terhadap nilai lainnya yang menurun pada jarak ke dua titik yang semakin jauh. Jadi range menghubungkan dengan ide penalaran dari suatu zone pengaruh variabel acak, yaitu di luar jarah │h│= a, variabel acak Z(x+h) dan Z(x+h) selanjutnya tidak terkorelasi. 3.4 PERHITUNGAN VARIOGRAM

Page 34: Binder

Veriogram dihitung dengan suatu rumus yang sederhana yaitu perbedaan rata-rata antara dua titik conto dengan jarak tertentu. Oleh karena itu perbedaan tersebut kemungkinan < 0 atau > 0, agar perbedaan rata-rata tersebut selalu > 0 maka perlu diaplikasikan perhitungan statistik yang berdasarkan pada perbedaan kuadrat. Delfiner mendefinisikan bahwa perbedaan kuadrat tersebut diasumsikan sebagai ekspektasi [Z(xi) – Z(xi+h)], sehingga definisi variogram menjadi : 2g(h) = var [z(xi) – z(xi+h)] Dimana : 2g(h) = variogram Var = varians. Dari fungsi tersebut dapat didefinisikan semivariogram sebagai berikut :

( )( ) ( )[ ]

)h(N2

xzxzh

N

1i

2hii∑

=+−

dimana : g(h) = (semi)variogram untuk arah tertentu dari jarak h h = 1d, 2d, 3d, 4d (d = jarak antar conto) z(xi) = harga(data) pada titik xi z(xi+h) = data pada titik yang berjarak h dari xi

N(h) = jumlah pasangan data. Sebagai contoh data kadar emas (dalam ppm) di sepanjang urat dengan jarak penganbilan conto (d) setiap 2 m : harga 7 9 8 10 9 11 11 13 11 12 16 12 10 11 10 12 15 ppm I__I__I___I__I___I___I___I___I___I___I___I___I___I___I___I___I I I I I I I I I I I I I I I I I I lokasi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g(2) ( ) ( ) ( ) ( ) ( ) ( ) 2222222

ppm16x2

15121210......9101088997 −+−++−+−+−+−=

=(4+1+4+1+4+0+4+4+1+16+16+4+1+1+4+9)/2x16=74/32=2,31 ppm2

g(4) =(1+1+1+1+4+4+0+1+25+0+36+1+0+1+25)/2x15= 101/30=3.36 ppm2

g(6) =(9+0+9+1+16+0+1+9+1+4+25+4+4+16)/2x14=99/28=3,54 ppm2

g(8) =(4+4+9+9+4+1+25+1+1+1+25+0+16)/2x13=100/26=3,85 ppm2

g(10) =(16+4+25+1+9+25+1+9+0+4+16+9)/2x12=119/24=4,96 ppm2

g(12) =(16+16+9+4+49+1+1+4+1+0+1)/2x11=102/22=4,64 ppm2

g(14) =(25+4+16+25+9+1+0+9+1+9)/2x10=99/20=4,95 ppm2

Page 35: Binder

g(16) =(16+9+64+4+1+0+1+1+16)/2x9=112/18=6,22 ppm2

g(18) =(25+49+16+0+4+1+1+4)/2x8=100/16=6,25 ppm2

g(20) =(81+9+4+1+1+1+16)/2x7=113/14=8,07 ppm2

g(22) =(25+1+9+0+9+16)/2x6=60/12=5,00 ppm2

g(24)

=(9+4+4+4+36)/2x5=57/10=5,70 ppm2

Gambar 3.1 Variogram eksperimental dan varians populasi (garis mendatar, menunjukkan harga 5,25ppm2) Perhitungan di atas dilakukan pada pasangan conto yang harus tepat pada jarak h dan tepat arah 0°, sedangkan pada prekteknya sering dijumpai pola pengambilan conto yang tidak reguler, untuk itu perlu diberikan suatu toleransi untuk kedua variabel tersebut, sehingga muncul istilah angle classes ( 2/αθ ± ) dan distance classes (h±∆h) (David, 1977). Jadi semua titik conto yang berada pada search area didefinisikan dengan angle classes ( 2/αθ ± ) dan distance classes (h±∆h) akan dianggap sebagai titik-titik conto yang berjarak h dari x0 pada arah termaksud (Gambar 3.2)

Page 36: Binder

Gambar 3.2 Arah varioagram (θ ), search area dengan angle of classes

( 2/αθ ± ) dan distance classes (h±∆h) (David, 1977) Alogaritma perhitungan variogram adalah sebagai berikut :

1. Setiap titik conto mempunyai kesempatan untuk menjadi titik origin (xi). Titik-titik lainnya dihitung dengan perbedaan kuadratnya [z(xi)-z(xi+h)]2. Jarak antara titik origin (xi) dan titik lainnya (xi+h) harus berada pada distance classes (h±∆h). Jika titik xi+h berada di luar daerah distance classes dan angle classes, maka perbedaan kuadrat tidak dihitung. Demikian perhitungan ini berulang-ulang di setiap titik xi+h.

2. Selanjutnya dengan prosedur pada butir 1 titik-titik lainnya juga diberi

kesempatan menjadi titik origin xi.

3. Untuk prosedur 1 dan 2 hitung jumlah pasangannya N(h) yang memenuhi syarat di atas dan juga jumlahnya secara kumulatif semua

Page 37: Binder

perbedaan kuadratnya S[z(xi)-z(xi+h)]2. Dengan rumus di atas, maka dapat dihitung (semi)variogram untuk jarak pasangan h=id.

4. Variogram untuk jarak pasangan h selanjutnya (2d, 3d, 4d, .... dst)

lakukan kembali dengan prosedur 1 sampai dengan 3. Dengan demikian akan didapati hasil perhitungan variogram untuk setiap jarak h.

5. Plot grafik variogram dengan sumbu X adalah h sedangkan sumbu Y

nya adalah harga variogram untuk jarak h yang bersangkutan.

Page 38: Binder

4. SIFAT DAN STRUKTUR VARIOGRAM

4.1 PERILAKU VARIOGRAM DI DEKAT TITIK AWAL Kontinuitas distribusi suatu variabel sangat erat hubungannya dengan perilaku suatu variagram di dekat titik awal.

Gambar 4.1 Suatu perilaku parabolik di dekat titik awal memperlihatkan suatu kontinuitas variabel yang tinggi, yaitu sifat distribusi data yang teratur, seperti variabel geofisika, geokimia, muka airtanah atau kadang-kadang data tebal batubara.

Gambar 4.2 Perilaku linier di dekat titik awal menyatakan suatu variabel dengan kontinuitas sedang. Variogram semacam ini biasanya berlaku pada data kadar bijih.

Gambar 4.3 Variabel dengan kitidakteraturan yang tinggi akan memberikan variogram yang diawali dengan lompatan. Ketidakkontinuan ini dinamakan dengan nugget effect.

1

Page 39: Binder

Gambar 4.4 Suatu semivariogram yang berperilaku horisontal adalah hasil dari perhitungan variabel dengan distribusi acak.

4.2 DAERAH PENGARUH (RANGE) Secara umum g(h) akan naik dengan bertambahnya harga h, artinya besarnya perbedaan harga pada dua titik akan sangat tergantung dengan jarak ke dua titik tersebut. Kenaikan harga g(h) tersebut akan berlangsung selama masih terdapat pengaruh harga antar titik, daerah ini dikenal dengan daerah pengaruh suatu conto, sampai akhirnya konstan di suatu harga g(∞)= C(sill) yang merupakan varians pupulasi (varians a priori). Daerah pengaruh suatu conto ini mempunyai suatu jarak dengan notasi a yang dikenal dengan nama daerah pengaruh (range). Di luar jarak ini, maka rata-rata variasi harga Z(x) dan Z(x+h) tidak lagi tergantung dengan jarak, dengan kata lain Z(x) dan Z(x+h) tidak berkorelasi satu dengan yang lainnya. Range a adalah suatu ukuran untuk daerah pengaruh.

Gambar 4.5 Contoh (Semi) - Variogram ketebalan suatu endapan berlapis

2

Page 40: Binder

4.3 STRUKTUR BERSARANG (NESTED STRUCTURE) Jika pada suatu endapan bahan galian terdapat beberapa struktur yang berbeda, maka untuk setiap struktur akan memberikan variogram dengan harga a yang berbeda (ukuran untuk perbedaan dimensi struktur) dan harga sill yang berbeda (ukuran untuk rata-rata simpangan variabel). Pengaruh-pengaruh struktur ini akan saling tumpah tindih sehingga akan memberikan satu variogram gabungan, yang dapat diuraikan atas komponen-komponennya (Gambar 4.6). Variogram-variogram semacam ini biasanya akan muncul pada endapan fluviatil, seperti endapan bentuk lensa yang saling tumpah tindih atau fingering.

Gambar 4.6 Stuktur bersarang (nested structure) suatu contoh teoritis 4.4 NUGGET VARIANCE DAN STRUKTUR MIKRO Variogram dengan struktur bersarang umumnya terbentuk jika jarak pasangan antar conto sangat kecil dibandingkan dengan rance a. Dalam hal jarak pasangan antar conto dipilih sedemikian besarnya sehingga bagian awal dari variogram tidak terekam, maka ekstrapolasi kurva menuju ke h = 0 tidak memberikan γ (0) = 0 melainkan γ (0) = C0 yang dikenal sebagai nugget variance (Gambar 4.7). Pengaruh dari struktur mikro terhadap pemilihan jarak antara pasangan antar conto ini terlihat dengan muncul tidaknya nugget variance. Nugget effect ini bisa dihindarkan dengan memperkecil jarak h. Adanya nugget veriance ini juga bisa diakibatkan oleh kesalahan pada analisa.

3

Page 41: Binder

Gambar 4.7 Nugget Variance dan struktur mikro

4.5 ANISOTROPI Mengingat h merupakan suatu vektor, maka suatu variogram harus ditentukan untuk berbagai arah. Suatu penyelidikan perubahan γ (h) sesuai dengan arah orientasinya memungkinkan munculnya anisotropi.

a. Isotropi

Jika variogram-variogram pada berbagai arah sama, maka dapat diartikan bahwa γ (h) merupakan suatu fungsi dari harga absolut vektor yang harga-

nya adalah

hr

23

22

21 hhhh ++= , jika h1, h2, dan h3 adalah komponen-komponen

vektor h. b. Anisotropi geometri

Jika pada beberapa γ (h) dengan arah yang berbeda tetap mempunyai harga sill C dan nugget variance yang sama, sedangkan kenaikan variogram-variogram yang dinyatakan dengan harga range a berbeda, maka akan terlihat apa yang disebut anisotropi geometri. Umumnya semua besaran range a tersebut akan tersebar menuruti bentangan elipsoida. Kondisi seperti ini sering dijumpai pada endapan placer (misalnya endapan pasir besi pantai).

4

Page 42: Binder

aUS : range pada arah utara-selatan aTL : range pada arah timur laut-baratdaya aBT : range pada arah timur-barat aTC : range pada arah barat laut-tenggara

Gambar 4.8 Anisotropi geomentri

c. Anisotropi zonal

Dalam beberapa hal mungkin dijumpai bahwa variogram pada arah tertentu sangat berbeda sekali, misalnya pada endapan bahan galian yang mempunyai struktur perlapisan, dimana variasi kadar pada arah tegak lurus terhadap bidang perlapisan sangat besar dibandingkan variasinya pada bidang perlapisannya. Pada kasus ini model variogramnya benar-benar anisotrop sempurna dan dapat diuraikan sebagai berikut :

• Komponen isotrop : ( )2

322

211 hhh ++γ

• Komponen anisotrop murni yang diperoleh dari variogram arah tegaklurus bidang perlapisan g2(h3) sehingga diperoleh : ( ) ( ) ( )32

23

22

211321 hhhhh,h,h γγγ +++=

Gambar 4.9 Anisotropi zonal

5

Page 43: Binder

4.6 PROPOTIONAL EFFECT Dalam banyak hal varians pada suatu daerah sangat tergantung dengan harga rata-rata lokal. Hal ini bisa dilihat dari hubungan antara varians daerah tersebut (misalnya kelompok data bor) dengan harga rata-rata kuadrat. Gambar 4.10 Hubungan antara varians dan rata-rata lokal untuk endapan

molibdenit, serta variogram tiap level yang mempunyai g(∞) dengan besar yang berbeda.

Jika hubungan antara varians dan rata-rata kuadrat lokal tersebut linier, maka akan bisa ditentukan variogram relatifnya, yaitu setiap tahap pada perhitungan variogram eksperimentalnya harus dibagi dengan kuadrat harga rata-rata lokal sebagai berikut :

( )( ) ( )[ ] ( )

( )

( )[ ]2

hN

1i

2hii

hZ

hN/xzxz21

h∑=

+−=γ

dengan

( ) ( ) ( )[ ][ ]( )

( )hN/2/xZxZ21hZ

hN

1ihii∑

=+−=

sehingga diperoleh satu variogram relatif seperti digambarkan pada Gambar 4.11. Gejala efek proporsional ini umumnya dijumpai pada data yang mempunyai distribusi log normal.

6

Page 44: Binder

Gambar 4.11 Kisaran variogram relatif

4.7 DRIFT Kondisi ini dijumpai pada suatu variogram yang pada awalnya berperilaku normal, yaitu naik sampai mencapai sill, tetapi selanjutnya naik secara mendadak secara parabolik. Hal ini berarti, bahwa variabel terregionalnya tidak lagi stationer. Drift ini dapat dengan mudah diketahui jika dihitung perbedaan rata-rata variabel pada x1 dan xi+h sesuai dengan arah vektor h nya :

( ) ( ) ( )[ ] ( )( )

∑=

+ ⎥⎦⎤

⎢⎣⎡ −=

hN

1ihii hN/xZxZ

21

21hΔ

dan ditampilkan secara grafis. Jika tidak terdapat drift, maka harga ∆(h) akan terpencar di sekitar sumbu h tersebut. Gambar 4.12 Contoh efek parabolik suatu drift pada variogram dari data sulfur pada tambang batubara (A) dan data timbal pada tambang Pb-Zn(B)

7

Page 45: Binder

4.8 HOLE EFFECT Dalam hal variogram dihitung sepanjang data yang mempunyai harga tinggi dan kemudian rendah (misalnya data kadar pada alur yang memotong beberapa urat bijih), maka setelah mencapai sill variogram yang diperoleh akan naik atau turun secara periodik. Berikut ini diperhatikan contoh hole effect dari CLARK and JOURNELL & HUIJBREGTS.

Gambar 4.13 Contoh variogram dengan hole effect

8

Page 46: Binder

5. MODEL TEORITIS VARIOGRAM Seperti pada suatu histogram yang dapat dibuatkan model matematiknya, seperti distribusi normal dll., maka variogram eksperimental juga dapat dibuatkan model matematiknya yang akan bermanfaat untuk perhitungan selanjutnya. Pemilihan model ini dipengaruhi oleh beberapa hal berikut: a. Perilaku variogram di dekat titik awal, yang biasanya mudah dikenali. Ada

tidaknya nugget variance dapat diketahui dengan cara ekstrapolasi γ(h) memotong sumbu tegak (untuk h = 0).

b. Kehadiran sill, pada awalnya varians statistik dari data dapat dianggap sebagai harga sill.

c. Kehadiran anisotropi, struktur bersarang dll.

Berdasarkan ada tidaknya sill dan range, maka model semivariogram dikelompokkan menjadi model dengan sill dan model tanpa sill.

5.1 MODEL DENGAN SILL

a. Linier dekat titik awal: model sferis (model MATHERON)

( ) ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−=

3

ah

21

ah

23Chγ ah ≤

( ) Ch =γ h >a a = range, C = sill = γ(∞)

Gambar 5.1 Variogram model sferis

1

Page 47: Binder

b. Linier dekat dengan titik awal : model eksponensial (model FORMERY) :

( ) ( )⎣ ⎦a/he1Ch −−=γ a = range, merupakan absis dari titik potong antara garis tangensial variogram dengan sill (C).

Gambar 5.2 Variogram model eksponensial

c. Parabolik di dekat titik awal : model Gaussian :

( ) ( )[ ]2a/he1Ch −−=γ

Gambar 5.3 Variogram model parabolik

2

Page 48: Binder

5.2 MODEL TANPA SILL Model tanpa sill meliputi : a. Model Linier :

( ) hph =γ Atau secara umum

( ) λγ hph = dimana : p adalah konstanta yang proporsional terhadap h absolut 0<λ <2 jika λ =2, maka akan menjadi model parabola.

Gambar 5.4 Variogram model linier

b. Model logaritmik atau de Wijsian :

γ(h) = 3 α log +hλ B

dimana : B=C0 + 3 α (3/2- log I ), dengan 3 α adalah koefisien dispersi absolut dan sama dengan kenaikan Variogram jika h diekspresikan secara logaritmis, I adalah panjang ekivalen conto.

Gambar 5.5 Variogram model parabolik

3

Page 49: Binder

5.3 FITTING VARIOGRAM

Variogram eksperimental sangat berguna untuk menganalisis struktur suatu endapan bahan galian dan tidak dapat langsung digunakan dalam perhitungan cadangan. Untuk itu perlu adanya model variogram teoritis untuk di-fit-kan dengan variogram eksperimental. Model teoritis ini diekspresikan dengan suatu model matematis. Model matematis yang banyak digunakan dan umumnya terjadi pada endapan mineral adalah model sferis atau model Matheron (David, 1977, Barnes, 1979). Oleh karena itu dalam fitting variogram ini hanya akan dibahas untuk model sferis saja. Dua metode yang umum digunakan untuk mem-fit variogram eksperimental dengan variogram teoritisnya yaitu metoda visual dan metoda least square. Dengan metoda visual (manual) biasanya sudah cukup memuaskan, dan banyak digunakan oleh para ahli geostatistik (David,1979). Karena sense yang banyak berperan dalam melakukan fitting tersebut, maka dalam pekerjaan ini pengalaman akan sangat menentukan kualitas fitting. Tujuan utama dari fitting ini adalah untuk mengetahui parameter geostatistik seperti a, C dan C0. Berikut ini beberapa pedoman penting dalam melakukan fitting :

• Variogram yang mempunyai pasangan conto yang sangat sedikit agar

diabaikan.

• Nugget variance (C0) didapat dari perpotongan garis tangential dari beberapa titik pertama variogram dengan sumbu γ(h).

• Sill (C0+C) kira-kira sama dengan atau mendekati varians populasi. Garis tangensial di atas akan memotong garis sill pada jarak 2/3 a, sehingga selanjutnya dapat dihitung harga a (David, 1977, Clark, 1979, Leigh and Readdy, 1982).

• Interprestasi nugget variance untuk variogram dengan sudut toleransi 1800 (variogram rata-rata) akan sangat membantu untuk memperkirakan besarnya nugget variance (David, 1979).

• Nugget variance diambil dari multiple variogram (dalam berbagai arah). Dalam multiple variogram, best spherical line sebaiknya lebih mendekati variogram yang mempunyai pasangan conto yang cukup.

Setelah diketahui parameter geostatistik tersebut, maka pembuatan model variogram (sferis) dapat diplot dengan bantuan Tabel 5.1 untuk formula berikut:

( ) ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−=

3

ah

21

ah

.23hγ

4

Page 50: Binder

Tabel 5.1 Fungsi bantu hubungan antar titik pada arah tertentu γ(h), Untuk model sferis / Matheron, C0 = 0; C = 1,0 (Siemens, 1981)

5

Page 51: Binder

6

Page 52: Binder

6. SUPPORT

6.1. SUPPORT GEOMETRI Suatu variabel terregional (regionalized variable) terkait dengan suatu daerah, ruang, bidang atau daerah geometri tertentu sesuai dengan variasi variabel tersebut. Selain itu variabel-variabel tersebut juga terikat pada support geometri, yang dikontrol oleh volume, bentuk, serta orientasinya. Jika support ini berubah, maka akan terdefinisi suatu variabel terregional yang baru. Dengan pembesaran support akan terjadi fenomena regularisasi (regularization), padamana variabel terregional akan cenderung mempunyai sifat yang semakin seragam atau sama dalam suatu endapan atau ruang. Antara variogram dengan support geometri terdapat suatu hubungan sederhana sedemikian rupa, sehingga variogram conto bentuk titik dapat dianggap sebagai variogram conto. Demikian pula variogram volume lebih besar dapat didekati dengan variogram volume lebih kecil. Pada prakteknya suatu variogram eksperimental conto (yang biasa kita kenal dengan variogram) esensinya tidak eksak sama dengan variogram titik yang dimiliki oleh ruang-ruang. Namun karena support geometri suatu conto (conto inti, conto alur, hand specimen,….) sangat kecil, maka kita dapat langsung menggunakan variogram conto untuk kepentingan praktek. 6.1.1 . Support Geometri pada Ukuran Butir Conto Sebaran data dalam suatu populasi akan semakin sempit ( «) dengan mengecilnya ukuran butir conto (Gambar 6.1), sehingga semakin besar ukuran butir, maka kuantitas conto yang diambil harus semakin besar.

Hal ini sangat berhubungan erat dengan homogenitas kadar suatu endapan bahan galian. Fenomena ini dapat juga digunakan untuk menjelaskan mengapa harga CV bisa lebih besar dari 1. Semakin kasar ukuran butir ( », S», lebih heterogen) akan memberikan harga CV yang besar juga, demikian pula sebaliknya.

Page 53: Binder

Gambar 6.1 Pengaruh ukuran butir conto pada harga kadar

6.1.2 . Support Geometri pada Ukuran Blok Penambangan Jika pada data kadar blok yang sama dilakukan berbagai support geometri yang berbeda, maka akan terjadi pola penyebaran blok untuk cog tertentu (mis. cut-off grade = 3%) yang berbeda pula (Gambar 6.2).

Page 54: Binder

Gambar 6.2 Variasi support geometri dalam bentuk blok cadangan yang

dipengaruhi oleh luas dan orientasi blok.

Page 55: Binder

6.2. VARIOGRAM TITIK Untuk semua perhitungan geostatistik diperlukan variogram yang mempunyai support bentuk titik, artinya volume conto harus berupa titik. Jika suatu variogram (misalnya dari potongan inti dengan panjang I) dihitung sepanjang sumbu lubang bor, maka akan terjadi suatu regularisasi pada kadar-kadarnya yang terbentuk akibat pengaruh volume inti. Seandainya panjang potongan inti I lebih kecil dibanding dengan range a variogram, maka regularisasi dapat diabaikan dan digunakan variogram )h(lγ untuk variogram titik. Jika tidak demikian maka harus dilakukan koreksi. Koreksi ini memberikan (seperti terlihat pada Gambar 6.3), bahwa range a variogram titik lebih kecil dari range al variogram conto inti dan harga sill variogram titik lebih tinggi dibanding conto inti. Gambar 6.3 Regularisasi suatu semi-variogram sferis akibat conto bukan titik

(panjang inti hasil pemboran adalah I) Untuk koreksi ini berlaku : CI = C/20 (20 – 10 · I/a + I³/a³) I ≤ a aI = a + I I ≤ a

Page 56: Binder

Harga-harga C dan a dapat dilihat pada Tabel 6.1, yang memungkinkan dari data variogram titik dapat dihitung variogram inti dengan panjang I. Jika data variogram titik ini cocok dengan data eksperimental, maka parameter untuk variogram titik telah dipilih dengan baik. Tabel 6.1 Regularisasi semi-variogram )h(lγ untuk model Matheron dengan range a dan sill atau C = 1.0 untuk berbagai jarak

Sebagai contoh data untuk variogram conto inti dengan panjang I = 2 m adalah sebagai berikut :

Tabel 6.2 Data untuk plot variogram eksperimental h(m) 2 4 6 8 10 12 14 16 18 20 22 24 26 γ (h)%² 1.33 3.09 5.03 6.70 8.26 9.00 9.67 10.26 10.25 10.70 10.45 10.53 10.31

Page 57: Binder

Dari variogram eksperimental dengan data pada Tabel 6.2 didapatkan parameter berikut : 2/3 al = 12.2 m al = 18.3 m Cl = 10.5 %² a = al – l = 16.3 m

23

3

%2.11C),939.0(C3,16

23,16

220.20C5.10 =⇒=⎟⎟

⎞⎜⎜⎝

⎛+−=

a/I = 8.15 (harga tabel yang terdekat adalah 8.00) Variogram titik teoritis atau model dalam hal ini tidak terlalu menyimpang dari data variogram eksperimental, sehingga dapat dianggap bahwa pilihan parameter untuk variogram titik dengan C = 11.2 dan a = 16.3 cukup baik.

Tabel 6.2 Perhitungan variogram titik (model)

h h/I )h(lγ dari tabel )h(lγ ·C=11.2 )h(lγ eksperimental 2 1 0.124 1.39 1.33 4 2 0.304 3.40 3.09 6 3 0.472 5.29 5.03 8 4 0.623 6.98 6.70 10 5 0.751 8.41 8.26 12 6 0.849 9.50 9.00 14 7 0.920 10.20 10.26 16 8 0.936 10.48 10.25 18 9 0.938 10.50 20 22 24 26

Page 58: Binder

8. VARIANS ESTIMASI Estimasi suatu cadangan dicirikan oleh suatu ekstensi / pengembangan satu atau beberapa harga yang diketahui terhadap daerah di sekitar yang tidak diketahui. Suatu harga yang diketahui (diukur pada conto inti, atau pada suatu blok) diekstensikan terhadap bagian-bagian yang diketahui pada satu endapan bijih. Ada beberapa metode estimasi dalam pertambangan antara lain :

a. Estimasi kadar rata-rata suatu cadangan bijih berdasarkan rata-rata suatu

kadar (misal didapat dari analisa conto pemboran / sumur uji), b. Estimasi endapan bijih pada suatu tambang atau blok-blok penambangan

dengan pertolongan poligon sebagai daerah pengaruh, yang antara lain didasari oleh titik-titik pengamatan berikutnya, pembobotan secara propor-sional terbalik dengan jarak dll.

Gambar 8.1: Sketsa ekstensi satu titik dan estimasi beberapa titik Setiap estimasi tidak selalu diinterprestasikan berikut ketelitiannya menggunakan varians estimasi, tetapi bisa juga secara statistik harga estimasi tersebut dikontrol dengan selang kepercayaannya. Untuk estimasi menggunakan satu conto, dimana harga tersebut diekstensikan ke suatu volume yang lebih besar, dikenal dengan istilah ekstensi dan varians ekstensi. Sedangkan estimasi berdasarkan beberapa conto, dimana harga-harga conto tersebut diekstensikan ke suatu volume, dikenal dengan estimasi dan varians estimasi.

1

Page 59: Binder

8.1 ESTIMASI SATU CONTO v DAN EKSTENSI KE VOLUME V (EXTENSION VARIANCE)

Dalam suatu kasus sederhana, misalnya V adalah suatu volume cadangan (blok penambangan) dengan harga rata-rata variabel terregionalnya (kadar, ketebalan) tidak diketahui :

Untuk V : ( )∫ ==V

V UdxxZV1Z (8-1)

sedangkan v adalah volume (inti bor, blok bijih yang sudah ditambang) dengan harga rata-rata diketahui :

Untuk v : ( )∫ ==v

*v UdxxZ

v1Z (8-2)

Besaran tidak diketahui U akan diperkirakan melalui besaran yang sudah diketahui U*, artinya harga v diekstensikan ke V.

Melalui ekstensi ini akan terjadi kesalahan sebesar :

Vv*

r ZZUUE −=−= Kesalahan ini dikarekterisasi oleh suatu varians yang dikenal sebagai varians ekstensi dari v ke V.

Gambar 8.2 Ekstensi volume v ke V

Varians kesalahan atau deviasi ini diekspresikan sebagai berikut :

Eσ (v ke V) = var ( )[ ] [ ]UUZZE *2DVvr −=− σ (8-3)

Deviasi di tengah sama dengan nol (artinya tanpa penyimpangan sistematik atau pencaran yang diharapkan). Menurut MATHERON (1971) persamaan tersebut di atas dapat ditampilkan sebagai berikut :

( ) ( ) ( ) ( )v,vV,VV,v2Vkev2E γγγσ −−= (8-4)

2

Page 60: Binder

( V,vγ ) merupakan harga rata-rata dari ( )yx −γ dimana x dan y masing-masing tidak tergantung satu sama lain pada volume v dan V, yaitu x untuk volume v dan y untuk volume V, atau :

( ) ( )( )jumlahbatasanbanyaknya

VpadaysemuadanvpadaxsemuauntukyxjumlahV,vy −=

γ

= ( )∫∫ −Vv

dyyxdxvV1 γ (8-5)

( V,Vγ ) adalah rata-rata dari ( )yx −γ , dimana x dan y adalah titik-titik di posisi

yang tidak tergantung satu sama lain pada volume V, atau :

( ) ( )( )jumlahbatasanbanyaknya

VpadaysemuadanVpadaxsemuauntukyxjumlahV,V −=

γγ

= ( )∫∫ −VV

dyyxdxVV1 γ (8-6)

( v,vγ ) adalah rata-rata dari ( )yx −γ , dimana x dan y adalah titik-titik di posisi

yang tidak tergantung sama lain pada volume v, atau :

( ) ( )( )jumlahbatasanbanyaknya

vpadaysemuadanvpadaxsemuauntukyxjumlahv,v −=

γγ

= ( )∫ ∫ −v v

dyyxdxvv1 γ (8-7)

Secara umum hubungan-hubungan mendasar tersebut di atas dapat ditulis sebagai berikut :

( ) ( )∫ ∫ −=v V

2E dyyxdx

vV2Vkev γσ vViansvarko⇐

- ( )∫ ∫ −V V

dyyxdxVV1 γ Viansvar⇐

- ( )∫ ∫ −v v

dyyxdxvv1 γ viansvar⇐ (8-8)

Rumus ini dapat berlaku untuk semua bentuk, dimana v dapat berupa misalnya: titik, garis, bidang, atau volume, sedangkan V dapat berupa garis, bidang, ataupun volume. Perhitungan integral-integral untuk hubungan v ke V dapat dilihat pada tabel ataupun nomogram tersedia.

3

Page 61: Binder

8.1 ESTIMASI SEJUMLAH (N) CONTO S DAN EKSTENSI KE V (ESTIMATION VARIANCE)

Di lapangan sering diketahui sejumlah harga conto ( )ixz pada sejumlah titik pengambilan conto . Harga rata-rata suatu blok atau cadangan bijih diperkirakan melalui harga rata-rata conto :

ix

( )∑=

=N

1ii

* xzN1U

Varians deviasi U* - U disebut varians estimasi dari V melalui N conto ( )ixz

Gambar 8.3: Estimasi beberapa titik conto ke volume V Ix

MATHERON (1971) memberikan varians estimasi sebagai berikut :

( )∑∫=

−==N

1i Vi

2E

2N dyyx

NV2 γσσ NViansvarko⇐

- ( )∫ ∫ −V V

dyyxdxVV1 γ Viansvar⇐

- (∑∑= =

−N

1i

N

1jji yx

NN1 γ ) Niansvar⇐ (8-9)

atau dengan S untuk N conto :

( ) ( ) ( )S,SV,VV,S22

E2N γγγσσ −−== (8-10)

Persamaan ini penurunannya analog dengan apa yang sudah dikerjakan untuk varians ekstensi. Seperti yang terlihat pada Gambar 8.4, ( )S,Sγ dipengaruhi oleh geometri conto, ( V,Vγ ) oleh geometri yang diestimasi, sedangkan ( )V,Sy dipengaruhi oleh hubungan antara S dan V.

4

Page 62: Binder

8.2 CATATAN a. Tidak ada perbedaan antara varians eksistensi dan varians estimasi.

Varians ekstensi berhubungan dengan ekstensi satu conto pada daerah pengaruhnya, sedangkan varians estimasi ditujukan pada ekstensi sejumlah conto pada daerah pengaruh gabungan (blok bijih atau cadangan bijih).

b. Setiap persoalan estimasi dapat dipecahkan dengan rumus-rumus yang

tersedia. Dalam hal umum kadang-kadang diperlukan pemecahan persoalan dengan integral rangkap enam, dimana dalam hal ini biasanya digunakan metode pendekatan (sumasi). Penggunaan Tabel dan Grafik sangat membantu dalam mempermudah proses perhitungan.

data tersedia S data tersedia S

⇓ ⇓

estimator sZ terhadap sZ yang tidak diketahui { } ( ) ( ) ( )S,SV,VV,S2ZZerrorvar VS

2E γγγσ −−=−= (8-11)

STRUKTUR

GEOMETRI S HUBUNGAN S KE V GOEMETRI V

Gambar 8.4: Sketsa varians estimasi menurut Huijbregt (1975)

5

Page 63: Binder

c. Varians estimasi sangat erat hubungannya satu sama lain dengan posisi relatif conto S dan hubungan geometriknya dalam penaksiran volume V. Pada rumus-rumus perlu diperhatikan hubungan geometrik antara S dan V melalui ( V,Sγ ) , serta hubungan geometrik di dalam conto S melalui ( )S,Sy serta di dalam volume V melalui ( )V,Vy .

Kedua gambar di bawah ini diperagakan berdasarkan perbedaan hubungan antara conto S dan volume V yang baik menurut perasaan maupun secara teori akan memberikan varians estimasi yang berbeda.

Gambar 8.5 Letak / posisi conto S terhadap proses estimasi

d. Varians estimasi akan kecil, jika letak conto satu sama lainnya dekat dan

akan memberikan estimasi volume yang lebih baik. Dalam hal ini akan menghasilkan variogram yang lebih reguler yang berarti, bahwa variasi variabel terregional di dalam endapan / cadangan / ruang semakin kontinu.

e. Varians estimasi mempunyai arti penting karena memungkinkan peramalan

berapa besar cadangan yang akan diperoleh dengan ketelitian yang tinggi, jika diberikan informasi tambahan seperti penambahan lubang bor. Varians estimasi sangat tergantung dari 2

Nσ ( )hγ dan hubungan geometrik conto. f. Varians estimasi terikat pada rata-rata penyimpangan kuadrat. Ketelitian

harga penaksiran dicirikan oleh varians estimasi yang merefleksikan suatu ukuran untuk sebaran harga estimasi yang mendekati harga yang sebenarnya. Kita dapat membuat suatu pernyataan mengenai jenis dispersi untuk harga yang sebenarnya, kemudian dapat juga memberikan suatu selang kepercayaan untuk harga yang sebenarnya. Selang kepercayaan ini dapat diperoleh dari standar deviasi estimasi

2Nσ

2EEN σσσ == atau dari

standar deviasi relatif *2N U/σ

6

Page 64: Binder

g. Harga-harga tersebut dibawah ini digunakan untuk memberikan selang-selang kepercayaan (secara konvensional) terhadap harga yang diestimasi.

U = harga sebenarnya U* = harga yang ditaksir / diestimasi

2Eσ = varians estimasi

Eσ = standar deviasi estimasi E2*UU σ−≥ = selang kepercayaan dengan ~ 97,5% tingkat konfidensi

pada pembatasan satu sisi atau dengan 2,5 % faktor kesalahan.

=−≥ E1*UU σ selang kepercayaan dengan ~ 85% tingkat konfidensi pada pembatasan satu sisi atau dengan 15% faktor kesalahan.

Hal ini berlaku untuk distribusi normal. Untuk distribusi-distribusi lainnya, batas bawah selang kepercayaan akan tidak terlalu banyak bergeser.

8.3 PERHITUNGAN VARIANS ESTIMASI

Berdasarkan persamaan dasar :

( ) ( ) (∑∫ ∫ ∫ ∑∑= =

−−−−−=N

1i V V V

N

1i

N

1jjii

2E yx

NN1dyyxdx

VV1dyyx

NV2 γγγσ )

=

(8-12)

atau ( ) ( ) ( )S,SyV,VV,S22

E −−= γγσ (8-13) akan ditunjukkan beberapa contoh bagaimana varians estimasi dihitung :

8.4.1 Ekstensi Conto Bentuk Titik S Sepanjang Garis L

( ) ( ) ( )S,SyL,LL,S22

E −−= γγσ

( ) ( )∫ −⋅

=L

i dyyxL1

1L,S2 γγ

Integrasi tersebut digantikan oleh sumasi, dimana panjang L dibagi dalam

LΔ sejumlah I. Selanjutnya N = 1, karena perhitungan berlaku untuk satu titik.

( ) ( ) (LXL.iI1L,S

N

1i

== ∑=

Δγγ ) (8-14)

7

Page 65: Binder

Pembentukan harga rata-rata ( )yxi −γ yang sering terjadi, dimana titiknya tetap xi dan y menyebarkan garis L, ditabelkan sebagai fungsi bantu X(L) atau diperoleh dari grafik terlampir. Fungsi bantu ( ) ( )LFL,L =γ telah dibahas pada bab sebelumnya tentang varians dispersi.

( ) 0S,S =γ (karena terhadap dirinya sendiri) ( ) ( ) 00xx 11 ==− γγ (variogram dari titik nol) Contoh : L= 0,5 → X(0,5) = 0,359; F(0,5) = 0,245

473,00,0245,0)359,0()2(2E =−−⋅=σ

8.4.2 Ekstensi Conto Bentuk Titik S Sepanjang Garis L (Titik S Berada di tengah Garis L)

( ) ( ) ( )S,SL,LL,S22E γγγσ −−=

( ) ( ) ( ) ( )2

LX2LX2

12

LX21L,S =+=γ

( ) (LFL,L =γ ) ( ) 0S,S =γ ( ) ( )LF2

LX22E −⋅=σ

Contoh : L=0,5 → ( ) 816,0X 2

5,0 = ; F(0,5) = 0,245 127,00,0245,0)816,0()2(2

E =−−⋅=σ Terlihat dari hasil diatas, bahwa satu conto yang terletak di tengah-tengah garis L lebih baik posisinya daripada yang terletak di bagian tepi (lihat 8.4.1). Penentuan varians estimasi dengan mudah dapat diperoleh dari data fungsi bantu X(L) dan F(L) juga dihitung berdasarkan grafik atau tabel. 8.4.3 Ekstensi Conto Bentuk Titik S Sepanjang Garis L (Titik S Berada di ujung-ujung Garis L)

( ) ( ) ( )S,SL,LL,S22E γγγσ −−=

8

Page 66: Binder

( ) ( )∑∫=

−=N

1i Vi dyyx

NL1L,S γγ dengan N = 2

= ( ) ( )LXLX221 =⋅⋅

( ) (LFL,L =γ )

( ) ( )∑∑= =

−=N

1i

N

1jji yx

NN1S,S γγ

= ( ) ( ) ( ) ([ ]22122111 yxyxyxyx22

1−+−+−+−

⋅γγγγ )

= ( ) ( ) ( ) ([ ]0yxyx022

11221 γγγγ +−+−+

⋅)

= ( ) ( 2121 yx21yx2

221

−⋅=−⋅⋅⋅

γγ )

dalam hal ini ( )L21 γ⋅→

( ) ( ) ( )L21LFLX22

E γσ ⋅−−⋅=

Contoh : L = 0,5 X(0,5) = 0,359; F(0,5) = 0,245; → ( )5,0γ =0,688

129,0)688,0()21(245,0)359,0()2(2

E =⋅−−⋅=σ

Contoh ini menunjukkan, bahwa pemosisian satu conto yang terletak di tengah-tengah garis L (meskipun jumlah conto lebih sedikit), masih lebih baik daripada dua conto yang terletak di ujung-ujungnya. Seperti pada sub Bab 8.4.2, penentuan varians estimasinya dapat dengan mudah dihitung bersadarkan fungsi-fungsi yang ditaksir dari grafik atau diperoleh dari tabel.

8.4.4 Ekstensi Conto Bentuk Titik S Terhadap Bidang R (Titik S Berada di ujung Bidang R)

( ) ( ) ( )S,SR,RR,S22E γγγσ −−=

( ) ( )∫ −

⋅=

Ri dyyx

R11R,S γγ (8-15)

Sama seperti pada ekstensi sepanjang garis, di sini fungsi integral juga diganti dengan sumasi (S). Fungsi bantu yang akan digunakan dinyatakan dalam funsi Q(H,L). Harga Q(H,L) ini dapat dicari pada Tabel 8.1.

9

Page 67: Binder

( ) ( L,HQR,S =γ ) ( ) ( )L,HFR,R =γ Fungsi ini telah dibahas dalam perhitungan varians dispersi ( ) ( ) 00S,S == γγ Contoh : )8,0()4,0(HLR ⋅=⋅=

( ) 629,08,04,0Q = ; ( ) 451,08,0

4,0F = ; ( ) 0,00 =γ

807,00,0451,0)629,0()2(2E =−−⋅=σ

8.4.5 Ekstensi Lateral Conto S Terhadap Bidang R (Titik S Berada di tengah-tengah Bidang R)

( ) ( ) ( )S,SR,RR,S22E γγγσ −−=

( ) ( ) ( )2

L,2HQ2

L,2HQ)4

1()4(R,S =⋅⋅=γ

( ) ( )L,HFR,R =γ Fungsi ini telah di bahas dalam perhitungan varians dispersi ( ) ( ) 00S,S == γγ ( ) ( )L,HF2

L,2HQ22

E −⋅=σ

Contoh : )8,0()4,0(HLR ⋅=⋅=

( ) 346,04,02,0Q = ; ( ) 451,08.0

4,0F = ; ( ) 0,00 =γ

241,00,0451,0)236,0()2(2E =−−⋅=σ

Contoh ini memperlihatkan, bahwa posisi suatu conto yang terletak di tengah-tengah bidang memberikan varians yang lebih kecil dibandingkan jika conto berada di ujung bidang.

10

Page 68: Binder

Tabel 8.1 Fungsi bantu ekstensi titik terhadap bidang empat persegi panjang Q(h/a,I/a),

untuk model sferis / Matheron, C0 = 0; C = 1,0 (Siemens,1981)

Misal Q(0,4/0,8) = 0,629

11

Page 69: Binder

8.4.6 Ekstensi 3D (Ruang) Conto Bentuk Titik

Ekstensi-ekstensi conto terhadap ruang bersifat sama seperti ekstensi secara lateral.

8.4.7 Ekstensi Elemen Bentuk Garis dan Bentuk Ruang terhadap Bidang atau Ruang

Ekstensi-ekstensi ini didapatkan dengan cara yang sama melalui beberapa perubahan rumus dasar.

Beberapa nomogram model Matheron telah dibuat untuk mencari harga-harga varians ekstensi :

• Varians ekstensi titik terhadap garis (Gambar 8.6), • Varians ekstensi titik terhadap bidang bujur sangkar (Gambar 8.7), • Varians ekstensi titik terhadap bidang empat persegi panjang (Gambar 8.8

dan Gambar 8.9), • Varians ekstensi garis terhadap bidang empat persegi panjang (Gambar

8.10), • Varians ekstensi garis terhadap ruang bentuk balok (Gambar 8.11), dan • Varians ekstensi bidang bujur sangkar terhadap ruang bentuk balok (Gambar

8.12).

12

Page 70: Binder

Gambar 8.6 Nomogram varians eksistensi / estimasi titik terhadap garis untuk model sferis / Matheron, C0 = 0, C = 1,0 (Annels, 1991)

Misal untuk h/a = 0,133 adalah 0,034 ( )−2Eσ

13

Page 71: Binder

Gambar 8.7 Nomogram varians eksistensi / estimasi titik terhadap bidang bujur sangkar untuk model sferis / Matheron, C0 = 0, C = 1,0 (Annels, 1991) Misal ( ) untuk h/a = 0,333 adalah 0,125 2

14

Page 72: Binder

Gambar 8.8 Nomogram varians eksistensi / estimasi titik terhadap bidang empat persegi panjang untuk model sferis / Matheron

C0 = 0, C = 1,0 (Annels, 1991) Mis. ( ) untuk h/a = 0,4 dan I/a = 0,8 adalah 0,241 2

15

Page 73: Binder

Gambar 8.9 Nomogram varians estimasi titik-titik terhadap bidang empat

persegi panjang untuk model Matheron C0 = 0, C = 1,0 (Annels, 1991)

16

Page 74: Binder

Gambar 8.10 Nomogram varians ekstensi garis terhadap bidang empat

persegi panjang untuk model Matheron C0 = 0, C = 1,0 (Annels, 1991)

17

Page 75: Binder

Gambar 8.11 Nomogram varians ekstensi garis terhadap ruang bentuk

balok untuk model sferis / Matheron C0 = 0, C = 1,0 (David, 1977)

18

Page 76: Binder

Gambar 8.12 Nomogram varians ekstensi bidang terhadap ruang bentuk Balok untuk model sferis / Matheron C0 = 0, C = 1,0 (David, 1977)

19

Page 77: Binder

8.5 VARIANS ESTIMASI GLOBAL

Penyimpangan total [ ]UU * − pada proses estimasi ini dapat diselesaikan dengan sumasi dari masing-masing simpangan sebagai berikut :

] (8-16) [ ] [ i*i

N

1ii

* UUUU −=− ∑=

λ

Jika dianggap, bahwa setiap simpangan tidak tergantung satu dengan lainnya (seperti yang umum terjadi), akan diperoleh varians estimasi global sebagai berikut :

[ ] [ ] ( )iUUVarUUVar 2E

N

1i

2i

N

1ii

*i

2i

*2E σλλσ ⋅=−⋅=−= ∑∑

==

(8-17)

8.5.1 Varians Estimasi Global Conto Sepanjang Garis

dengan Jarak Sama

Panjang L terdiri dari sejumlah N segmen I yang merupakan daerah pengaruh titik pada segmen tersebut, (8-18) INL ⋅=

Varians estimasi untuk segmen I mempunyai faktor bobot : N

1lN

IL

l =⋅==λ (8-19)

( ) ( ) ( )−⋅=−⋅= 2E2

2E

22E N

1I σσλσ (8-20)

Untuk seluruh garis L didapatkan varians estimasi global :

( ) ( ) ( ) ( )∑ ∑= =

−⋅=−⋅=⋅=N

1i

N

1i

2E

2E2i

2E

2E N

1N1IL σσσσ (8-21)

20

Page 78: Binder

Soal : Pada suatu lintasan sepanjang 160 m diambil 20 conto dengan jarak antar

conto 8 m. Jika diketahui daerah tersebut mempunyai penyebaran kadar yang diekspresikan dalam variogram model Matheron, dengan C = 34%² dan a = 60 m, dan mempunyai kadar rata-rata z = 3,8% Zn, ditanyakan berapa besar varians estimasi globalnya dan standar deviasi relatifnya ?

Jawab: Dari nomogram varians estimasi untuk model sferis, diperoleh : ( ) ( ) ( ) ( ) 22

E2E

2E

2E %34034.0C034,0133,060

8a

II ⋅=⋅==== σσσσ Varians

estimasi global untuk N = 20 conto pada garis L adalah :

( ) ( ) 222E

2E %058,0%34034,0

201I

N1L =⋅⋅=⋅= σσ

Standar deviasi = ( ) %24,0%058,0L 2E ±==σ

Standar deviasi relatif ( ) %30,6%1008,324,0%100z/LE =⋅=⋅σ .

8.5.2.1 Varians Estimasi Global Conto Sepanjang Garis

dengan Jarak yang Tidak Sama

Jika jarak antar conto tidak sama maka perhitungan rata-rata dan juga

penentuan varians estimasi harus dilakukan dengan pembobotan.

∑=

=N

1iIIL

faktor bobot : LIi

i =λ (8-22)

harga rata-rata : ( )i

N

1ii xzI

L1z ⋅= ∑

=

(8-

23)

varians estimasi global : ( ) ( )∑−

−⋅=N

1i

2E

2i2

2E I

L1L σσ (8-24)

Contoh soal :

21

Page 79: Binder

N = 10 conto diambil pada suatu lintasan sepanjang 160 m, kadar rata-rata Zn%8,3z = . Variogram sesuai model Matheron, dengan C = 34%² dan a = 60 m

(seperti pada soal sebelumnya).

Jarak antar conto II adalah sebagai berikut :

II a/I I ( )−2Eσ 2

iI ( )−⋅ 2E

2iI σ

5 10 15 5

30 25 20 15 10 25

0,0830,1670,2500,0830,5000,4170,3330,2500,1670,417

0,022 0,042 0,065 0,022 0,130 0,106 0,084 0,065 0,042 0,106

2510022525

900625400225100625

0,5504,200

14,6250,550

117,00066,25033,60014,6254,200

66,250160 321,850

( ) 222

2E %43,0%3485,321

L1L =⋅⋅=σ

( ) %65,0%43,0L 2E ±==σ

( ) %2,17%100z/LE =⋅σ

8.5.3 Varians Estimasi Global Conto pada Bidang

Untuk conto pada suatu bidang dapat digunakan aturan seperti halnya conto sepanjang garis.

Suatu bidang R terbagi dalam N bagian bidang dengan ukuran yang berbeda rj. Tiap bidang mempunyai satu conto (lubang bor) yang terletak di tengah-tengah. Varians estimasi masing-masing bidang dapat dibaca pada nomogram atau label Ekstensi titik terhadap bidang empat persegi panjang, dan dengan memperhatikan faktor bobot, maka varians estimasi global dapat dihitung sebagai berikut :

22

Page 80: Binder

( ) ( )∑ ∑= =

⋅=⋅=N

1i

2E

N

1i

212j

2E

2i2

2E r

R1rr

R1R σσσ ( ) (8-25)

Jika semua blok mempunyai besar yang sama, maka berlaku :

( ) 2E

2E N

1R σσ ⋅= ( ) (8-26)

Contoh : Pada suatu endapan fosfat telah diambil 95 conto pemboran

dengan grid 50 x 50 m². Kadar rata-rata z akumulasi kadar dan ketebalan adalah 365 m %. Variogram model Matheron untuk endapan ini memberikan sill C = 77.912 m² %², nugget variance C0 = 30.000 m² %² dan range a = 150 m.

Ditanya : Varians estimasi global dan deviasi standar relatif! Dengan h/a = I/a = 50/150 = 0,333 diperoleh varians ekstensi titik

terhadap bidang bujur sangkar 0,125 sehingga diperoleh : → ( ) = ( ) 2

E2E r σσ = 739.39)125,0()912,77(000.30125,0CC0 =⋅+=⋅+

Untuk seluruh bidang diperoleh varians estimasi global :

( ) ( ) 222E

2E %m739.39

951r

N1R ⋅=⋅= σσ

( ) 222E %m3,418R =σ

( ) %m4,20R2E =σ

Standar deviasi relatif = %6,5%100365

4,20=⋅

23

Page 81: Binder

9. KOVARIOGRAM GEOMETRIK Estimasi pada suatu bidang (garis atau volume) dengan bantuan grid yang teratur dapat diselesaikan dengan mudah menggunakan geostatistik. Persoalan-persoalan macam ini berkait dengan variabel terregional ada atau tidak ada :

(9-1) ( )⎩⎨⎧

→→

=R0R1

xkbidangdiberadatidakxjikabidangdalamdiberadaxjika

luas bidang R dinyatakan dengan persamaan berikut :

( )∫+∞

∞−⋅= dxxkR (9-2)

Dalam geostatistik, kovariogram geometrik di definisikan sebagai : dengan K(0) = R (9-3) ( ) ( ) ( )∫

+∞

∞−⋅+⋅= dxhxkxkHK

Kovariogram geometrik adalah suatu ukuran untuk bidang (garis atau volume) dimana dua bidang (garis atau volume) saling berpotongan. Kadar dalam bidang R yang sebenarnya diestimasi berdasarkan jumlah n potongan bidang (daerah pengaruh) suatu data yang ada (sama dengan jumlah conto yang ada). Hal itu dinyatakan dengan (secara satu dimensi) sebagai berikut :

(9-4) ( ) ( )∑+∞

−∞=

⋅=⋅+=p

00* nrdxprxkrxR

dimana r adalah unit bidang dan adalah awal dari grid. Varians estimasi bidang dituliskan sebagai berikut :

0x

( )[∫ −= dxRxR ]r1 2

0*2

Gσ (9-5)

( )0

* xR dan R dalam integral tersebut adalah merupakan fungsi dari variabel k(x). Menurut Matheron (1971) berlaku :

(9-6) ( ) ( )∑ ∫+∞

−∞=

∞+

∞−⋅−=

p

2G dhhKprKrσ

1

Page 82: Binder

Varians estimasi bidang R melalui R* sendiri sudah tergantung dari kovariogram geometrik K(h), ini juga tidak diketahui seperti halnya bidang R yang sebenarnya. Semua kovariogram mempunyai suatu kenaikan linier terhadap titik nol (h = 0), yang kenaikannya untuk setiap bidang R* dapat diperkirakan. Sifat geometris ini secara umum memungkinkan adanya suatu teransisi pembatas (r→0). Rumus pendekatan varians estimasi relatif dinyatakan sebagai berikut :

⎥⎦

⎤⎢⎣

⎡+=

2

21

222

2G

NN061,0N

61

n1

Rσ 12 NN ≤ (9-7)

R adalah bidang yang benar, R* adalah harga estimasi yang besarnya sama dengan jumlah rn ⋅ dari sub-bidangnya. Sub-bidang berbentuk bujursangkar atau empat persegi panjang dengan panjang sisi a1 dan a2. Parameter 2N1 adalah jumlah sepanjang a1, sedangkan 2N2 adalah jumlah sepanjang a2 yang dibatasi bidang R*. Rumus pendekatan ini dapat digunakan jika n 10. Suatu varians estimasi volume dapat juga diperoleh dengan jalan yang sama melalui pendekatan seperti halnya bidang.

Gambar 9.1 Estimasi bidang R untuk dua grid dengan sumber yang berbeda n = 69 2N1 = 36 2N2 = 32 n = 75 2N1 = 38 2N2 =36 21

* aa69R ⋅⋅= 21* aa75R ⋅⋅=

%0,3R

G =σ %7,2

RG =

σ

Untuk selang kepercayaan 2 kali deviasi standar diperoleh : ( ) 21 aa469R ⋅⋅±= ( ) 21 aa475R ⋅⋅±=

2

Page 83: Binder

PERKIRAAN CADANGAN ENDAPAN BAHAN GALIAN 9.1. ENDAPAN BAHAN GALIAN DAN INFORMASI Suatu endapan emas bercirikan suatu lapisan pembawa emas yang ditutupi oleh kerak lempung lateritik dibor dengan grid teratur dengan dimensi b1 = 30 m dan b2 = 20 m. Pola pemboran diilustrasikan pada Gambar 9.2. Lubang bor yang menembus mineralisasi emas diberi tanda • . Terdapat N0 = 58 bor menembus bijih.

Gambar 9.2 Pola pemboran dan sebaran titik bor yang menembus bijih Ekstensi total (bidang R*) endapan dianggap sebagai jumlah daerah-daerah pengaruh masing-masing bor yang menembus bijih. Di bagian Baratlaut tidak terdapat mineralisasi, endapan di bagian utara memperlihatkan batas yang tidak beraturan. Sangat sukar untuk menentukan batas endapan yang sebenarnya. Yang perlu diperhatikan selanjutnya adalah perhitungan varians estimasi untuk penentuan bidang R* yang dibentuk oleh gabungan grid yang teratur.

3

Page 84: Binder

9.2. VARIABEL TERREGIONAL Ketebalan p suatu endapan berkisar 3 – 5 m, yang selanjutnya dipilih sebagai variabel terregional akumulasi ketebalan dan kadar rata-rata dari titik bor : (9-8) ( ) ( ) ( )xtxpxz ⋅= Karena diketahui ketebalan p diukur dalam m dan kadar t dalam g/t, maka dimensi akumulasi adalah . Harga z(x) tidak diketahui, sedang kadar rata-rata

t/gm ⋅

t/g.m28z = dengan varians akumulasi sebesar :

(9-9) ( ) ( 22 t/gm825V/v ⋅=σ ) Dari harga-harga z(x) pemboran yang menembus bijih telah dihitung data variogram sebagai berikut :

Tabel 9.1: Hasil hitungan vriogram

h (m) ( )( )2t/gmh ⋅γ 20 40 60 80

100 120 140

501,8 768,3 784,0 862,4 901,6 823,2 799,7

kenampakan anisotropi pada variogram tidak ada

9.3. VARIOGRAM Gambar 9.3 menunjukkan plot variogram eksperimental dari hasil hitungan pada tabel di atas. Berdasarkan kenaikkannya yang cepat pada titik-titik awal, maka model variogram yang dipilih adalah model Matheron. Varians nugget sering terjadi pada endapan emas.

( ) ( )( ) ⎥

⎤⎢⎣

⎡⋅−⋅+= 3

3

0 ah

21

ah

23CChγ (9-10) ah>

( ) CCh 0 +=γ ah≤ (9-11) Dari kurva variogram tersebut dapat ditentukan parameter variogram model Matheron sebagai berikut :

4

Page 85: Binder

Gambar 9.3 Variogram eksperimental Varians nugget diperoleh melalui eksplorasi garis yang melalui kedua titik awal sampai memotong sumbu ( )hγ . Hasilnya dapat dilihat langsung pada kurva, atau dihitung dengan kemiringan garis (768,3 - 501,8) / 20, yaitu . Harga sill diperoleh dari pendekatan

t/mg235C0 =t/mg825CC0 =+ , sehingga didapat

. Perpotongan garis untuk menentukan dengan sill memberikan besaran 2/3 a = 44 m, sehingga dihasilkan range sebesar a = 66 m.

t/mg590C = 0C

9.4. ESTIMASI DAN VARIANS ESTIMASI BIDANG Dari sejumlah = 58 lubang bor yang menembus bijih, diperoleh harga estimasi luas R

0N* endapan sebagai berikut :

(9-12) 2* m800.34)m30()m20(blok58R =⋅⋅= Untuk perhitungan varians estimasi relatif digunakan rumus pendekatan yang dinyatakan pada persamaan (9-7). Jumlah potongan endapan searah Utara-Selatan dengan panjang 20 m adalah 44, sehingga :

22N44N2 11 =→= (9-13) Jumlah potongan endapan searah Timur-Barat dengan panjang 30 m adalah 20, sehingga : (9-14) 10N20N2 22 =→=

5

Page 86: Binder

Selanjutnya dihitung jumlah seluruh bagian dalam dan seluruh bagian luar potongan yang ada, sehingga dengan memasukkan parameter di atas pada rumus (9-7) akan didapat :

00137,010

2222061,01061

58581

R2

2G =⎥⎦

⎤⎢⎣⎡ ⋅

⋅+⋅⋅

(9-15)

Sehingga standar deviasi relatifnya adalah 2G 107,3R

−⋅=σ atau 4 %, dengan

demikian . Pada perhitungan varians estimasi global dari 2G m1280=σ Z melalui

z , varians eksistensi titik (bor) pada masing-masing blok sebesar , sehingga varians estimasi global akibat faktor ketidakpastian dalam endapan karena adanya eksistensi titik pada masing-masing blok dinyatakan dengan :

( )V/02σ

( V/0 )R

22

2G σ

σ⋅ (9-16)

9.5. VARIANS ESTIMASI AKUMULASI RATA-RATA Akumulasi rata-rata Z suatu endapan bahan galian ditaksir dengan harga rata-rata z =28 mg/t dari sejumlah N = 58 titik bor. Varians estimasi akumulasi rata-rata dhitung dari komposisi hubungan garis dan hubungan bidang. Hubungan garis dihitung untuk arah Utara-Selatan, karena jarak antar lubang bor dalam arah ini lebih rapat daripada arah Timur-Barat. Pada hubungan bidang, garis li diekstensikan terhadap daerah pengaruh yang berbentuk empat persegi panjang dengan dimensi b1.b2 = (20 m).(30 m). 9.5.1. Hubungan Garis (VE Global Conto ke Garis) Varians ekstensi suatu conto bentuk titik pada garis b1 adalah : ( ) ( ) ( )−⋅+== 2

E012E

2E CCbL/0 σσσ (9-17)

b1/a = 20/66 = 0,30 sehingga ( ) 08,02

E =−σ (lihat bab varians estimasi) sehingga : ( ) ( ) ( )21

2E

2E t/mg28208,0590235bL/0 =⋅+== σσ (9-18)

Estimasi semua garis L dengan N = 58 bor diperoleh varians estimasi global:

( ) ( ) ( )212E

2E t/mg877,458/282b

N1L === σσ (9-19)

6

Page 87: Binder

9.5.2. Hubungan Bidang (VE Global Garis ke Bidang) Varians ekstensi suatu garis li dengan panjang yang berbeda-beda terhadap bidang dengan lebar yang sama adalah : 2b

( ) ∑∑

=

=

⎟⎠

⎞⎜⎝

⎛=

l

1ii2l

1ii

2E l

l

CRσ 2Eσ ( ) (9-20)

Harga ( ) dapat diperoleh dari nomogram pada varians estimasi yaitu ekstensi garis dengan panjang I terhadap bidang I. . Perhitungan dilakukan dengan pembobotan yang diberikan pada tabel berikut (lihat Gambar 9.2) :

2Eσ

2b

Tabel 9.2: Perhitungan varians estimasi garis l terhadap bidang l.b2

Lintasan il a/li a/b2 2Eσ ( ) 2

E2il σ⋅ ( )

I II III IV V VI

160 m 240 m 200 m 240 m 160 m 160 m

2,54 3,80 3,18 3,80 2,54 2,54

0,45 0,45 0,45 0,45 0,45 0,45

0,010 0,008 0,009 0,008 0,010 0,010

256 460 357 460 256 256

1160 m 2045

( )( )

( 22

2E t/mg897,0

11602045590R =⋅

=σ ) (9-21)

Dengan anggapan bahwa R = R*, padamana varians estimasi bidang selanjutnya diabaikan, akan diperoleh varians estimasi global sebagai berikut : ( ) ( ) ( )22

E2E

2E t/mg76,5897,0866,4RL =+=+= σσσ (9-22)

Dalam hal ini diperoleh standar deviasi relatif : %6,8%10028/76,5%100z/E =⋅=⋅σ (9-23)

7

Page 88: Binder

9.5.3. Varians Estimasi Total Jika efek yang diberikan akibat ketidakpastian batas endapan ikut diperhatikan, maka varians estimasi globalnya akan menjadi sebagai berikut :

( ) ( ) ( V/0 )R

RL 22

2G2

E2E

2E σ

σσσσ ⋅++= (9-24)

= 82500137,076,5 ⋅+ = ( )2t/mg89,6

Standar deviasi relatif : %3,9%10028/89,6%100z/E =⋅=⋅σ . Pengaruh ketidakpastian dalam penentuan bidang dalam hal ini tidak terlalu besar. Akumulasi ( )t/mg28z = perlu diikuti dengan standar deviasi relatif 9,3 %, atau

t/mg6,228z E ±=±σ . 9.5.4. Varians Estimasi Kandungan Logam Kandungan logam dalam endapan bahan galian diberikan dengan pendekatan : DRzQ * ⋅⋅= (9-25) dimana D adalah densitas dalam t/m³. Jika diasumsikan suatu harga 2,5 t/m³, akan diperoleh : (9-26) 32 m/t5,2m800.34t/mg28Q ⋅⋅= = 2.436.000 g = 2.346 kg emas. Dalam hal varians estimasi z dan R tidak tergantung satu dengan lainnya, maka varians relatifnya dapat dijumlahkan :

( ) ( )

01016,000137,028

89,6Rz

zQ

Q22

2G

2

2E

2

2E =+=+=

σσσ (9-27)

Standar deviasi relatif : ( )%10%10001016,0%100

QQE =⋅=⋅

σ . Sehingga

diperoleh kandungan logam : 2442436Q ±= kg emas.

8

Page 89: Binder

10. KRIGING 10.1 PERMASALAHAN Dari hubungan kadar suatu conto pemboran dengan kadar blok akan diperoleh suatu pencaran sistematis. Disini berarti bahwa conto bor tersebut bukanlah suatu harga estimasi yang paling baik untuk menaksir blok, sehingga diperlukan suatu koreksi. Cara penentuan koreksi ini diberikan oleh Matheron melalui pemboran harga-harga conto dengan bantuan fungsi variogram. Nama cara ini (kriging) diambil dari pakar geostatistik di Afrika Selatan D. G. Krige yang telah memikirkan hal ini untuk pertama kalinya di awal tahun limapuluhan. Korelasi antara kadar-kadar conto pemboran dan kadar sebenarnya suatu blok yang diwakili oleh titik bor tersebut (diperoleh mis. dari hasil penambangan blok tersebut) akan memberikan suatu diagram pencar yang memperhatikan, bahwa sebagian besar pasangan data tersebut terletak di dalam suatu elips seperti yang terlihat pada Gambar 10.1.

Gambar 10.1 Pencaran data antara kadar conto hasil eksplorasi dengan kadar

blok penambangan Dalam hal semua hasil analisa conto merupakan estimasi yang benar/cocok/ sesuai terhadap kadar setiap blok yang diwakili conto tersebut, maka pencaran pasangan data tersebut akan membentuk garis regresi A-A’ yang melalui titik nol. Penelitian Krige pada perilaku kadar conto emas memperhatikan bahwa garis regresi tersebut pada kenyataannya lebih mendatar, seperti yang ditujukan oleh garis B-B’ (Gambar 10.2).

Page 90: Binder

Gambar 10.2 Pencaran data antara kadar conto vs. Kadar blok untuk conto

emas (kurva B-B’) Ini berarti bahwa simpangan terbentuk secara sistimatik dan conto bor bukan merupakan harga estimasi yang mewakili kadar bijih pada blok. Analisa conto yang terletak di atas harga rata-rata memberikan suatu harga yang lebih besar daripada kadar-kadar blok, jika tidak diberikan koreksi. Harga conto z1 memberikan harga blok Z1’ melalui kurva A-A’ yang lebih besar dari harga sebenarnya Z1 (kurva B-B’). Tetapi sebaliknya analisa-analisa yang terletak di bawah harga rata-rata Z memberikan harga yang di bawah harga-harga blok, conto z2 melalui kurva A-A’ memberikan harga blok Z2’ yang lebih kecil dari harga sebenarnya Z2 (kurva B-B’). Koreksi Matheron yang memperhatikan variogram dari analisa data regional, memperlihatkan bahwa estimasi kadar blok tidak hanya dipengaruhi oleh conto yang terletak di dalam blok saja, tetapi juga dipengaruhi oleh conto-conto di sekitarnya yang berdekatan. Koreksi tersebut memberikan :

1. suatu harga estimasi yang lebih baik, 2. suatu varians dari estimasi tersebut. 2

Kσ Cara perhitungan dengan metode kriging ini kadang-kadang terlalu kompleks untuk suatu komoditi tertentu. Hal ini sangat bermanfaat jika dilakukan pada penentuan cadangan-cadangan yang mineable dengan kadar-kadar di atas cut-off grade. Sebagai contoh hubungan antara harga analisa conto dengan harga analisa blok bijih (harga sebenarnya) yang terpancar membentuk elips (Gambar 3), kemudian tarik garis regresi melalui titik 0 dan titik ( z,Z ), selanjutnya bagi elips tersebut dengan cut-off grade zc = Zc = 5% menjadi empat bagian.

Page 91: Binder

Gambar 10.3 Pencaran data antara kadar conto vs. kadar blok yang

memperlihatkan kesalahan penambangan

Daerah 1 : semua blok dengan kadar > cog sesuai dengan kadar conto > cog ditambang Daerah 2 : semau blok dengan kadar < cog yang sesuai

dengan kadar conto < cog tidak ditambang Daerah 3 : semua blok dengan kadar < cog yang karena kesalahan kadar conto > cog yang ditambang Daerah 4 : semua blok dengan kadar > cog yang karena

kesalahan kadar conto < cog tidak ditambang

Jika garis regresi B-B’ yang menunjukkan hubungan antara conto dan kadar blok diplot, maka blok-blok dengan kadar 5% juga akan ditambang walaupun kadar conto kadar 3,5% (Gambar 3b). Daerah 4 pada Gambar 3b yang tidak tertambang karena kesalahan informasi menjadi kecil, sementara itu daerah 3 yang ditambang walaupun berkadar rendah menjadi lebih besar, walaupun demikian secara keseluruhan daerah dengan blok-blok yang mempunyai kadar > cut-off grade (5%) dan ditambang menjadi lebih besar. Berdasarkan analisis variogram, Matheron memberikan koreksi perkiraan kadar pada suatu blok yang tidak hanya dipengaruhi oleh conto di dalam blok saja, tetapi juga pada conto-conto di sekitarnya. Dengan bantuan kriging ini tidak akan ditentukan garis regresi baru yang lebih baik, tetapi metode ini akan mengoreksi kadar-kadar conto (dinaikkan atau diturunkan, sehingga mempersempit elips pencaran data (Gambar 4).

Page 92: Binder

Gambar 10.4 Perubahan bentuk elips pencaran data akibat koreksi dengan

metode kriging Melalui koreksi ini bentuk elips akan lebih kurus/sempit dengan batas-batasnya mendekati garis regresi yang membentuk sudut 45º. Jumlah conto dan pasangan bloknya pada daerah 3 dan daerah 4 yang menyatakan kadar rendah ditambang atau kadar tinggi tidak ditambang akan berkurang. Royle & Newton (1972) telah menyelidiki bermacam-macam model koreksi dan menghasilkan solusi, bahwa proses kriging ini memberikan harga-harga pengestimasi kadar-kadar blom terbaik berdasarkan kadar-kadar conto yang sudah dikoreksi. 10.2 PERSAMAAN UMUM Misalnya terdapat suatu kumpulan S1 dari n conto dengan volumina yang sama pada suatu tempat xi sebagai harga perkiraan / estimasi terhadap suatu kadar Z dari volume V dipilih Z*. Harga perkiraan ini dapat melalui pembobotan kadar z(xi) conto :

( )∑=

⋅=n

1iii xz*Z λ

Jumlah faktor pembobotan iλ dibuat sedemikian rupa sehingga sama dengan satu :

∑=

=n

1ii 1λ

Page 93: Binder

Dengan cara ini akan tercapai, bahwa harga estimasi adalah without bias, artinya harga yang diharapkan untuk perbedaan antara Z da Z* adalah nol. { } 0*ZZE =− Dengan memperhatikan faktor-faktor pembobotan akan didapat suatu varians estimasi (lihat persamaan terdahulu pada varians estimasi) Dengan memperhatikan faktor-faktor pembobotan akan didapat suatu varians estimasi (lihat persamaan terdahulu pada varians estimasi)

[ ]*ZZVar2E −=σ

= ( ) ( ) ( )∑ ∫ ∫ ∫ ∑∑= =

−−−−−n

1i V V V

n

1i

n

1ijijiii xxdydxyx

VV1dyyx

V2 γλλγγλ

=

= ( ) ( ) ( )∑ ∑∑= = =

−−n

1i

n

1i

n

1jjijiii S,SV,VV,S2 γλλγγλ

Varians estimasi ini adalah suatu fungsi dari faktor-faktor pembobotan , yang sudak diketahui bahwa jumlahnya adalah 1. Untuk memilih faktor-faktor pembobotan yang optimal, dibuat sedemikian rupa sehingga varians estimasi ini minimum.

Persyaratan bahwa jumlah 1λ yang tidak diketahui adalah satu, dapat didekati dengan pertolongan suatu multiplier lagrange untuk meminimumkan hubungan persamaan berikut ini : ( )∑ −−= 12Q i

2E λμσ min ⇒

Selain dari yang tidak diketahui, juga terdapat μ yang juga tidak diketahui. Pernyataan bahwa harus diminimumkan ini diartikan bahwa pendekatan parsial

dan μ∂∂ /Q i/Q λ∂∂ adalah nol. Selanjutnya didapat sistem persamaan linier (kriging system) sebagai berikut :

( ) ( )∑ ∫=

−=+−n

1j Vijij dxxx

V1xx γμγλ atau

( ) ( )V,SS,S i

n

1jjij γμγλ =+∑

=

dan ∑=

=n

1ii 1λ

Page 94: Binder

Sistem persamaan ini cukup untuk menentukan harga-harga dan 1λ μ yang akan menghasilkan suatu varians minimum. Varians perkiraan/estimasi (kriging variance) akan diekspresikan melalui persamaan berikut :

( ) ( )∫ ∫ ∑ ∫=

−−−=V V

n

1j Vjj

2K dxxx

V1dyyxdx

VV1 γλγσ atau

( ) ( )∑=

++−=n

1jjj

2K V,SV,V γλμγσ

Keterangan : Persamaan-persamaan yang diberikan dapat juga kemudian

digunakan, jika z(xi) pada persamaan unutk perhitungan harga-harga estimasi Z adalah lebih kurang sama dengan harga rata-rata dari sejumlah conto-conto yang berdekatan satu sama lain.

Mis. ( )ji xx −γ bertindak sebagai harga rata-rata dari γ untuk kumpulan titik-titik Si dan Sj pada posisi xi dan xj.

Berikut ini diuraikan persamaan untuk menghitung dan yang merupakan konstanta-konstanta yang tidak dikenal :

( ) ( ) ( ) ( ) ( )VSSS...SS...SSSS 1n1nj1j212111 γμγλγλγλγλ =+⋅++++⋅+⋅

( ) ( ) ( ) ( ) ( )VSSS...SS...SSSS in1nj1j212111 γμγλγλγλγλ =+⋅++++⋅+⋅

M M M M M M

( ) ( ) ( ) ( ) ( )VSSS...SS...SSSS jn1nj1j212111 γμγλγλγλγλ =+⋅++++⋅+⋅

M M M M M M

( ) ( ) ( ) ( ) ( )VSSS...SS...SSSS nn1nj1j212111 γμγλγλγλγλ =+⋅++++⋅+⋅

1λ + 2λ j... λ++ n... λ++ + 1=μ

Page 95: Binder

Dengan memperhatikan bahwa ( ) ( )ijji SSySS =γ , maka akan memberikan suatu matriks berikut ini :

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

011111SSSSSSSS

1SSSSSSSS

1SSSSSSSS1SSSSSSSS

nnjn2n1n

njji2j1i

n2j2212

n1j12111

LL

LL

MMMM

LL

MMMM

LL

LL

γγγγ

γγγγ

γγγγγγγγ

• =

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

μλ

λ

λλ

n

j

2

1

M

M

( )( )

( )

( )⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

1VS

VS

VSVS

n

j

2

1

γ

γ

γγ

M

M

Matriks ( ji SSγ ) merupakan suatu matriks yang simetris. Sistem persamaan tersebut diatas dapat dituliskan sebagai berikut : [ ] [ ] [ ]MLK =⋅ Persamaam ini akan diselesaikan terhadap L untuk mendapatkan dan sehingga diperoleh persamaan :

[ ] [ ] [ ]MKL 1 ⋅= −

Untuk varians kriging dapat dituliskan :

( ) [ ] [ ]MLV,V t2K ⋅+−= γσ

10.3 PENGARUH PARAMETER GEOSTATISTIK PADA FAKTOR-FAKTOR

PEMBOBOTAN DAN VARIANS ESTIMASI Pengaruh beberapa parameter geostatistik akan diterangkan pada suatu conto perhitungan sederhana sebagai berikut : Diketahui conto dengan kadar z( ) diambil dengan jarak yang sama (L=20

m) di sepanjang suatu garis. Kadang rata-rata semua conto ix ix

0,1z = . Variogram (model Matheron) pada data tersebut mempunyai parameter sebagai berikut :

Page 96: Binder

C = 1,0 a = 60 m 0,0C0 =

Akan dihitung faktor-faktor bobot, varians estimasi (varians kriging), dan standar deviasi relatif untuk kadar z* suatu potongan garis sepanjang L (mis, pada titik

) 1x Untuk melihat bagaimana pengaruh conto-conto di sekitarnya serta pengaruh nugget variance, maka akan diperhatikan jika hanya dipengaruhi oleh suatu titik

(dirinya sendiri), atau dipengaruhi oleh tiga titik , , atau jika dipengaruhi oleh semua titik-titik conto disekitarnya.

1x 1x 2x 3x

10.3.1 SISTEM KRIGING DENGAN MEMPERHATIKAN HANYA SATU CONTO

( ) ( )∑=

=+n

1jijij L,SS,S γμγλ ∑

=

=n

1jj 1λ

untuk n = 1 maka 11 =λ ( ) 0SS 11 =γ ( ) (pfγγ CCLS 01 += )

= [ ]2LXCC0 +

= ( )6010X10 +

= 0,124 Dengan memasukkan parameter-parameter tersebut pada persamaan umum kriging akan memberikan : 124,0124,001 =⇒=+⋅ μμ

Page 97: Binder

Untuk varians krigingnya berlaku rumus :

( ) ( )∑=

++−=n

1jjj

2K L,SL,L γλμγσ

( ) (LFCCL,L 0 ⋅+=γ )

= 0 + ( ) ( )6020Fa

LF1 =⋅

= F (0,333) = 0,165 124,0=μ

( ) 124,0124,0*1LS11 ==γλ

083,0124,0124,0165,02K =++−=σ

Standar deviasi relatif : %29%100z

2K

K =⋅=σ

σ

10.3.2 SISTEM KRIGING DENGAN MEMPERHATIKAN TIGA CONTO Sistem Kriging

( ) ( ) ( ) ( )LSSSSSSS 1313212111 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )LSSSSSSS 2323222121 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )LSSSSSSS 3333232131 γμγλγλγλ =+⋅+⋅+⋅

1λ + +2λ 3λ + 1=μ Untuk L = 20 m a = 60 m C0=0,0 dan C = 1,0 maka : ( ) ( ) ( ) 0SSSSSS 332211 === γγγ

( ) ( ) ( 2103121 xxCCSSSS −⋅+== γγγ ) ( ) ( ) ( ) ( ) 481,0333,060

20a

Lxx 21 ====− γγγγ

( ) ( ) ( 3202332 xxCCSSSS −⋅+== γγγ )

Page 98: Binder

( ) ( ) ( ) ( ) 851,0667,06040

aL2xx 32 ====− γγγγ

( ) ( ) 124,02

LXCCLS 01 =⋅+=γ seperti pada a)

( ) ( ) ( 'LXCCLSLS 032 ⋅+== γγ )

( )( ) ( ) ( ) ( )

L2

LX2L

2LLX2

LL'LX

⋅−+⋅+=

( ) ( ) ( ) 359,05,0X6030X2

LLX ===+⇒

( ) ( ) ( ) 124,0167,0X6010X2

LX ===

( ) 477,020

124,010359,030'LX =⋅−⋅

=

Sehingga sistem kriging menjadi :

[ ][ ][ ][ ]4000,103477,0000,0851,0481,02477,0851,0000,0481,01124,0481,0481,0000,0

321

321

321

321

=+++=+⋅+⋅+⋅=+⋅+⋅+⋅=+⋅+⋅+⋅

λλλμλλλμλλλμλλλ

______________________________________

[ ] [ ]

32

32 3200,00851,0851,00

λλ

λλ

=

−=+++

______________________________________

21

21

2000,1000,12λλ

λλ−=

=+ [4]

______________________________________

( )

2

2

962,0124,0124,0481,02

λμμλ

−==+

[1]

______________________________________ ( ) ( ) 477,0962,0124,0851,0481,021 222 =−++− λλλ [2]

477,0962,0124,0851,0962,0481,0 222 =−++− λλλ 12,02 =λ______________________________________

76,01 =λ 12,032 == λλ dan 01,0=μ

Page 99: Binder

( ) ( )∑=

++−=n

1jjj

2K L,SL,L γλμγσ

( ) 165,0L,L =γ 124,0=μ

( ) 208,0477,012,0477,012,0124,076,0L,Sn

1jjj =⋅+⋅+⋅=∑

=

γλ

053,0208,001,0165,02

K =++−=σ

Standar deviasi relatif : %23%100*z

2K2

K ==σ

σ

______________________________________

( ) ( ) ( )3211 xz*12,0xz*12,0xz*76,*Z ++= λ Faktor bobot dan 2λ 3λ mempunyai harga yang sama, sesuai dengan posisi titik 2 dan 3 yang simetri terhadap titik 1 (berjarak L). Berdasarkan posisi titik-titik yang simetri ini, maka persamaan sistem kriging dapat lebih disederhanakan sebagai berikut :

( ){

( ) ( )44 344 21

2

1

S

322

Si1 2

xzxzxz*Z ⎥⎦

⎤⎢⎣⎡ +⋅+⋅= λλ

Sistem kriging

( ) ( ) ( )LSSSSS 1212111 γμγλγλ =+⋅+⋅ ( ) ( ) ( )LSSSSS 2222121 γμγλγλ =+⋅+⋅

000,1021 =++ λλ ( ) 0SS 11 =γ

( ) ( )[ L2CC2

1SS 022 γγ ⋅+= ] ( ) ( ) 851,0667,06040 == γγ

= [ ] 425,0851,01021 =⋅+

( ) ( ) 481,0SSSS 2112 == γγ ( ) 124,0LS1 =γ seperti sebelumnya ( ) 477,0LS2 =γ

______________________________________

Page 100: Binder

124,0481,0000,0 21 =+⋅+⋅ μλλ 477,0425,0481,0 21 =+⋅+⋅ μλλ 000,1021 =++ λλ

______________________________________

76,01 =λ ( )12,0&12,024,0 322 === λλλ 01,0=μ

______________________________________

477,024,0124,076,001,0165,02K ⋅+⋅++−=σ

= -0,165+0,01+0,208

053,02K =σ seperti sebelumnya

10.3.3 SISTEM KRIGING DENGAN MEMPERHATIKAN SEMUA CONTO Akan digunakan tiga conto seperti pada 10.3.3, semua sisa conto lainnya dikelompokkan menjadi satu conto dengan harga rata-ratanya z . Semua conto rata-rata ini mempunyai jarak yang cukup jauh dari letak dan potongan L, demikian hingga dan semua fungsi bantu X(h), F(h) dianggap sama dengan 1,0.

321 x,x,x( )hγ

( ){

( ) ( ){

3

2

1S

3

S

322

Si1 z

2xzxz

xz*Z ⋅+⎥⎦⎤

⎢⎣⎡ +⋅+⋅= λλλ

44 344 21

Sistem kriging

( ) ( ) ( ) ( )LSSSSSSS 1313212111 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )LSSSSSSS 2323222121 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )LSSSSSSS 3333222121 γμγλγλγλ =+⋅+⋅+⋅ 000,10321 =+++ λλλ

( ) 0SS 11 =γ ( ) ( ) 481,0SSSS 1221 == γγ ( ) 425,0SS 22 =γ

Page 101: Binder

( ) ( ) ( ) 0,10,1CCSSSS 01331 =⋅+== γγγ

( ) ( ) ( ) 0,10,1CCSSSS 02332 =⋅+== γγγ

( ) 0,1CCSS 033 =+=γ Conto-conto yang tergabung dalam S3 terletak terpencar jauh di luar ( jarak > a), sehingga kadar rata-rata semua ( )j1 xx −γ adalah 1 (satu).

( ) 124,0LS1 =γ ( ) 477,0LS2 =γ ( ) ( ) 00,1'LXCCLS 03 ≅⋅+=γ

Sebagai contoh perhitungan , diambil conto-conto dengan jarak 6L = 120 m

( ) ( ) ( ) ( ) ( )L

L6XL6L6LXL6L'LX ⋅−+⋅+=

=( ) ( )

( ) ( 0,2X6333,2X7L

60120XL660

140XL7⋅−⋅=

⋅−⋅)

= 00,196,082,0684,07 ≅=⋅−⋅

124,0000,1481,0000,0 321 =+⋅+⋅+⋅ μλλλ [1] 477,0000,1425,0481,0 321 =+⋅+⋅+⋅ μλλλ [2] 000,1000,1000,1000,1 321 =+⋅+⋅+⋅ μλλλ [3]

1λ + 000,1032 =++ λλ [4] ______________________________________ 353,0000,0000,0056,0481,0 21 −=+++− λλ [1]-[2] 734,0116,0 21 += λλ______________________________________ 0,116 +0,734+1λ 000,132 =+ λλ [4] 23 116,1266,0 λλ −= ______________________________________ 000,0000,1321 =→=++ μλλλ [3] ______________________________________ 124,0116,1266,0481,0 22 =−+ λλ

224,0635,0142,0

2 ==λ

Page 102: Binder

760,0734,0116,0 21 =+= λλ 016,0116,1226,0 23 =−= λλ (karena kecil diabaikan) ______________________________________

( ) ( )∑=

++−=n

1jjj

2K L,SL,L γλμγσ

( ) 165,0L,L =γ 000,0=μ 094,0124,0760,0 =⋅ 107,0477,0244,0 =⋅ 016,0000,1016,0 =⋅

( )∑=

=n

1jjj 217,0L,Sγλ

053,02K =σ (seperti sebelumnya)

Kedua conto dan bersifat memagari pengaruh conto-conto yang terletak di sebelah luarnya. Di sini tidak terjadi perbaikan faktor bobot dan juga tidak ada perbaikan varians estimasi.

( )2xz ( )3xz

10.3.4 PENGARUH NUGGET VARIANCE 0C0 ≠ Dengan memperhatikan semua conto seperti pada 10.3.3 ( ) 0SS 11 =γ 3,0C0 = ( ) 781,0481,03,0SS 21 =+=γ 0,1C =

( ) ( ) 576,0851,031,021SS 22 =+=γ m60a =

( ) 3,10,131,0SS 13 =+=γ 0,1z =

( ) 3,10,131,0SS 23 =+=γ

( ) 3,10,131,0SS 33 =+=γ ( ) 424,0124,03,0LS1 =+=γ ( ) 777,0477,03,0LS2 =+=γ

( ) 3,10,13,0LS3 =+=γ ___________________________________________

424,03,1781,0000,0 321 =+⋅+⋅+⋅ μλλλ [1] 777,03,1576,0781,0 321 =+⋅+⋅+⋅ μλλλ [2] 3,13,13,13,1 321 =+⋅+⋅+⋅ μλλλ [3] 0,10321 =+++ λλλ [4]

Page 103: Binder

___________________________________________ [1]-[2] 353,000205,0781,0 21 −=+++− λλ ( ) 452,0262,0781,0/353,0205,0 221 +=+= λλλ ___________________________________________ ___________________________________________ 0,1452,0262,0 321 =+++ λλλ [4] 32 262,1548,0 λλ −= ___________________________________________ 3,13,13,13,1 321 =+++ μλλλ [3] ( ) 3,13,1 321 =+++⋅ μλλλ

0,0

1321

==++

μλλλ

___________________________________________ 424,03,1781,0 32 =++ μλλ [1]

( ) 424,0262,1548,03,1781,0 22 =−+ λλ

335,0860,0288,0

2 ==λ

540,0452,0262,0 21 =+= λλ 125,0540,0335,00,13 =−−=λ

___________________________________________

( ) ( )∑=

++−=n

1jjj

2K L,SL,L γλμγσ

( ) 465,0165,03,0L,L =+=γ 229,0424,0540,0 =⋅ 260,0777,0335,0 =⋅ +=⋅ 163,0300,1125,0

( ) 652,0L,S j

n

1jj =∑

=

γλ

187,0652,000,0465,02K =++−=σ

%43%1000,1/187,0K =⋅=σ ___________________________________________

Page 104: Binder

Dengan kehadiran varians nugget, pengaruh conto-conto yang terletak di luar tidak dapat lagi diabaikan. Effek screen pada conto berikutnya berkurang akibat adanya varians nugget. Jika varians nugget dinaikkan lagi menjadi 5,0C0 = akan terlihat pengaruhnya lebih baik lagi : 466,01 =λ 341,02 =λ 193,03 =λ 000,0=μ 248,02

K =σ %43K =σ 10.3.5 RINGKASAN

1 conto 3 conto Semua conto C0 0,0 0,3 0,5 0,0 0,0 0,3 0,5

1λ 2λ

1,0 1,0 1,0 0,76 0,12 0,12

0,76 0,22 0,02

0,54 0,34 0,12

0,47 0,34 0,25

2Kσ Kσ

0,08 29%

0,38 62%

0,58 76%

0,05 23%

0,05 23%

0,19 43%

0,25 50%

Page 105: Binder

10.4 SIFAT-SIFAT CARA KRIGING Melalui metode kriging diperoleh harga penaksir terbaik berdasarkan informasi yang ada pada suatu endapan bahan galian. Faktor bobot dipilih sedemikian rupa sehingga diperoleh varians estimasi yang minimum. Sehingga Kriging memperhatikan :

• Struktur dan korelasi spasial variabel melalui suatu fungsi ( )hγ , • Hubungan geometri relatif antar data yang mencakup hal penaksiran dan

penaksiran volume melalui γ sebagai ( )ji S,Sγ (hubungan antar data) dan

sebagai ( V,Siγ ) (hubungan antara data dan volume). Jika variogram isotrop dan pola data teratur, maka sistem kriging akan memberikan data yang simetri. Dalam banyak hal hanya conto-conto di dalam blok dan di sekitar blok memberikan estimasi dan mempunyai suatu faktor bobot masing-masing nol. Dalam hal ini jangkauan radius conto yang pertama atau kedua pertama akan tidak mempengaruhi (tersaring). Efek screen ini akan terjadi, jika tidak ada nugget effect atau kecil sekali C/C0=ε . Efect nugget ini menurunkan efek screen. Untuk efek nugget yang besar, semua conto mempunyai bobot yang sama. Conto-conto yang terletak jauh dari blok dapat diikutsertakan dalam estimasi ini melalui harga rata-ratanya. Seperti yang telah dijelaskan, metode ini memanfaatkan penggunaan informasi yang ada sebaik-baiknya, sehingga didapatkan estimasi linier yang paling baik untuk harga yang sebenarnya. Target utamanya adalah menghindari kesalahan sistematis dalam estimasi yang terlalu besar atau terlalu kecil (over estimate atau under estimate) dalam menaksir cadangan. Hal ini sangat penting pada perkiraan cadangan untuk pemilihan blok apakah layak tambang atau tidak. 10.5 CONTOH KRIGING PADA SUATU GRID YANG TERATUR Perhitungan dilakukan terhadap suatu blok pada endapan bahan galian yang sudah diketahui mempunyai variogram model Matheron dengan : C0=0,0 C=1,0 a= 60 m 0,1z =

Page 106: Binder

Blok berbentuk bujur sangkar berukuran 20 m x 30 m dengan 4 conto disekelilingnya dan 1 conto di tengah-tengah blok. Berdasarkan kesimetrian letak conto terhadap blok, maka persamaan penaksiran kadar dapat dikelompokkan sebagai berikut :

( ){

( ) ( ) ( ) ( )44344214434421

321

S

543

S

212

S11 2

xzxz2

xzxzxz*z+

⋅++

⋅+⋅= λλλ

( ) ( )∑=

=+⋅3

1jijij R,SS,S γμγλ

( ) 0S,S 11 =γ

( ) 426,0852,05,06040CC

21S,S 022 =⋅=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛⋅+= γγ

( ) 500,0000,15,06060CC

21S,S 033 =⋅=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛⋅+= γγ

( ) ( ) 793,0601,060

3020CCS,S22

032 ==⎟⎟⎠

⎞⎜⎜⎝

⎛ +⋅+= γγγ

( ) 481,06020CCS,S 021 =⎟

⎠⎞

⎜⎝⎛⋅+= γγ

( ) 688,06030CCS,S 031 =⎟

⎠⎞

⎜⎝⎛⋅+= γγ

( ) 241,06015,

6010QCCR,S 01 =⎟

⎠⎞

⎜⎝⎛⋅+=γ

( ) ( 'RQCCR,S 02 ⋅+=γ )

( )2

6015,

6010Q1

6015,

6030Q3

'RQ⎟⎠⎞

⎜⎝⎛⋅−⎟

⎠⎞

⎜⎝⎛⋅

=

= 517,0241,021638,0

23

=⋅−⋅

Page 107: Binder

( ) ( ''RQCCR,S 03 ⋅+=γ )

( )2

6010,

6015Q1

6010,

6045Q3

''RQ⎟⎠⎞

⎜⎝⎛⋅−⎟

⎠⎞

⎜⎝⎛⋅

=

= 683,0241,021536,0

23

=⋅−⋅

( ) 320,06020,

6030FCCR,R 0 =⎟

⎠⎞

⎜⎝⎛⋅+=γ

Sistem kriging :

241,0688,0481,0000,0 321 =+⋅+⋅+⋅ μλλλ 517,0793,0426,0481,0 321 =+⋅+⋅+⋅ μλλλ 683,0500,0793,0688,0 321 =+⋅+⋅+⋅ μλλλ

1λ + 2λ + 3λ +0 =1,000 ___________________________________________ penyelesaian empat persamaan dengan empat variabel 57,01 =λ 26,02 =λ 17,03 =λ 00,0=μ

( ) ( )∑=

++−=n

1jjj

2K R,SR,R γλμγσ

= ( )083,017,0517,026,0241,0057,000,0320,0 ⋅+⋅+⋅++− = 387,0320,0 +− = 0,067

Standar deviasi relatif : %26%100z

2K

K =⋅=σ

σ

___________________________________________

Bandingkan dengan : ( ) 158,06020,

60302

E2E =⎟

⎠⎞

⎜⎝⎛= σσ

%40E =σ ___________________________________________ Secara umum cara kriging untuk blok dengan grid teratur ini tidak hanya memperhatikan 4 conto/blok di sekitarnya tetapi 8 blok.

Page 108: Binder

8•

2•

9•

4•

1•

5•

7•

3•

6•

Kadar yang diestimasi untuk blok di tengah-tengah (blok 1) adalah :

( ) ( ) ( ) ( ) ( )+⎟

⎠⎞

⎜⎝⎛ +⋅+⎟

⎠⎞

⎜⎝⎛ +⋅+⋅=

2xzxz

2xzxz

xz*Z 543

32211 λλλ

( ) ( ) ( ) ( )

z2

xzxzxzxz5

76764 ⋅+⎟

⎠⎞

⎜⎝⎛ +++⋅ λλ

Dalam hal ini akan terdapat 6 sistem persamaan linier untuk menentukan bobot

iλ ( 0=μ seperti yang sudah dijelaskan terlebih dahulu). Untuk suatu efek nugget yang besar C/C0=ε perlu diperhatikan satu kelompok conto yang mengitari blok di cincin luarnya lagi. Catatan : Sistem persamaan tersebut, yaitu pembobotan tiap conto melalui iλ

berlaku juga untuk semua blok-blok yang akan ditaksir, dengan syarat konfigurasi conto dan bloknya sama.

Untuk dapat melakukan kriging pada 66 blok dengan grid teratur, harus dihitung 4 faktor bobot yaitu untuk 4 conto bor yang mengitari setiap blok. Varians estimasi untuk tiap blok akan berbeda, semakin sedikit conto yang ikut dalam proses semakin besar harga varians ini.

Jika conto terletak di dalam blok yang akan ditaksir, atau ada satu-dua conto terletak di sekitar 8 conto yang akan digunakan untuk menaksir blok, maka sistem persamaannya harus disesuaikan lagi karena sistem pembobotannya sudah berbeda.

Page 109: Binder

Untuk conto dengan penyebaran yang tidak teratur, yang karena suatu hal tidak terletak di tengah-tengah blok (random stratified grid), sistem persamaannya masih dapat digunakan tetapi dengan memodifikasi untuk tiap blok. 10.6 CONTOH KRIGING PADA GRID YANG TIDAK TERATUR Kadar z* suatu blok selayaknya ditaksir dari kadar conto blok tersebut dan kadar-kadar dari conto di sekitar blok yang akan diestimasi.

Terdapat satu kelompok S1 = n conto di tengah-tengah blok R, yang dikelilingi 8 blok di sekitarnya A yaitu kelompok S2 = m conto, dan seluruh endapan diwakili oleh satu kelompok S3 = 1 conto (kadar rata-rata = z ). Jika kadar kelompok S1 = z1, dan kadar kelompok S2 = z2, maka harga estimasi adalah :

zzz*z 32211 ⋅+⋅+⋅= λλλ Blok 1 = blok R / S1 / n conto dengan z1Blok 2-9 = aureol A / S2 / m conto dengan z2

Seluruh endapan V / S3 z (aureol = blok-blok yang mengelilingi blok yang akan ditaksir R) Sistem kriging :

( ) ( ) ( ) ( )RSSSSSSS 1313212111 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )RSSSSSSS 2323222121 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )RSSSSSSS 3333232131 γμγλγλγλ =+⋅+⋅+⋅

1λ + +2λ 3λ = 1,0 Karena conto-conto dalam blok tidak mempunyai posisi yang teratur, maka hubungan γ yang biasanya berlaku antar titik digantikan dengan hubungan γ dengan bidang yang ditaksir, mis.

Page 110: Binder

( ) ( ) ( ) ( )A,RSSatauR,Rn1SS 2111 γγγγ →→

( ) ( ) ( ) ( )RRRVA,RR,Rn1

1321 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )R,AV,AA,Am1R,A 321 γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )R,VV,VA,VR,V 321 γμγλγλγλ =+⋅+⋅+⋅

1λ + 2λ + 3λ = 1,0 Selain itu perlu diperhatikan juga, bahwa ekstensi endapan (V) lebih besar dibandingkan dengan range a, sehingga ( ) ( ) ( ) ( )V,AA,VV,RR,V γγγγ ===

( ) KCCV,V 0 =+== γ dan dengan demikian 0=μ . Sistem persamaan kriging disederhanakan menjadi :

( ) ( ) ( )R,RKA,RR,Rn1

321 γλγλγλ =⋅+⋅+⋅

( ) ( ) ( )R,AKA,Am1R,A 321 γλγλγλ =⋅+⋅+⋅

1λ + 2λ + 3λ = 1,0 Hubungan γ antar bidang yang digunakan untuk menyelesaikan persamaan tersebut dapat diperoleh secara numerik melalui integrasi, seperti yang sudah dijelaskan pada penurunan fungsi bantu F. Penentuan dapat juga diperoleh melalui tabel fungsi bantu F, seperti yang ditunjukkan pada dua contoh berikut ini :

a) ( )A,Rγ Perhitungan hubungan antara bidang di tengah-tengah R (=1) dan aureol A (=2+3+4) :

Page 111: Binder

Untuk mempermudah, hubungan antara bidang 1 dengan bidang 1 diekspresikan dalam F11, hubungan antara bidang 1 dengan bidang 2 adalah F12, dst

Sehingga didapat : F11 + F12 + F13 + F14 + F22 + F21 + F24 + F23 + F33 + F34 + F31 + F32 + F44 + F43 + F42 + F41 = 16F Hubungan yang sama dan sebangun tersebut ditulis berulang-ulang dan dapat disederhanakan sebagai berikut : 4F11 + 4F12 + 4F13 + 4F41 = 16F F11 + F12 + F13 + F41 = 4F Yang dicari adalah hubungan antara bidang 1 dengan 2+3+4 : F12 + F13 + F14 = 4F - F11 ( )A,Rγ = 4F(2h,2l) - F(h,l)

b) ( )A,Aγ

Dengan jalan yang sama hubungan antara bidang 2 sampai dengan 9 dapat dicari : 81F = 9F11+12F12+16F13+12F14+6F26+6F39+8F25+8F38+4F37 setelah dikelompokkan diperoleh : 64 ( A,Aγ )= 81F - F11 - 4F12 - 8F13 - 4F14

( )A,Aγ = 641

[81F(3h,3l) - F(h,l) – 8F(h,2l) – 8F(2h,l) – 32F(2h,2l)]

Page 112: Binder

Contoh melakukan kriging pada suatu endapan bahan galian (Royle, 1971) Diketahui suatu potongan (slice) endapan bahan galian yang dibagi dalam blok berukuran 100 x 100 ft (Gambar 10.5). Pada setiap blok diambil satu conto (random stratified grid). Dari conto tersebut diperoleh variogram yang dengan model Matheron memberikan parameter berikut ini : C = 16,50 %² C0 = 3,80 %² ε = 0,23 a = 240 ft z = 4,27 % Untuk mengoreksi harga-harga conto dengan memperhatikan kadar-kadar blok di sekitarnya perlu dilakukan kriging. Perhitungan dilakukan jika pada aureol minimum terdapat 5 conto. Harga taksiran : z* = 332211 zzz ⋅+⋅+⋅ λλλ dengan 213 1 λλλ −−= kadar conto di tengah-tengah =1z kadar rata-rata conto 5 s/d 8 (blok di sekitarnya) =2z

== zz3 kadar rata-rata conto seluruh endapan Varians dari harga perkiraan ini tergantung dari jumlah conto yang diikutkan pada estimasi ini :

Conto di tengah aureol varians Simpangan baku 1 1 1 0

8 7 6 6

3,68 3,99 4,25 8,43

1,9 2,0 2,1 2,9

Pada Gambar 10.5 terlihat harga conto (angka dengan font besar) dan di bawahnya harga yang sudah dikriging (angka dengan font kecil italic)

Page 113: Binder

Histogram kadar conto asli :

MINIMUM Y = 0.0 2 MAKSIMUM = 26.40 KADAR RATA-RATA Y = 4.24 N = 85 VARIANS = 14.6369 STANDAR DEVIASI = 3.8258

SKEWNESS = 2.8204 KURTOSIS = 15.0903 JUMLAH KELAS = 12 INTERVAL = 2.5000

. NO. KELAS

BATAS ATAS

FREKUENSI FREKUENSI RELATIF

FREKUENSI KUMULATIF

1 2 3 4 5 6 7 8 9

10 11 12

2.5000 5.0000 7.5000

10.0000 12.5000 15.0000 17.5000 20.0000 22.5000 25.0000 27.5000 30.0000

27.34.13.

6.3.0.1.0.0.0.1.0.

31.7640.0015.29

7.063.530.001.180.000.000.001.180.00

31.76 71.76 87.06 94.12 97.65 97.65 98.82 98.82 98.82 98.82

100.00 100.00

Histogram kadar conto setelah dikriging :

MINIMUM Y = 1.57 MAKSIMUM = 15.51 KADAR RATA-RATA Y = 4.50 N = 78 VARIANS = 5.5037 STANDAR DEVIASI = 2.3460

SKEWNESS = 1.8352 KURTOSIS = 8.0452 JUMLAH KELAS = 12 INTERVAL = 2.5000

. NO. KELAS

BATAS ATAS

FREKUENSI FREKUENSI RELATIF

FREKUENSI KUMULATIF

1 2 3 4 5 6 7 8 9

2.5000 5.0000 7.5000

10.0000 12.5000 15.0000 17.5000 20.0000 22.5000

13.41.15.

7.1.0.1.0.0.

16.6752.5619.23

8.971.280.001.280.000.00

16.67 69.23 88.46 97.44 98.72 98.72

100.00 100.00 100.00

Page 114: Binder

10 11 12

25.0000 27.5000 30.0000

0.0.0.

0.001.180.00

100.00 100.00 100.00

Page 115: Binder

Gambar 10.5 Blok yang telah dikriging

Page 116: Binder

Berdasarkan susunan masing-masing blok dan batasan kriging bahwa di sekitarnya minimum harus ada 5 conto, maka hanya blok yang dikriging dari total blok 88. Jika ditentukan cut-off grade adalah 3,00%. Ditanyakan : 1. Berapa dari 78 blok yang telah dikriging mempunyai kadar conto

asli > 3% ? 2. Berapa dari 78 blok yang telah dikriging mempunyai kadar yang

telah dikriging > 3% ? 3. Beri tanda blok yang mempunyai kadar yang dikriging > 3% ?

Page 117: Binder

Endapan yang sama dihitung lagi dengan cara kriging dengan anggapan, bahwa semua titik bor terletak tepat di tengah-tengah grid. Hasil proses kriging ini dapat dilihat pada Gambar 10.7. Varians estimasi ( ) lebih rendah dari sebelumnya. Tergantung dari susunan/ pola pemboran dan jumlh N titik bor yang digunakan untuk estimasi, akan diperoleh harga-harga yang berbeda. Gambar 10.6 memperlihatkan sifat varians estimasi dan harga-harga yang ditaksir Z* kaitannya dengan jumlah titik bor N untuk 2 pola pemboran yang berbeda. Terlihat bahwa 5 sampai 6 titik bor untuk estimasi dalam hal ini sudah cukup baik.

2Kσ

Gambar 10. 6 Pengaruh pola dan jumlah conto pada varians kriging dan harga

rata-rata

Page 118: Binder

Gambar 10.7 Blok yang telah dikriging dengan maks. 9 dan min. 6 conto

Page 119: Binder

10.7 KRIGING TITIK Titik-titik pengambilan conto umumnya tidak terdistribusi teratur, sehingga untuk pembuatan peta isoline perlu dilakukan interpolasi membentuk suatu grid yang teratur. Terdapat berbagai metode untuk masalah ini, di antaranya adalah NNP (nearest neighboring polygon) dan IDW (inverse distance weighted, ID, IDS, atau ID3). Dari diskusi cara penaksiran telah diketahui, bahwa kriging memberikan harga penaksiran melalui titik yang paling baik dan terpercaya. Untuk menyelesaikan masalah ini dapat digunakan sistem persamaan kriging yang sebelumnya telah digunakan. Dalam hal ini hanya digunakan variogram saja, karena hanya hubungan antar titik conto saja yang perlu diperhatikan. Untuk tiga titik xi yang digunakan untuk menaksir titik keempat x0 di peroleh sistem persamaan sebagai berikut :

( ) ( ) ( ) ( )01313212111 xxxxxxxx γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )02323222121 xxxxxxxx γμγλγλγλ =+⋅+⋅+⋅

( ) ( ) ( ) ( )03333232131 xxxxxxxx γμγλγλγλ =+⋅+⋅+⋅

1λ + +2λ 3λ = 1,0

( ) ( ) ( ) 0,0xxxxxx 332211 === γγγ

( ) ( ) ( )2101221 xxCCxxxx −⋅+== γγγ

( ) ( ) ( )3101331 xxCCxxxx −⋅+== γγγ

( ) ( ) ( )3202332 xxCCxxxx −⋅+== γγγ ( ) ( 01001 xxCCxx −⋅+= γγ ) ( ) ( 02002 xxCCxx −⋅+= γγ ) ( ) ( 03003 xxCCxx −⋅+= γγ )

ס X1 ס X2 • X0 סX3

Penentuan varians estimasi disederhanakan melalui persamaan berikut :

( )∑=

−+=n

1j0jj

2K xxγλμσ

Page 120: Binder

Metode ini mempunyai sifat, bahwa proses estimasi memberikan suatu titik , sehingga pada titik ini 0i xx = ( ) ( )i0 xzx*z = .

Hal ini perlu diterangkan pada suatu contoh yang sederhana sebagai berikut : Suatu endapan dengan model Matheron mempunyai =0C 0 C =1,0 a = 60m dimisalkan terdapat tiga titik : x1 x3 x2 I-------------------I--------------------I 20 m x0 20 m ( ) ( ) ( ) 0,0xxxxxx 332211 === γγγ

( ) ( ) ( ) 852,06040xxCCxxxx 2101221 =⎟

⎠⎞

⎜⎝⎛=−⋅+== γγγγ

( ) ( ) ( ) 481,06020xxCCxxxx 3101331 =⎟

⎠⎞

⎜⎝⎛=−⋅+== γγγγ

( ) ( ) ( ) 481,06020xxCCxxxx 3202332 =⎟

⎠⎞

⎜⎝⎛=−⋅+== γγγγ

( ) ( ) 0,0xxxx 0003 == γγ ___________________________________________

481,0481,0852,00,0 321 =+⋅+⋅+⋅ μλλλ 481,0481,00,0852,0 321 =+⋅+⋅+⋅ μλλλ 0,00,0481,0481,0 321 =+⋅+⋅+⋅ μλλλ

1λ + +2λ 3λ = 1,0 ___________________________________________ Jawab : 13 =λ 021 =−= μλλ 02

K =σ___________________________________________

Page 121: Binder

Contoh kriging titik dari Delfiner & Delhomme (1973)

(b) titik pengukuran curah hujan dalam mm kontur dibuat berdasarkan interpolasi dan digambarkan secara manual

Gambar 10.8 Perbandingan antara Pembuatan kontur hasil Interpolasi manual, polinomial, dan kriging (a) variogram linier data curah hujan di Wadi Kadjemur

(c) kontur dihitung berdasarkan polinomil pangkat dua

(d) kontur dihitung melalui proses kriging titik

Page 122: Binder
Page 123: Binder

11. APLIKASI GOESTATISTIK 11.1 KOMPONEN-KOMPONEN PROBLEMATIKA PADA

PENGAMBILAN CONTO

Terminologi pengambilan conto pada industri pertambangan mempunyai bermacam arti. Seringkali pengertian ini tidak jelas, karena kekurangan dalam definisinya. Beberapa komponen penting pada persoalan pengambilan conto adalah sebagai berikut :

a. Komponen STATISTIK, yang berhubungan dengan jumlah conto yang diambil dan banyaknya/ berat tiap conto.

b. Komponen GEOLOGI, yang berhubungan dengan orientasi dan jarak pengambilan conto (grid density)

c. Komponen FISIK, yang terbagi atas dua aspek : proses fisik pengambilan conto (pemboran inti,dll) dan preparasi conto,

serta peralatan atau metode yang digunakan; media tempat pengambilan conto (jenis batuan).

d. Komponen KIMIA,

yang berhubungan dengan proses analisa kimia conto. 11.2 PERSOALAN-PERSOALAN DALAM MENGEVALUASI ENDAPAN

BAHAN GALIAN Salah satu persoalan utama dalam pembahasan metode estimasi cadangan adalah, bahwa endapan bahan galian harus dipertimbangkan sebagai suatu gambaran cadangan yang utuh. Dalam hal ini faktor penting dalam menggambarkan suatu endapan bahan galian adalah bagaimana pengelompokannya atau pengklasifikasiannya yang didasarkan atas :

• keadaan geologi • bentuk geometri (kecenderungan geometri, tonase, dilution) • besarnya cut-off grade • batas endapan • sistem penambangannya.

Page 124: Binder

KLASIFIKASI ENDAPAN BAHAN GALIAN Secara umum endapan bahan galian dapat dikategorikan atas sederhana (simple) atau kompleks (complex) tergantung dari distribusi kadar dan bentuk geometrinya. Kriteria untuk mengkategorikan endapan bahan galian ini didasarkan atas pendekatan geologi.

Gambar 11.1 Kategori jenis endapan bahan galian berdasarkan sifat

homogenitas dan proporsi mineral/bijihnya. Endapan bahan galian A (koefisien variasi rendah) Jenis 1. SIMPLE GEOMETRY – SIMPLE GRADE DISTRIBUTION

• batubara • besi • bauksit • nikel laterit • tembaga (stratabound)

Jenis 2. SIMPLE GEOMETRY – COMPLEX GRADE DISTRIBUTION

• tembaga disseminated • emas stockwork • emas Witwatersrand

Page 125: Binder

Endapan bahan galian (B) Complex geometry – Simple grade distribution (koefisien variasi rendah)

Mis. Endapan-endapan logam dasar (base metal) dengan bentuk geometri yang kompleks

Ciri :

• kadar homogen • faktor geometri kompleks • kadar pada batas endapan sangat bervariasi • analisis variografi perlu dilakukan lebih rinci sebelum dilanjutkan dengan perhitungan-perhitungan secara geostatistik • cadangan hasil perhitungan umumnya memberikan hasil yang

berbeda setelah ditambang, cadangan hasil perhitungan iniperlu dikoreksi dengan suatu faktor yang diperoleh berdasarkan pengalaman penambangannya.

• interpretasi geologi sangat penting, terutama dalam penentuan batas cadangan

• kadar-kadar yang tinggi perlu dikelola tersendiri.

Endapan bahan galian (C) Complex geometry – Complex grade distribution (koefisien variasi tinggi) Mis. Endapan emas Archean di Kalgoorlie, Kanada Ciri :

• bentuk geometri kompleks • kadar pada batas endapan sangat bervariasi • kadar pada tubuh bijih juga sangat bervariasi • pengambilan conto dan interpretasi geologi merupakan hal yang

sangat penting • asumsi-asumsi subyektif dari ahli geologi memegang peranan

yang sangat penting • umumnya estimasi cadangan bijih secara klasik merupakan

metode yang tepat (metode lainnya mungkin akan memberikan hasil yang tidak benar)

• mining factor umumnya tidak memuaskan • estimasi lokal umumnya merupakan persoalan, hal ini tergantung

dari grid pengambilan conto.

Page 126: Binder

Secara diagramatik klasifikasi endapan tersebut di atas dapat disederhanakan dalam iliutrasi berikut ini :

Gambar 11.2 Klasifikasi endapan secara diagramatik yang menunjukkan tingkat kesukaran dalam memperkirakan kadarnya

Kadar pengaruh aktivitas tektonik, biasanya beberapa endapan bahan galian tipe A dan B serta semua tipe C sangat sukar dievaluasi. Hal ini akibat dari persoalan –persoalan pada pengambilan conto seperti yang digambarkan berikut ini :

Gambar 11.3 Interpretasi bentuk geometri yang berbeda walaupun data

lapangannya sama

Page 127: Binder

• Semua jenis endapan memberikan data pemboran yang sama, tetapi akan memberikan perbedaan yang signifikan setelah ditambang.

• Semua endapan memperlihatkan histogram dan variogram yang sama, tetapi memberikan informasi yang sama-sama salah, baik untuk metode statistik, maupun metode geostatistik.

Jika problema ini muncul pada evaluasi endapan bahan galian, maka semua metode estimasi akan memberikan hasil cadangan yang sama-sama salah. Dalam hal ini dapat dikatakan, bahwa estimasi cadangan merupakan fungsi dari kerapatan lubang bor.

Page 128: Binder

1. PENDAHULUAN

Saat ini dikenal dua cara dalam menganalisis karakteristik cebakan mineral secara statistik yaitu statistik klasik dan statistik spasial.

Penggunaan statistik klasik untuk menyatakan sifat suatu nilai conto mengambil asumsi bahwa nilai conto merupakan realisasi peubah acak. Komposisi conto secara relatif diabaikan dan diasumsikan bahwa semua nilai conto di dalam cebakan mineral mempunyai kemungkinan sama untuk dipilih. Hadirnya kecenderungan-kecenderungan, zona pengkayaan dan pay shoot pada mineralisasi akan diabaikan. Kenyataan pada ilmu kebumian menunjukkan bahwa dua conto yang diambil saling berdekatan seharusnya mempunyai nilai mirip jika dibandingkan conto lain yang berjauhan. Sebaliknya, statistik spacial digunakan jika nilai conto merupakan realisasi fungsi acak. Pada hipotesis ini, nilai conto merupakan suatu fungsi dari posisinya dalam cebakan, dan posisi relatip conto dimasukkan dalam pertimbangan. Kesamaan nilai-nilai conto yang merupakan fungsi jarak conto serta yang saling berhubungan ini merupakan dasar teori statistik spacial. Memang pada kenyataannya hanya ada sedikit situasi di mana statistik klasik dapat digunakan pada analisis pembentukan suatu endapan bahan galian. Secara praktis, statistik klasik sebaiknya digunakan hanya pada eksplorasi tahap awal. Untuk mengetahui sejauh mana hubungan spasial antara titik-titik di dalam cebakan, maka harus diketahui fungsi strukturalnya yang dicerminkan oleh model semivariogramnya. Menetapkan model semivariogram merupakan langkah awal dalam perhitungan geostatistik, disusul dengan perhitungan varians estimasi, varians dispersi, varians kriging, dll. Pada karakternya perhitungan dalam geostatistik umumnya memerlukan bantuan komputer. GEOPLAN merupakan paket perhitungan variogram, KRIG3D adalah paket program kriging, varians estimasi dan varians dispersi. KRIGRES merupakan paket program untuk mengelompokkan cebakan dalam cut-off grade yang telah ditetapkan dan tonase logam dalam setiap blok kriging.