Top Banner
1 TT Liu, BE280A, UCSD Fall 2005 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 X-Rays/CT Lecture 1 TT Liu, BE280A, UCSD Fall 2005 Topics • X-Rays Computed Tomography Direct Inverse and Iterative Inverse • Backprojection Projection Theorem Filtered Backprojection
24

Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

Oct 25, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

1

TT Liu, BE280A, UCSD Fall 2005

Bioengineering 280APrinciples of Biomedical Imaging

Fall Quarter 2005X-Rays/CT Lecture 1

TT Liu, BE280A, UCSD Fall 2005

Topics

• X-Rays• Computed Tomography• Direct Inverse and Iterative Inverse• Backprojection• Projection Theorem• Filtered Backprojection

Page 2: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

2

TT Liu, BE280A, UCSD Fall 2005

EM spectrum

Suetens 2002

TT Liu, BE280A, UCSD Fall 2005

X-Ray Tube

Suetens 2002

Tungsten filament heated to about 2200 C leading to thermionicemission of electrons.

Usually tungsten is used for anodeMolybdenum for mammography

Page 3: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

3

TT Liu, BE280A, UCSD Fall 2005

X-Ray Production

http://www.scienceofspectroscopy.info/theory/ADVANCED/x_ray.htm

Characteristic Radiation

Bremsstrahlung(braking radiation)

TT Liu, BE280A, UCSD Fall 2005

X-Ray Spectrum

Suetens 2002

bremsstrahlung

Page 4: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

4

TT Liu, BE280A, UCSD Fall 2005

Interaction with Matter

Photoelectric effectdominates at low x-rayenergies and high atomicnumbers.

Typical energy range for diagnostic x-rays is below 200 keV.The two most important types of interaction are photoeletricabsorption and Compton scattering.

Compton scatteringdominates at high x-rayenergies and low atomicnumbers, not much contrast

http://www.eee.ntu.ac.uk/research/vision/asobania

TT Liu, BE280A, UCSD Fall 2005

Interaction with Matter

Photoelectric absorption Compton Scattering

Pair Production

Page 5: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

5

TT Liu, BE280A, UCSD Fall 2005

Attenuation

Iout = Iin exp(−µd)

d

For single-energy x-rays passing through a homogenous object:

Linear attenuation coefficient

TT Liu, BE280A, UCSD Fall 2005

Attenuation

5

10 50 100 150

1

0.1

AttenuationCoefficient

500

BoneMuscleFat

Adapted from www.cis.rit.edu/class/simg215/xrays.ppt

Photon Energy (keV)

Photoelectric effectdominates

Compton Scatteringdominates

Page 6: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

6

TT Liu, BE280A, UCSD Fall 2005

Half Value Layer

Values from Webb 2003

2.84.51502.33.91001.23.0500.41.830

HVLBone (cm)

HVL,muscle(cm)

X-rayenergy(keV)

In chest radiography, about 90% of x-rays are absorbed by body.Average energy from a tungsten source is 68 keV. However,many lower energy beams are absorbed by tissue, so averageenergy is higher. This is referred to as beam-hardening, andreduces the contrast.

TT Liu, BE280A, UCSD Fall 2005

Attenuation

Iout = Iin exp − µ(x)dxxin

xout∫( )For an inhomogenous object:

Integrating over energies

Iout = σ(E)0

∫ exp − µ(E,x)dxxin

xout∫( )dE

Intensity distribution of beam

Page 7: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

7

TT Liu, BE280A, UCSD Fall 2005

X-Ray Imaging Chain

Suetens 2002

Reduces effects of Compton scattering

TT Liu, BE280A, UCSD Fall 2005

X-ray film

Flexible base~ 150 µm

Emulsion withsilver halide crystalsEach layer~ 10 µm

Silver halide crystals absorb optical energy. After development,crystals that have absorbed enough energy are converted tometallic silver and look dark on the screen. Thus, parts in theobject that attenuate the x-rays will look brighter.

Page 8: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

8

TT Liu, BE280A, UCSD Fall 2005

Intensifying Screen

http://learntech.uwe.ac.uk/radiography/RScience/imaging_principles_d/diagimage11.htmhttp://www.sunnybrook.utoronto.ca:8080/~selenium/xray.html#Film

TT Liu, BE280A, UCSD Fall 2005

X-Ray Examples

Suetens 2002

Page 9: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

9

TT Liu, BE280A, UCSD Fall 2005

X-Ray w/ Contrast Agents

Suetens 2002

Angiogram using an iodine-basedcontrast agent.K-edge of iodine is 33.2 keV

Barium SulfateK-edge of Barium is 37.4 keV

TT Liu, BE280A, UCSD Fall 2005

Computed Tomography

Suetens 2002

Page 10: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

10

TT Liu, BE280A, UCSD Fall 2005

Computed Tomography

Suetens 2002

ParallelBeam

Fan Beam

TT Liu, BE280A, UCSD Fall 2005

CT Number

CT_number = µ −µwater

µwater

×1000

Measured in Hounsfield Units (HU)

Air: -1000 HUSoft Tissue: -100 to 60 HUCortical Bones: 250 to 1000 HU

Page 11: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

11

TT Liu, BE280A, UCSD Fall 2005

CT Display

Suetens 2002

TT Liu, BE280A, UCSD Fall 2005

Projections

Suetens 2002

rs

=

cosθ sinθ−sinθ cosθ

xy

xy

=

cosθ −sinθsinθ cosθ

rs

Page 12: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

12

TT Liu, BE280A, UCSD Fall 2005

Projections

Suetens 2002€

Iθ (r) = I0 exp − µ(x,y)dsLr ,θ∫

= I0 exp − µ(rcosθ − ssinθ,rsinθ + scosθ)dsLr ,θ∫

TT Liu, BE280A, UCSD Fall 2005

Projections

Suetens 2002

Iθ (r) = I0 exp − µ(rcosθ − ssinθ,rsinθ + scosθ)dsLr ,θ∫

pθ (r) = −ln Iθ (r)I0

= µ(rcosθ − ssinθ,rsinθ + scosθ)dsLr ,θ∫

Sinogram

Page 13: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

13

TT Liu, BE280A, UCSD Fall 2005

Sinogram

Suetens 2002

TT Liu, BE280A, UCSD Fall 2005

Direct Inverse Approach

µ4µ3

µ2µ1 p1

p2

p3 p4

p1= µ1+ µ2p2= µ3+ µ4p3= µ1+ µ3p4= µ2+ µ4

4 equations, 4 unknowns. Are these the correct equations to use? €

p1p2p3p4

=

1 1 0 00 0 1 11 0 1 00 1 0 1

µ1µ2µ3µ4

No, equations are not linearly independent.p4= p1+ p2- p3Matrix is not full rank.

Page 14: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

14

TT Liu, BE280A, UCSD Fall 2005

Direct Inverse Approach

µ4µ3

µ2µ1 p1

p2

p3 p4

p1= µ1+ µ2p2= µ3+ µ4p3= µ1+ µ3p5= µ1+ µ4

4 equations, 4 unknowns. These are linearly independent now.In general for a NxN image, N2 unknowns, N2 equations.This requires the inversion of a N2xN2 matrixFor a high-resolution 512x512 image, N2=262144 equations.Requires inversion of a 262144x262144 matrix! Inversion process sensitive to measurement errors.

p1p2p3p4

=

1 1 0 00 0 1 11 0 1 01 0 0 1

µ1µ2µ3µ4

p5

TT Liu, BE280A, UCSD Fall 2005

Iterative Inverse ApproachAlgebraic Reconstruction Technique (ART)

43

21 3

7

4 6 5

2.52.5

2.52.5 5

5

3.53.5

1.51.5 3

7

5 5

43

21 3

7

5 5

Page 15: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

15

TT Liu, BE280A, UCSD Fall 2005

Backprojection

Suetens 2002

000030000 0

3

0

30303

000111000

100121001

110131011

111141111

TT Liu, BE280A, UCSD Fall 2005

Backprojection

Suetens 2002

b(x,y) = B p r,θ( ){ }

= p(x cosθ + y sinθ,θ)dθ0

π

x

y

b(x0,y) = p r,θ = 0( )Δθ= p(x0)Δθ

x0

r

Page 16: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

16

TT Liu, BE280A, UCSD Fall 2005

Backprojection

Suetens 2002

b(x,y) = B p r,θ( ){ }

= p(x cosθ + y sinθ,θ)dθ0

π

TT Liu, BE280A, UCSD Fall 2005

Backprojection

Suetens 2002€

b(x,y) = B p r,θ( ){ } = p(x cosθ + y sinθ,θ)dθ0

π

Page 17: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

17

TT Liu, BE280A, UCSD Fall 2005

Projection Theorem

Suetens 2002

U(kx,0) = µ(x,y)e− j2π (kxx+kyy )

−∞

∫−∞

∫ dxdy

= µ(x,y)dy−∞

−∞

∫[ ]−∞

−∞

∫ e− j2πkxxdx

= p0(x)−∞

−∞

∫ e− j2πkxxdx

= p0(r)−∞

−∞

∫ e− j2πkrdr

TT Liu, BE280A, UCSD Fall 2005

Projection Theorem

Suetens 2002

U(kx,ky ) = µ(x,y)e− j2π (kxx+kyy )

−∞

∫−∞

∫ dxdy

= F2D µ(x,y)[ ]

P(k,θ) = pθ (r)e− j 2πkr

−∞

∫ drF

U(kx,ky ) = P(k,θ)

kx = k cosθky = k sinθ

k = kx2 + ky

2

Page 18: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

18

TT Liu, BE280A, UCSD Fall 2005

Fourier Reconstruction

Suetens 2002

F

Interpolate onto Cartesian gridthen take inverse transform

TT Liu, BE280A, UCSD Fall 2005

Polar Version of Inverse FT

Suetens 2002

µ(x,y) = U(kx,ky−∞

∫−∞

∫ )e j 2π (kxx+kyy )dkxdky

= U(k,θ0

∫0

2π∫ )e j2π (k cosθx +k sinθy )kdkdθ

= U(k,θ−∞

∫0

π

∫ )e j 2π (xk cosθ +yk sinθ ) k dkdθ

Page 19: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

19

TT Liu, BE280A, UCSD Fall 2005

Filtered Backprojection

Suetens 2002

µ(x,y) = U(k,θ−∞

∫0

π

∫ )e j 2π (xk cosθ +yk sinθ ) k dkdθ

= kU(k,θ−∞

∫0

π

∫ )e j2πkrdkdθ

= u∗(r,θ)dθ0

π

u∗(r,θ) = kU(k,θ−∞

∫ )e j2πkrdk

= u(r,θ)∗F −1 k[ ]= u(r,θ)∗q(r)€

where r = x cosθ + y sinθ

Backproject a filtered projection

TT Liu, BE280A, UCSD Fall 2005

Ram-Lak Filter

Suetens 2002

kmax=1/Δs

Page 20: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

20

TT Liu, BE280A, UCSD Fall 2005

Reconstruction Path

Suetens 2002

F

x F-1

Projection

FilteredProjection

Back-Project

TT Liu, BE280A, UCSD Fall 2005

Reconstruction Path

Suetens 2002

Projection

FilteredProjection

Back-Project

*

Page 21: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

21

TT Liu, BE280A, UCSD Fall 2005

Example

Kak and Slaney

TT Liu, BE280A, UCSD Fall 2005

Example

Prince and Links 2005

Page 22: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

22

TT Liu, BE280A, UCSD Fall 2005

Example

Prince and Links 2005

TT Liu, BE280A, UCSD Fall 2005

Fourier Interpretation

Kak and Slaney; Suetens 2002

Density ≈ Ncircumference

≈N

2π k

Low frequencies areoversampled. So tocompensate for this,multiply the k-space databy |k| before inversetransforming.

Page 23: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

23

TT Liu, BE280A, UCSD Fall 2005

Additional Filtering

Suetens 2002

kmax=1/Δs

TT Liu, BE280A, UCSD Fall 2005

Sampling Requirements

Suetens 2002

Projection

Beam Width

SmoothedProjection

2/(Δs)

W= 2/(Δs)δ=1/W= Δs/2

Page 24: Topicscfmriweb.ucsd.edu/ttliu/be280a_05/BE280A_05_xct1_2s.pdfBeam Fan Beam TT Liu, BE280A, UCSD Fall 2005 CT Number € CT_number = µ−µwater µwater ×1000 Measured in Hounsfield

24

TT Liu, BE280A, UCSD Fall 2005

Sampling Requirements

Suetens 2002

SmoothedProjection

DetectorsΔr≤ Δs/2

SampledSmooth Projection

TT Liu, BE280A, UCSD Fall 2005

Sampling Requirements

Suetens 2002

Size of detector Δr = δ=1/W= Δs/2Number of Detectors N = FOV/ Δr where Δr≤ Δs/2

Angular Sampling -- how many views?

Want Circumference/(views in 360 degrees) = Δr

πFOV/(views)=Δr=FOV/N

Number of views in 360 degrees = πN