Top Banner
6/20/2019 1 S‐1064 Raluca Mateescu | Associate Professor Animal Genomics BIF, June 2019 Improving thermotolerance in beef cattle – a genomic approach Beef cattle in the world > 50% cattle in the world – maintained in hot and humid environments including ~ 40% of beef cows in US Global distribution of cattle Bos Indicus cattle Approximately 80% of global beef production is Bos Indicus based. Bos indicus germplasm: Critical role in US and worldwide beef production Particularly when used as part of a well‐structured crossbreeding program Adapted to heat and humidity Resistant (or at least tolerant) to internal and external parasites In crossbreeding systems produce improved cattle: Fertile Gain well Long lived Thermotolerance Climatic stress ‐ major limiting factor of production efficiency Genomic tools can help select Animals with superior ability for both thermal adaptation and food production Energy‐efficient, sustainable approach to meet the challenge of global climate change. In response to heat stress, cattle will regulate: Goal: Develop genomic tools to select for superior ability for both thermal adaptation and food production. Goal: Develop genomic tools to select for superior ability for both thermal adaptation and food production. Heat Production Heat Production Modulating basal metabolic rate Changing: feed intake, growth, lactation, activity Heat Exchange Heat Exchange Blood flow to the skin Evaporative heat loss through sweating & panting Research Populations pilot data UF Multibreed Angus x Brahman Herd Summer 2017, 2018 335 cows: from 100% Brahman to 100% Angus Breed Group Angus % Brahman % 1 Angus 100 0 2 75%A 75 25 3 Brangus 62.5 37.5 4 50%A 50 50 5 25%A 25 75 6 Brahman 0 100 1 2 3 4 5 6
4

Beef cattle in the world - BIF Conference€¦ · Raluca Mateescu |Associate Professor Animal Genomics BIF, June 2019 Improving thermotolerance in beef cattle –a genomic approach

Aug 11, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Beef cattle in the world - BIF Conference€¦ · Raluca Mateescu |Associate Professor Animal Genomics BIF, June 2019 Improving thermotolerance in beef cattle –a genomic approach

6/20/2019

1

S‐1064 

Raluca Mateescu | Associate Professor         Animal Genomics

BIF, June 2019

Improving thermotolerance in beef cattle – a genomic approach

Beef cattle in the world•> 50% cattle in the world – maintained in hot and humid environments • including ~ 40% of beef cows in US

Global distribution of cattle

Bos Indicus cattle• Approximately 80% of global beef production is Bos Indicus based. 

Bos indicus germplasm:• Critical role in US and worldwide beef production 

• Particularly when used as part of a well‐structured crossbreeding program 

• Adapted to heat and humidity

• Resistant (or at least tolerant) to internal and external parasites

• In crossbreeding systems produce improved cattle:

• Fertile

• Gain well 

• Long lived

Thermotolerance

• Climatic stress ‐ major limiting factor of production efficiency 

• Genomic tools can help select

Animals with superior ability for both thermal adaptation and food production Energy‐efficient, sustainable approach to meet the challenge of global climate change.

In response to heat stress,                              cattle will regulate:

Goal: Develop genomic tools to select for superior ability for both thermal adaptation and food production.

Goal: Develop genomic tools to select for superior ability for both thermal adaptation and food production.

Heat ProductionHeat Production

Modulating basal metabolic rate

Changing: feed intake, 

growth, lactation, activity

Heat ExchangeHeat Exchange

Blood flow to the skin

Evaporative heat loss through sweating & panting

Research Populations – pilot data

•UF Multibreed Angus x Brahman Herd• Summer 2017, 2018 •335 cows: from 100% Brahman                                    

to 100% Angus

Breed Group Angus % Brahman %

1         Angus 100 02         75%A 75 253         Brangus 62.5 37.54         50%A 50 505         25%A 25 756         Brahman 0 100

1 2

3 4

5 6

Page 2: Beef cattle in the world - BIF Conference€¦ · Raluca Mateescu |Associate Professor Animal Genomics BIF, June 2019 Improving thermotolerance in beef cattle –a genomic approach

6/20/2019

2

Internal Body Temperature• Vaginal temperature at 15‐min intervals for 5 days

• Air temperature and relative humidity ‐ recorded continuously in the pastures

1 inch

CIDR

iButton

DS1922L iButton Temperature Logger ‐Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CARange:  ‐40°C to +85°CResolution: 0.0625°C (11 bit) or 0.5°C (8 bit)

THI = (1.8 * dbt + 32)‐[(0.55‐0.0055*rh)*(1.8*dbt‐26.8)]THI = (1.8 * dbt + 32)‐[(0.55‐0.0055*rh)*(1.8*dbt‐26.8)]

65

67

69

71

73

75

77

79

81

83

85

38

38.2

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

0 2 4 6 8 10 12 14 16 18 20 22

THI

Body Temp (°C)

Hour

Breed effect on body temperature

vagtmp every 15 min by day  ‐ REPEATED with cov structure type = ARH(1)

Critical heat stressMajor heat stressModerate heat stressMinimal heat stress≤ 75

≥ 84

75 ‐ 7879 ‐ 83

Phenotypic Plasticicty• Ability of an individual to alter its phenotype in response to changes in environmental conditions

The ability of one genotype to produce more than one phenotype when exposed to different environments.

Environment

Phenotype

Environment

Phenotype

Environment

Phenotype

No Plasticity Plasticity High Plasticity, strong GxE

Each of the colored lines is a "Reaction Norm"Each of the colored lines is a "Reaction Norm"

Genotype A

Genotype B

Genotype C

72

74

76

78

80

82

84

86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Representing reaction norms in models

Environment

Phenotype

Intercept

Gi

E0

Pi 0

Slope

Linear reaction norm{Pi0 , s}: intercept and slope are considered as the evolving traits.Pi (E): reaction norm is represented by a flexible function which 

can evolve like a trait

Pi (E)

Low THI (74‐76)

High THI (84‐86)

Mean THI (79‐81)

THI over 24 hours

38.6

38.7

38.8

38.9

39.0

39.1

39.2

39.3

39.4

39.5

74‐76 79‐81 84‐86

Body Temperature (C)

AngusBrahman

Breed effect on phenotypic plasticity

Estimate the effect of various % of Brahman genes on phenotypic plasticity Use a reaction norm approach via random regression mixed models.

38.6638.63

Intercept

Breed effect on phenotypic plasticity

• Estimate the effect of various % of Brahman genes on phenotypic plasticity 

• Use a reaction norm approach via random regression mixed models.

THI 

Breed Intercept SlopeAngus 38.66 0.4275%A 38.56 0.33Brangus 38.58 0.3050%A 38.60 0.2825%A 38.57 0.23

Brahman 38.63 0.20

THI THI 

38.5

38.6

38.7

38.8

38.9

39.0

39.1

39.2

39.3

39.4

39.5

74‐76 79‐81 84‐86

Body Temperature (C)

Angus75%ABrangus50%A25%ABrahman

7 8

9 10

11 12

Page 3: Beef cattle in the world - BIF Conference€¦ · Raluca Mateescu |Associate Professor Animal Genomics BIF, June 2019 Improving thermotolerance in beef cattle –a genomic approach

6/20/2019

3

Response to different heat loads

65

67

69

71

73

75

77

79

81

83

85

38.2

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

THI

Body Temp (C)

Low THI‐load day High THI‐load day

2        4         6       8        10      12     14      16      18      20      22      240        2        4         6       8        10      12     14      16      18      20      22      24

∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 Heat load  = ∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Factors important in thermotolerance

Coat Hair

Sweat Glands

Other Skin Prop.

Long Hair LengthLong Hair DiameterShort Hair LengthShort Hair Diameter

Factors important in thermotolerance

Coat Hair

Sweat Glands

Other Skin Prop.

Long Hair Length Short Hair Length

Factors important in thermotolerance

Coat Score

Sweat Glands

Other Skin Prop.

Angus

Brahman

Sweat Glands

0                0.25                0.5           0.75             1  

Fraction of Brahman genes

Significant linear effect of percentage Brahman composition

Factors important in thermotolerance

Coat Score

Sweat Glands

Other Skin Prop.

100%A             75%A             Brangus            50%A                25%A                  0%A

Factors important in thermotolerance

Coat Score

Sweat Glands

Other Skin Prop.

Skin Histology

13 14

15 16

17 18

Page 4: Beef cattle in the world - BIF Conference€¦ · Raluca Mateescu |Associate Professor Animal Genomics BIF, June 2019 Improving thermotolerance in beef cattle –a genomic approach

6/20/2019

4

Research (Training) Population

•Brangus heifers, Seminole Tribe of Florida

• Summer 2016, 2017, 2018 

•2,300 two‐year old heifers

Thermotolerance measurements• Vaginal temperature 15 min over 5 days

• Environmental data: temperature, humidity, THI• Sweating rate

• Coat: color, coat score, hair length & diameter

• Temperament: chute and exit score

• Body condition score

• Skin biopsies: for histology & gene expression

• Weight gain over the summer/fall

• Rump fat and rib fat ultrasound

• Subsequent pregnancy status• 250K genotypes

GWAS – genomic regions individual traits

• SVS (SNP & Variation Suite) v8.8.1 (Golden Helix)

• Mixed Model GWAS using a single locus (EMMAX)

• Genomic relationship matrix• Temperature under High and Low THI, Sweat gland area, Hair length 140,467 SNPs

• Heritability estimates:• Temp Low THI = 0.24• Temp High THI = 0.36• Hair length = 0.21• Sweat gland area = 0.23

Skin Thickness

0      1      2        3       4      5

‐log1

0 P‐value

Sweat Gland Area

0      2      4      6       8     10

‐log1

0 P‐value

Long Hair Length

0    1   2     3    4    5    6    7

‐log1

0 P‐value

Short Hair Length

0  1   2   3   4   5   6   7   8

‐log1

0 P‐value

Future work•Gene networks for individual thermoregulation and production traits 

• Transcriptomics analysis of skin tissues

•eQTL analysis to reveal genetic pathways for thermotolerance which are independent or positively associated with production performance 

Conclusions

•Cattle with different Brahman percentage vary in their phenotypic plasticity of core body temperature in response to environmental heat stress. 

• The thermoregulation associated traits have a genetic component (h2 ~ 0.2 ‐ 0.3)

•Multi‐omics approach can identify genetic pathways for thermotolerance which are independent or positively associated with production performance 

Increase tolerance to heat stress, while simultaneously allowing for increased efficiency of production. 

Increase tolerance to heat stress, while simultaneously allowing for increased efficiency of production. 

Financial SupportFinancial Support

•USDA‐NIFA Grant 2017‐67007‐26143•UF Agricultural Experim. Station

•UF ANS Hatch Project

• Seminole Tribe of Florida•Brangus Breeders Association

•Florida Beef Council• Florida Cattlemen’s Association

AcknowledgmentsUniversity of FloridaUniversity of Florida

• Dr. Pete Hansen• Dr. Mauricio Elzo

• Dr. Dwain Johnson• Dr. Tracy Scheffler• Dr. Jason Schaffler

• Dr. Serdal Dikmen• Danny Driver• Michelle Driver

• Joel Leal, Heather Hamblen, Sarah Flowers, Kaitlyn Sarlo, Mesfin Gobena, Eduardo Rodriquez, Zaira Estrada  

•Adriana Zolini,  William Ortiz,  Samantha Eifert, Lauren Peacock, Alexa Chiroussot

Seminole Tribe of Florida

Seminole Tribe of Florida

• Alex Johns• Phillip Clark

• Sheri Holmes

• Bobby Yates• Mike Ciorocco

• Dayne Johns, etc.

19 20

21 22

23 24