Top Banner
Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1) , V. Lobzin (1,3) , Musatenko K. (1,2) , J. Soucek (4) , J. Pickett (5) , I. Cairns (6) (1) LPCE / CNRS-University of Orleans, Orleans, France; (2) Radiophysics Department, Kiev University, Kiev, Ukraine; (3) IZMIRAN, Troitsk, Russia; (4) Institute of Atmospheric Physics, Prague, Czech Republic; (5) Departement of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA; (6) Sidney University School of Physics, University of
33

Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Jan 18, 2016

Download

Documents

Tracy Floyd
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Beam-plasma interaction in randomly inhomogeneous

plasmas

V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K.(1,2) , J. Soucek (4), J. Pickett (5), I. Cairns (6)

(1) LPCE / CNRS-University of Orleans, Orleans, France; (2) Radiophysics Department, Kiev University, Kiev, Ukraine;

(3) IZMIRAN, Troitsk, Russia; (4) Institute of Atmospheric Physics, Prague, Czech Republic;

(5) Departement of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA;

(6) Sidney University School of Physics, University of Sydney, NSW 2006, Australia

Page 2: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Historical background

• Clumping of Langmuir waves in type III solar radio burst sources (Gurnett, 1978, Smith, 1977)

• No support for collapsing solitons (Smith, 1977)

• Role of plasma inhomogeneities in suppression of the linear instability due to removal of waves from resonance (Melrose, 1980, Smith and Sime, 1979)

• Density fluctuations are present in the solar wind

Neugebauer, 1975, 1976; Celniker et al., 1983, 1987

Page 3: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Historical background

• Nishikawa & Ryutov, (1976) two physical effects should be taken into account : angular diffusion on the small amplitude density fluctuations and growth rate

• Notion of angular averaged increment

• Muschietti et al., (1985), Breizman, Ryutov, 1980: effect of the quenching of the instability due to angular diffusion

• Robinson (1995), stochastic growth rate, importance of the analysis of PDF

Page 4: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Basic model

• Similar to Nishikawa & Rytov (1976)

• Two effects: angular diffusion and linear growth rate / damping

Page 5: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Experimental data overview

• High frequency electric field data from the WBD instrument of CLUSTER

• Measures one component of the E-field• Band-pass filtered between 1 kHz and 77 kHz• WBD operates in duty cycles - each block of data is 10

milliseconds long and is followed by a gap of 80ms. The size of this block imposes limits the spectral resolution of the Fourier transform.

Page 6: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

The Event (March 16, 2001)

- CLUSTER in the Earth‘s foreshock (Diff = 0 .. - 6 RE )- Observed wave amplitudes up to 5 mV/m

Page 7: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Typical waveform

Page 8: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Equation for the spectral energy density of the Langmuir wave packet moving in plasma with

random inhomogeneities

( , ) 1 ( , )cos , sin ( , ) ( , )

singr

W x W xv D x x W x

x

Angular diffusionGrowth inside the resonant region,

damping outside it

Page 9: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Langmuir wave propagating in a plasma with a density gradient

2

22 2 2

1;

3 3D p D

k xx

2

2 4;e

pe

n ex

m

22

.4D

e

kT

n e

Page 10: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Competition between growth and angular diffusion

Page 11: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Spatial distribution of the growth rate

2

0 max max / 2, / / 2 cosx x x x x

Page 12: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Increment dependence upon coordinate and angle

Θ=0

Θ=π/6

Page 13: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Equation

0]cos)2/(

)([),(

cos)],(),([),(

cot),(

0

2/2

max

max1

212

2

x

xxxxW

xWxxWd

xdW

d

xWd

Thomas method

Page 14: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Spatial distribution of the spectral energy density

Page 15: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.
Page 16: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

The results of numerical simulations with a single large-scale inhomogeneity.

(a) Spatial profiles of the ratio Г/D for = 0 and Гmax/D = 10, 15, 20.

(b) Spatial dependence of normalized wave energy densities.

(c) The profiles from (b) after a spatial shifts.

Page 17: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Spatial dependency of the spectral energy density logarithm for  γπ/2 = 53; δ1 = γ0/D = 80; δ2 = vgr/(γ0Δx) = 90; xmax/a = 6000

Page 18: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Characteristic growth rate dependence upon parametres

Page 19: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Problem of characterization of the shot noise

Rice (1944), Gilbert & Pollak (1960)For impulse shapes F(t) the probabilitydistributions

Q(I) = Pr[I(t) < I] obey an integral equation

t

dttFtFIQndxxQIIQ )()]([)()(

n – the average number of pulses per unit of time

Page 20: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Examples

1. Step-like distribution with the amplitude b, and average pulse rate n

2. F(t) = (1 – t), on time interval 0 < t <1, pulse rate n

)exp(!

)(])(Pr[ nA

k

nAkbtI

k

I

kk

kkk

kInIkInk

nIP0

12/)1(1 ],)(2[)(

!

1)exp()(

Page 21: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Exponential distribution

Page 22: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Probability distribution function for shot noise with exponential pulses (Gilbert and Pollak, 1960)

Page 23: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

How to compare model distributions with experimental ones ?

Pearson classification of distributions:

Gamma, beta, normal, log-normal et cetera belong

to these classes. Two parameters that characterize

the distribution family:

)()()(

2210

xpxbxbb

ax

dx

xdp

22

423

2

23

1 ,

are related to skewness and curtosis

Page 24: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Some definitions

32

231 /

2242 /

2/31

2/3231 / g

33/ 22242 g

G1 and G2 are unbiased estimates of g1 and g2

Page 25: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Position on the diagram for Pearson curves

β2

β1

Page 26: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Dependence of G1 and G2 on the effective number

of regions with the positive growth rate

Page 27: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Probability distribution function of wave amplitudes

In this viewgraph is plotted the PDF of peak wave amplitudes P(log E)in log-log axes (based on foreshock event from Feb 17, 2002). The amplitudes seem to be distrubuted similar to beta / gamma or log-normal PDF with a power-law tail at largest amplitudes. We suggest that the physics of large amplitude waves might be different from the physics at low amplitudes.

Page 28: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

The Event (March 16, 2001)

- CLUSTER in the Earth‘s foreshock (Diff = 0 .. - 6 RE )- Observed wave amplitudes up to 5 mV/m

Page 29: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Spectrum in detail

This detailed spectrogram shows how the resonance condition between the wave frequencies is conserved. The frequency of the low frequency wave follows agrees with the frequency difference of the two high-frequency peaks even if this difference changes with time.

In further analysis, we will prove this statement statistically.

Page 30: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

PDF for Langmuir wave energy densityfor the period 9:25-10:13 UT on February 17, 2002

x – experiment

–––– maximum likelihood fit of a log-normal distribution

–––– fit of Pearson class IV distribution obtained by maximum likelihood method

–––– fit of Pearson class IV distribution with parameters derived from estimates of moments

Page 31: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Diagram for various types of Pearson distributions

(red circles - numerical simulations; green cross - experimental data)

Page 32: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

Conclusions• We consider the model describing the interaction

of Langmuir wave packets with the beam in a randomly nonhomogeneous plasma. Two effects are taken into account:

angular diffusion of the wave vector on density fluctuations,

the suppression of the instability caused by the removal of the wave from the resonance with particles crossing density perturbations of relatively large amplitude

Page 33: Beam-plasma interaction in randomly inhomogeneous plasmas V. Krasnoselskikh (1), V. Lobzin (1,3), Musatenko K. (1,2), J. Soucek (4), J. Pickett (5), I.

• The problem is similar to the description of the shot noise and can be statistically treated in a similar way

• The major characteristic features of the electric field amplitude dynamics resemble ones resulting from exponential growth / damping of wave packets

• Shot noise consisting of randomly growing / damping wave packets is described by the PDF that belongs to type IV Pearson-distributions

• The best fit to experimental data PDF’s for regions, where the amplitudes of wave packets are relatively small, belongs to the same type of Pearson distributions.