Top Banner
REPORT OF SUBSTATION BATTERY BANK DESIGN, Pallekele. Revision-01 AMITHI POWER CONSULTANTS (PVT) LTD, NO. 1080/9, ATIGALAMAWATHA, RAJAGIRIYA, SRI LANKA FEBRUARY 2013
23

Battery Bank Design Report-Pallekele-R1

Nov 09, 2014

Download

Documents

Battery Design which has done by APCL-Sri Lanka.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Battery Bank Design Report-Pallekele-R1

REPORT OF SUBSTATION BATTERY BANK DESIGN, Pallekele.Revision-01

AMITHI POWER CONSULTANTS (PVT) LTD,NO. 1080/9,ATIGALAMAWATHA,RAJAGIRIYA,SRI LANKA

FEBRUARY 2013

Page 2: Battery Bank Design Report-Pallekele-R1

ContentsEXECUTIVE SUMMERY............................................................................................................................3

1 CODES AND STANDARDS...............................................................................................................4

2 110V BATTERY BANK......................................................................................................................4

2.1 DESIGN PARAMETERS AND ASSUMPTION.........................................................................4

2.1.1 Site conditions........................................................................................................................4

2.1.2 Power source data..................................................................................................................4

2.1.3 Back-up time..........................................................................................................................4

2.1.4 Battery characteristic.............................................................................................................4

2.1.5 Formula for calculation of battery size..................................................................................4

2.2 CALCULATION...........................................................................................................................5

2.2.1 110V DC Load profile...........................................................................................................5

2.2.2 Battery duty cycle diagram....................................................................................................5

2.2.3 Cell sizing..............................................................................................................................6

2.2.4 Battery charger sizing............................................................................................................6

3 48V BATTERY BANK........................................................................................................................7

3.1 DESIGN PARAMETERS AND ASSUMPTION.........................................................................7

3.1.1 Site conditions........................................................................................................................7

3.1.2 Power source data..................................................................................................................7

3.1.3 Back-up time..........................................................................................................................7

3.1.4 Battery characteristic.............................................................................................................7

3.1.5 Formula for calculation of battery size..................................................................................7

3.2 CALCULATION...........................................................................................................................8

3.2.1 48V DC Load profile.............................................................................................................8

3.2.2 Battery duty cycle diagram....................................................................................................8

3.2.3 Cell sizing..............................................................................................................................9

3.2.4 Battery charger sizing............................................................................................................9

Attachments 1.Loads Description................................................................................................................10

Attachments 2.Battery Sizing Worksheet for 110V Battery Bank..............................................................11

Attachments 3. Capacity Derating Factors(Kt) for Ni-Cd Battery [110V]..................................................12

Attachments 4. Manufacture Catalog for Ni-Cd Battery.............................................................................13

Attachments 5. Battery Sizing Worksheet for 48V Battery Bank...............................................................14

Attachments 6. Capacity DeratingFactors(Kt) for Ni-Cd Battery [48V].....................................................15

Attachments 7. Manufacture Catalog for Ni-Cd Battery.............................................................................16

Page 3: Battery Bank Design Report-Pallekele-R1

EXECUTIVE SUMMERY

At the request of Mr.RuupeshSrivastava,Manager-Civil of Siemens Ltd, Amithi Power Consultants Pvt Ltd has designed substation battery bank system for the grid substation of Pallekele.

This document contents the descriptive report of the design.

Certified by:

…………………………………..

DG Rienzie Fernando

B.Sc. Eng, C.Eng, MIE (SL),

Managing Director,

Amithi Power Consultants (Pvt) Limited.

14/02/2013

Page 4: Battery Bank Design Report-Pallekele-R1

1 CODES AND STANDARDSIEEE 946-1992: Recommended Practice for the Design of Safety-Related DC

Auxiliary Power Systems for Generating Stations

IEEE 1115-2000: Recommended Practice for Sizing Nickel-Cadmium Batteries for Stationary Applications

2 110V BATTERY BANK

2.1 DESIGN PARAMETERS AND ASSUMPTION

2.1.1 Site conditionsAmbient temperature : 28℃Maximum

:25℃Design

:25℃Minimum

2.1.2 Power source data1) Rated input voltage rating: 400V, 3 Phase, 50Hz AC

2) Rated output voltage: 110V DC (Operating range: 99V-126V DC)

2.1.3 Back-up timeBack-up time of DC 110V system is limited as 8 hours.

2.1.4 Battery characteristicRated Capacity : 335Ah Rated voltage : 1.2V/cell Float charging voltage : 1.40V/cell End voltage : 1.1V/cell Number of cell : 90cell Battery re-charging time : 8 hours

2.1.5 Formula for calculation of battery sizeBattery size = US × TC × DM × AF [Ah] Where US : Uncorrected size TC : Temperature correction factor (=1.0 )

(applied standard temperature for rating cell capacity at 25˚C) DM : Design margin (= 10%) AF : Aging factor (=1.2)

Page 5: Battery Bank Design Report-Pallekele-R1

2.2 CALCULATION

2.2.1 110V DC Load profile

Duration (sec)

132kV(A)

33kV (A)

Miscellaneous (A)

Total (A)

0-1 21.56 30.08 23.38 75.021_4 11.32 15.15 23.38 49.854-28796 2.52 1.15 23.38 27.0528796-28797 21.56 30.08 23.38 75.0228797-28800 11.32 15.15 23.38 49.85

Refer the attachment 1 for load Description

2.2.2 Battery duty cycle diagram

Page 6: Battery Bank Design Report-Pallekele-R1

2.2.3 Cell sizingFrom the attached battery sizing work sheet (Refer to the Attachment No.1), uncorrected size

(US) is 246.48Ah

And the corrected battery capacity is,

Battery size = US × DM × AF [Ah]

= 246.69× 1.1 × 1.2

= 325.64

Therefore, the selected battery capacity is 335 [Ah].

2.2.4 Battery charger sizing

Charger shall supply the DC power to DC load and battery charging. So we consider continuous load current and [Ah] of battery discharge rating.

Battery charger I = IL+ 1.1∗QT

=27.05+1.1∗335

8

=73.11A

=73.11*1.5

=109.67A

The battery charger has designed to provide 150% of the total DC circuit load.

Therefore, the selected battery charger capacity is 110 [A]

where,

I : charger rated output [A]

IL: continuous DC load [A]

1.1 : constant that compensate for the battery losses

Q : ampere-hours discharged from the battery

T : time to re-charge the battery to approximately 95% of capacity

Page 7: Battery Bank Design Report-Pallekele-R1

3 48V BATTERY BANK

3.1 DESIGN PARAMETERS AND ASSUMPTION

3.1.1 Site conditionsAmbient temperature : 28℃ Maximum

: 25℃ Design

: 25℃ Minimum

3.1.2 Power source data1) Rated input voltage rating: 400V, 3 Phase, 50Hz AC

2) Rated output voltage: 48V DC (Operating range: 43.2V-54.6V DC)

3.1.3 Back-up timeBack-up time of DC 48V system is limited as 10 hours.

3.1.4 Battery characteristicRated Capacity : 270AhRated voltage : 1.2V/cell Float charging voltage : 1.40V/cell End voltage : 1.1V/cell Number of cell :39cell Battery re-charging time : 8 hours

3.1.5 Formula for calculation of battery sizeBattery size = US × TC × DM × AF [Ah] Where US : Uncorrected size TC : Temperature correction factor (=1.0 ) (applied standard temperature for rating cell capacity at 25˚C) DM : Design margin (= 10%) AF : Aging factor (=1.2)

Page 8: Battery Bank Design Report-Pallekele-R1

3.2 CALCULATION

3.2.1 48V DC Load profile

TypeContinuous Load [A]

Intermediate Loads [A]

Communication & SCADA load 20 0

3.2.2 Battery duty cycle diagram

Page 9: Battery Bank Design Report-Pallekele-R1

3.2.3 Cell sizingFrom the attached battery sizing work sheet (Refer to the Attachment No.1), uncorrected size

(US) is 184.43Ah

And the corrected battery capacity is,

Battery size = US × DM × AF [Ah]

= 200× 1.1 × 1.2

= 264

Therefore, the selected battery capacity is 270 [Ah].

3.2.4 Battery charger sizing

Charger shall supply the DC power to DC load and battery charging. So we consider continuous load current and [Ah] of battery discharge rating.

Battery charger I = IL+ 1.1∗QT

=20+1.1∗270

8

=57.125A

=57.125*1.5

=85.69A

The battery charger has designed to provide 150% of the total DC circuit load.

Therefore, the selected battery charger capacity is 90 [A]

where,

I : charger rated output [A]

IL : continuous DC load [A]

1.1 : constant that compensate for the battery losses

Q : ampere-hours discharged from the battery

T : time to re-charge the battery to approximately 95% of capacity

Page 10: Battery Bank Design Report-Pallekele-R1

Attachments 1.Loads Description

0-1 1_4 4-28796 28796-2879728797-28800

Incoming c 2 38.6 77.2 0.70 0.70 0.70 0.70 0.70 0.70Transformer c 2 38.6 77.2 0.70 0.70 0.70 0.70 0.70 0.70

Bus bar protection

c2 10.5 21 0.19 0.19 0.19 0.19 0.19 0.19

Bus PT c 2 45 90 0.82 0.82 0.82 0.82 0.82 0.82Bus Coupler c 1 11.75 11.75 0.11 0.11 0.11 0.11 0.11 0.11Cont.Total 277.15 2.52 2.52 2.52 2.52 2.52 2.52

Inter.tripping for all I 0-1Sec 4 7 28 0.25 0.25 0.25

1st tripping coil for all I 0-1Sec 4 242 968 8.8 8.8 8.82nd tripping for all I 0-1Sec 4 242 968 8.8 8.8 8.8

Closing coil of the breaker I 0-4Sec 4 242 968 8.8 8.8 8.8Bus Coupler 1 131 131 1.19 1.19 1.19Inter.Total 3063 27.85 19.04 8.8 0 19.04 8.8

21.56 11.32 2.52 21.56 11.32

Out going line c 6 9 54 0.49 0.65 0.65 0.65 0.65 0.65Transformer c 2 15 30 0.27 0.27 0.27 0.27 0.27 0.27

Generator feeder c 2 9 18 0.16 0.08 0.08 0.08 0.08 0.08Bus Section c 1 16.3 16.3 0.15 0.15 0.15 0.15 0.15 0.15Cont.Total 118.3 1.08 1.15 1.15 1.15 1.15 1.15

Inter.tripping for all I 0-1Sec 10 8.65 86.5 0.78636364 0.865 0.865

1st tripping coil for all I 0-1Sec 10 140 1400 12.7272727 14 142nd tripping for all I 0-1Sec 10 140 1400 12.7272727 14 14

Closing coil of the breakerr I 0-4Sec 10 140 1400 12.7272727 14 14Bus Section 1 7 7 0.064 0.064 0.064Inter.Total 4293.5 39.0318182 28.929 14 0 28.929 14

30.08 15.15 1.15 30.08 15.15RTCC & OLTC c 2 72 144 1.31 1.31 1.31 1.31 1.31 1.31132 Contactor,Relay c 4 28 112 1.02 1.02 1.02 1.02 1.02 1.0233 Contactor,Relay c 10 28 280 2.54545455 2.8 2.8 2.8 2.8 2.8Inverter c 1000 9.09 9.09 9.09 9.09 9.09 9.09Emergency Ligting c 1000 9.09 9.09 9.09 9.09 9.09 9.09

Emergenc Metering c 8 0.07 0.07 0.07 0.07 0.07 0.07

Cont.Total 2544 23.124 23.38 23.38 23.38 23.38 23.38

Duration(sec)

132kV DC Load

33KV DC Load

Miscellaneous Load

VADiscription Duty Cycle Quantity Load AUnit

values

Page 11: Battery Bank Design Report-Pallekele-R1

Attachments 2.Battery Sizing Worksheet for 110V Battery Bank

IEEE 1115-2000 Recommended Practice for Sizing Nickel-Cadmium Batteries for Stationary Applications

KPL335P

Pos Values Neg Values

1 A1= 75.02 A1-0= 75.02 M1= 0.017 T1=M1= 0 0.579 1.00 43.4

Sec 1 total 43.4

1 A1= A1-0= 0 M1= T1=M1+M2= 0.00 1.00 0.0 0.0

2 A2= A2-A1= 0 M2= T2=M2= 0.00 1.00 0.0 0.0

Sec Sub Tot 0.0 0.0 2 Total 0.0

1 A1= A1-0= 0.00 M1= 0.02 T1=M1+M2+M3= 479.900 8.092 1.00 0.0

2 A2= A2-A1= 0 M2= 479.87 T2=M2+M3= 479.883 8.091 1.00 0.0

3 A3= A3-A2= 0 M3= 0.02 T3=M3= 0.017 0.579 1.00 0.0

Sec Sub Tot 0.0 0.03 Total 0.0

1 A1=75.02

A1-0= 75 M1= 0.017 T1=M1+...+M4= 480.000 8.092 1 607

2 A2=49.85

A2-A1= -25 M2= 0.050 T2=M2+M3+M4= 479.983 8.092 1 -204

3 A3=27.05

A3-A2= -23 M3= 479.866 T3=M3+M4= 479.933 8.091 1 -184

4 A4=75.02

A4-A3= 48 M4= 0.067 T4=M4= 0.067 0.579 1 28

Sec Sub Tot 635 -3884 Toal 247

1 A1= A1-0= 0 M1= 1 T1=M1+...+M5= 480.00 0.00 1.00 0.00

2 A2= A2-A1= 0 M2= 298 T2=M2+...+M5= 479.00 0.00 1.00 0.00

3 A3= A3-A2= 0 M3= 1 T3=M3+M4+M5= 181.00 0.00 1.00 0.00

4 A4= A4-A3= 0 M4= 179 T4=M4+M5= 180.00 0.00 1.00 0.00

5 A5= A5-A4= 0 M5= 1 T5=M5= 1.00 0.58 1.00 0.00

Sec Sub Tot 0.00 0.005 Total 0.00

1 A1= A1-0= 0 M1= 1 T1=M1+...+M6= 480.00 0.00 1.00 0.00

2 A2= A2-A1= 0 M2= 298 T2=M2+...+M6= 479.00 0.00 1.00 0.00

3 A3= A3-A2= 0 M3= 1 T3=M3+M4+M5+M6= 181.00 0.00 1.00 0.00

4 A4= A4-A3= 0 M4= 179 T4=M4+M5+M6= 180.00 0.00 1.00 0.00

5 A5= A5-A4= 0 M5= 1 T5=M5+M6= 1.00 0.00 1.00 0.00

6 A6= A6-A5= 0 M6= T6=M6 0 1.00 0

Sec Sub Tot 0.00 0.005 Total 0.00

R AR= AR-0= MR T=MR=

Maximum Section Size (9) ________ + Random Section Size (10) ________ = Uncorrected Size (US) (11) ________US (12) ________ x Design Margin (13) 1. x Aging Factor (14) 1. = (15) ________When the cell size (15) is greater than a standard cell size, the next larger cell is required.Required cell size (16) ________ Ampere Hours. Therefore cell (17) ________ is required.

Maximum Section Size (9) 246.69 US (12) 246.69Random Section Size (10) Design Margin (13) 1.1Uncorrected Size (US) (11) 246.69 Aging Factor (14) 1.2

With factors(15) 325.6352 Required capacity(16) 325.6352Available size(17) 335

Section 5 -First Five Periods Only - If A6 is greater than A5 , go to Section 6.

Random Equipment Load Only (If needed)

(2) Load(Amperes)

(3) Change in load (Amperes)

(4) Duration of Period

(Minutes)

(5) Time to End of Section

(Minutes)

(6) Capacity rating

factor att Min Rate

K Factor (Kt)

(7) Temp Derating

factor for t Min(Tt)

Section 1 -First Period Only - If A2 is greater than A1 , go to Section 2.

Section 2 -First Two Periods Only - If A3 is greater than A2 , go to Section 3.

Section 6 -First Five Periods Only - If A6 is greater than A5 , go to Section 6.

Lowest Expected Minimun Cell Cell Mfg : HBLElectrolyte Temp. : 25

℃ Voltage : 1.1V

(1) Period

(8) Required Section

Size Rated Amp Hrs(3) X (6) X (7) = Rated Amps

Section 3 -First Three Periods Only - If A4 is greater than A3 , go to Section 4.

Section 4 -First Four Periods Only - If A5 is greater than A4 , go to Section 5.

Page 12: Battery Bank Design Report-Pallekele-R1

Attachments 3. Capacity DeratingFactors(Kt) for Ni-Cd Battery [110V]Battery Type KPL335P Capacity = 335

Discharge Time t (min) Time T1 Time T2Amphers for time T1

Amphers for time T2

Factor Kt1 fot T1

Factor Kt2 fot T2 Factor Kt fot T

0.067 0.017 0.083 583 577 0.5746141 0.58058925 0.579117977479.933 300 480 63.7 41.4 5.2590267 8.09178744 8.090733023479.983 300 480 63.7 41.4 5.2590267 8.09178744 8.091519901480.000 480 0 41.4 0 8.0917874 0 8.09178744

Page 13: Battery Bank Design Report-Pallekele-R1

Attachments 4. Manufacture Catalog for Ni-Cd Battery

Page 14: Battery Bank Design Report-Pallekele-R1

Attachments 5. Battery Sizing Worksheet for 48V Battery Bank

IEEE 1115-2000 Recommended Practice for Sizing Nickel-Cadmium Batteries for Stationary Applications

KPL270P

Pos Values Neg Values

1 A1= 20.00 A1-0= 20.00 M1= 600 T1=M1= 600 10.000 1.00 200.0

Sec 1 total 200.0

1 A1= A1-0= 0 M1= T1=M1+M2= 0.00 1.00 0.0 0.0

2 A2= A2-A1= 0 M2= T2=M2= 0.00 1.00 0.0 0.0

Sec Sub Tot 0.0 0.0 2 Total 0.0

1 A1= 0.27 A1-0= 0.27 M1= 0.00 T1=M1+M2+M3= 0.00 6.767 1.00 1.8

2 A2= 0.27 A2-A1= 0 M2= 0.00 T2=M2+M3= 0.00 6.746 1.00 0.0

3 A3= 0.27 A3-A2= 0 M3= 0.00 T3=M3= 0.00 10.000 1.00 0.0

Sec Sub Tot 1.8 0.03 Total 1.8

1 A1= A1-0= 0 M1= T1=M1+...+M4= 0 1 0 0

2 A2= A2-A1= 0 M2= T2=M2+M3+M4= 0 1 0 0

3 A3= A3-A2= 0 M3= T3=M3+M4= 0 1 0 0

4 A4= A4-A3= 0 M4= T4=M4= 0 1 0 0

Sec Sub Tot 0 04 Toal 0

1 A1= 0.27000 A1-0= 0 M1= 0 T1=M1+...+M5= 0.00 10.38 1.00 2.80

2 A2= 0.27000 A2-A1= 0 M2= 0 T2=M2+...+M5= 0.00 10.36 1.00 0.00

3 A3= 0.27000 A3-A2= 0 M3= 0 T3=M3+M4+M5= 0.00 4.23 1.00 0.00

4 A4= 0.00000 A4-A3= -0 M4= 0 T4=M4+M5= 0.00 4.21 1.00 -1.14

5 A5= 0.00000 A5-A4= 0 M5= 0 T5=M5= 0.00 10.00 1.00 0.00

Sec Sub Tot 2.80 -1.145 Total 1.67

R AR= AR-0= MR T=MR=

Maximum Section Size (9) ________ + Random Section Size (10) ________ = Uncorrected Size (US) (11) ________US (12) ________ x Design Margin (13) 1. x Aging Factor (14) 1. = (15) ________When the cell size (15) is greater than a standard cell size, the next larger cell is required.Required cell size (16) ________ Ampere Hours. Therefore cell (17) ________ is required.

Maximum Section Size (9) 200.00 US (12) 200.00Random Section Size (10) Design Margin (13) 1.1Uncorrected Size (US) (11) 200.00 Aging Factor (14) 1.2

With factors(15) 264Required capacity(16) 264Available size(17) 270

Lowest Expected Minimun Cell Cell Mfg : HBL

(1) Period(2) Load

(Amperes)(3)

Change in load (Amperes)(4) Duration

of Period (Minutes)

(5) Time to End of Section

(Minutes)

Section 3 -First Three Periods Only - If A4 is greater than A3 , go to Section 4.

Section 4 -First Four Periods Only - If A5 is greater than A4 , go to Section 5.

Section 5 -First Five Periods Only - If A6 is greater than A5 , go to Section 6.

Random Equipment Load Only (If needed)

(6) Capacity rating factor at

t Min RateK Factor (Kt)

(7) Temp Derating

factor for t Min(Tt)

(8) Required Section

Section 1 -First Period Only - If A2 is greater than A1 , go to Section 2.

Section 2 -First Two Periods Only - If A3 is greater than A2 , go to Section 3.

Page 15: Battery Bank Design Report-Pallekele-R1

Attachments 6. Capacity DeratingFactors(Kt) for Ni-Cd Battery [48V]

Battery Type KPL270P Capacity = 270

Discharge Time t (min) Time T1 Time T2Amphers for time T1

Amphers for time T2

Factor Kt1 fot T1

Factor Kt2 fot T2 Factor Kt fot T

600 600 - 27 10 10

Page 16: Battery Bank Design Report-Pallekele-R1

Attachments 7. Manufacture Catalog for Ni-Cd Battery