Top Banner
Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering
29

Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Mar 29, 2015

Download

Documents

Yasmin Shores
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Basis beeldverwerking (8D040)

dr. Andrea Fusterdr. Anna VilanovaProf.dr.ir. Marcel Breeuwer

Filtering

Page 2: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Contents

• Sharpening Spatial Filters• 1st order derivatives• 2nd order derivatives• Laplacian • Gaussian derivatives• Laplacian of Gaussian (LoG)• Unsharp masking

2

Page 3: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Sharpening spatial filters

• Image derivatives (1st and 2nd order)• Define derivatives in terms of differences for the

discrete domain• How to define such differences?

3

Page 4: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

1st order derivatives

• Some requirements (1st order):• Zero in areas of constant intensity• Nonzero at beginning of intensity step or ramp• Nonzero along ramps

4

Page 5: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

1st order derivatives

5

Page 6: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

2nd order derivatives

• Requirements (2nd order)• Zero in constant areas• Nonzero at beginning and end of intensity step or ramp• Zero along ramps of constant slope

6

Page 7: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

2nd order derivatives

7

Page 8: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Image Derivatives

• 1st order

• 2nd order

8

1-1

1 1-2

Page 9: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

9

1st order2nd order

Zero crossing, locating edges

Page 10: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

• Edges are ramp-like transitions in intensity• 1st order derivative gives thick edges• 2nd order derivative gives double thin edge with zeros in

between

• 2nd order derivatives enhance fine detail much better

10

Page 11: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

11

2nd order

Zero crossing, locating edges

1st order

Page 12: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Filters related to first derivatives

• Recall: Prewitt filter, Sober filter (lecture 2 – 14/05/13)

12

Page 13: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Laplacian – second derivative

• Enhances edges• Definition

13

Page 14: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Laplacian

14

Adding diagonal derivationOpposite sign for second order derivative

Page 15: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Laplacian

• Note: Laplacian filtering results in + and – pixel values

• Scale for image display - eqs. (2.6-10, 2.6-11)• Or: take absolute value or positive values

15

Page 16: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Line Detector

16

*

scaled Laplacian Positive values Laplacian

(figure 10.5 book)

Page 17: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Image sharpening - example

17

4-connected Laplacian8-connected LaplacianEnhanced + Laplacian x5Enhanced + Laplacian x6Enhanced + Laplacian x8Better sharpening with 8-connected Laplacian(see figure 3.38 (d)-(e) book)

C=+1 or -1

Page 18: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Filtering in frequency domain

• Basic steps:− image f(x,y) − Fourier transform F(u,v)− filter H(u,v) − H(u,v)F(u,v)− inverse Fourier transform − filtered image g(x,y)

18

Page 19: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Laplacian in the Fourier domain

• Spatial

• Fourier domain

19

Page 20: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Blur first, take derivative later

• Smoothing is a good idea to avoid enhancement of noise. Common smoothing kernel is a Gaussian.

2 2

22

x y

G e

Scale of blurring

Page 21: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Gaussian Derivative

• Taking the derivative after blurring gives image g

*( )g D G f

2 2

22

x y

G e

Page 22: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Gaussian Derivative

• We can build a single kernel for both convolutions

( * )g D G f 2 2

222

*x y

x

xD G e

2 2

222

*x y

y

yD G e

Use the associative property of the convolution

Page 23: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Laplacian of Gaussian (LoG)

23

LoG a.k.a. Mexican Hat

Page 24: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

LoG applied to building

24

Page 25: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Sharpening with LoG

25sharpening with LoG sharpening

with Laplacian

Page 26: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Unsharp Masking / Highboost Filtering

• Subtraction of unsharp (smoothed) version of image from the original image.

• Blur the original image• Subtract the blurred image from the original

(results in image called mask)• Add the mask to the original

26

Page 27: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

• Let denote the blurred image• Obtain the mask

• Add weighted portion of mask to original image

27

Page 28: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

• If• Unsharp masking

• If• Highboost filtering

28

input blurred unsharp mask u.m. result h.f. result

(see also figure 3.40 book)

Page 29: Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.

Unsharp masking

• Simple and often used sharpening method• Poor result in the presence of noise – LoG performs

better in this case

29