Top Banner
Basics of single negative and double negative metamaterials Ekaterina Shamonina UNIVERSITY OF ERLANGEN-NÜRNBERG UNIVERSITY OF OSNABRÜCK
93

Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Jun 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative

metamaterials

Ekaterina Shamonina

UNIVERSITY OF ERLANGEN-NÜRNBERGUNIVERSITY OF OSNABRÜCK

Page 2: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative metamaterials

Contents

• Definition of single negative and double negative media• Properties and resulting applications• Common ε-negative and μ-negative media• How they work

• Example: Near field imaging with silver superlens

Page 3: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative metamaterials

Contents

• Definition of single negative and double negative media• Properties and resulting applications• Common ε-negative and μ-negative media• How they work

• Example: Near field imaging with silver superlens

Page 4: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative metamaterials

Contents

• Definition of single negative and double negative media• Properties and resulting applications• Common ε-negative and μ-negative media• How they work

• Example: Near field imaging with silver superlens

Page 5: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative metamaterials

Contents

• Definition of single negative and double negative media• Properties and resulting applications• Common ε-negative and μ-negative media• How they work

• Example: Near field imaging with silver superlens

Page 6: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative metamaterials

Contents

• Definition of single negative and double negative media• Properties and resulting applications• Common ε-negative and μ-negative media• How they work

• Example: Near field imaging with silver superlens

• Near field imaging with magnetic metamaterials(Anna Radkovskaya’s lecture)

Page 7: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

What are metamaterials?

μετά

= beyond

(Greek)

Page 8: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

What are metamaterials?

μετά

= beyond

(Greek)

Metamaterials are not natural materials

crystal

Page 9: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

What are metamaterials?

μετά

= beyond

(Greek)

Metamaterials

are engineered composites

http://physicsweb.org/articles/world/16/5/3/1#pwpia2_05-03

crystal

Page 10: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

What are metamaterials?

μετά

= beyond

(Greek)

Metamaterials

are engineered composites that exhibit superior properties not found in nature and not observed in the constituent materials.

crystal

Page 11: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

What is a metamaterial?Metamaterial

is an artificial material in which electromagnetic

properties (ε,μ)

can be controlled.

It is made up of periodic arrays of metallic resonant

elements. Both the size of the element and the unit cell are small

relative

to the wavelength.

dλ>>d

Page 12: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

What is a metamaterial?Metamaterial

is an artificial material in which electromagnetic

properties (ε,μ)

can be controlled.

It is made up of periodic arrays of metallic resonant

elements. Both the size of the element and the unit cell are small

relative

to the wavelength.

Why is it important?Because it makes possible the manipulation

of fields and

waves at a subwavelength

scale.

dλ>>d

Page 13: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Near

field: evanescent

wavesAn object of width w can be represented in terms of Fourier components up to 2

xkwπ

=

w x kx

⇔2π/ww

NEAR FIELD IMAGING REQUIREMENT: Transfer Function

T(kx )=1 for

all Fourier

components!

Page 14: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Near

field: evanescent

wavesAn object of width w can be represented in terms of Fourier components up to

If wave is evanescen2 t: xw k k πλ

λ< > =

2xk

=

w x kx

⇔λ 2π/λ

2π/ww

NEAR FIELD IMAGING REQUIREMENT: Transfer Function

T(kx )=1 for

all Fourier

components!

Page 15: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Near

field: evanescent

waves

x

z

k

An object of width w can be represented in terms of Fourier components up to

If wave is evanescen2 t: xw k k πλ

λ< > =

2xk

=

w x kx

[ ]2 2 2 2 2 2

Wave with .

Wave

so that

If then is imaginary and the wave is evan

( , )

exp[ ] exp ( )

escent

2 .

x z

z x

z x z x x

x z

k k k

jk r j k z k x

k k k k k k k

k k kv

ω με

π ωω με

λ

=

− ⋅ = − +

= + = − = −

> = = =

λ 2π/λ

2π/ww

NEAR FIELD IMAGING REQUIREMENT: Transfer Function

T(kx )=1 for

all Fourier

components!

Page 16: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Definition of single

negative and double negative media

ε

με>0, μ>0 „double positive“(conventional materials)

real k real

n

ω εμ εμ=± =±, c

k n

Page 17: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Definition of single

negative and double negative media

ε

με>0, μ>0 „double positive“(conventional materials)

real k real

n

ε<0, μ>0 „single negative“(plasmas, rod MM)

complex

kcomplex

n

ω εμ εμ=± =±, c

k n

Page 18: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Definition of single

negative and double negative media

ε

με>0, μ>0 „double positive“(conventional materials)

real k real

n

ε<0, μ>0 „single negative“(plasmas, rod MM)

complex

kcomplex

n

ε>0, μ<0 „single negative“(ferrites, ring MM)

complex

kcomplex

n

ω εμ εμ=± =±, c

k n

Page 19: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Definition of single

negative and double negative media

ε

με>0, μ>0 „double positive“(conventional materials)

real k real

n

ε<0, μ>0 „single negative“(plasmas, rod MM)

complex

kcomplex

n

ε>0, μ<0 „single negative“(ferrites, ring MM)

complex

kcomplex

n

ε<0, μ<0 „double negative“(ring-rod MM)

real kreal

n

ω εμ εμ=± =±, c

k n

Page 20: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

air

conventionalmaterialsε>0, μ>0real kreal

n>0

ε

μ

ω εμ εμ=± =±, c

k n

Page 21: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

air air

conventionalmaterialsε>0, μ>0real kreal

n>0

plasmas,rod metamaterialsε<0, μ>0complex

kcomplex

n

ε

μno propagation!

ω εμ εμ=± =±, c

k n

Page 22: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

air air

air

conventionalmaterialsε>0, μ>0real kreal

n>0

plasmas,rod metamaterialsε<0, μ>0complex

kcomplex

n

ferrites,ring metamaterialsε>0, μ<0complex

kcomplex

n

ε

μ

no propagation!

no propagation!

ω εμ εμ=± =±, c

k n

Page 23: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

air air

air air

conventionalmaterialsε>0, μ>0real kreal

n>0

plasmas,rod metamaterialsε<0, μ>0complex

kcomplex

n

ring-rod metamaterials ε<0, μ<0real kreal

n<0

ferrites,ring metamaterialsε>0, μ<0complex

kcomplex

n

ε

μ

no propagation!

no propagation!

ω εμ εμ=± =±, c

k n

Page 24: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

air

ε

μ

conventionalmaterialsε>0, μ>0real kreal

n>0

ω εμ εμ=± =±, c

k n

Page 25: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

air air

air

ε

μ

conventionalmaterialsε>0, μ>0real kreal

n>0

plasmas,rod metamaterialsε<0, μ>0complex

kcomplex

n

ferrites,ring metamaterialsε>0, μ<0complex

kcomplex

n

no propagation!

no propagation!

ω εμ εμ=± =±, c

k n

Page 26: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

air air

air air

ε

μ

conventionalmaterialsε>0, μ>0real kreal

n>0

plasmas,rod metamaterialsε<0, μ>0complex

kcomplex

n

ring-rod metamaterials ε<0, μ<0real kreal

n<0

ferrites,ring metamaterialsε>0, μ<0complex

kcomplex

n

no propagation!

no propagation!negative

refraction!

ω εμ εμ=± =±, c

k n

Page 27: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Various

names, the same

physics

• Double Negative Medium DNM• Veselago Medium• Negative Refractive Index Medium NRIM • Negative Index Medium NIM• Left-Handed Medium LHM• Backward Wave Medium BWM

Double negative media

Page 28: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ε

μ

Double negative media: why “left-handed”?

n<0

“right handed”

“left handed”

n>0

Page 29: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ε

μ

Double negative media: why “left-handed”?

E

k

H“right handed”n>0

n<0 “left handed”

Page 30: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ε

μ

Double negative media: why “left-handed”?

E

k

H

E

kH

n<0

“right handed”

“left handed”

n>0

Page 31: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ε

μE

k

H

E

kH

Double negative media: why “backward wave media”?

“backward wave”

“forward wave”

Page 32: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ε

μ

Double negative media: why “backward wave media”?

E

kH

E

k

H

“backward wave”

“forward wave”↑↑S k

×= *1Re[ ]2 E HS

Page 33: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ε

μ

Double negative media: why “backward wave media”?

E

kH

↑↑S k “forward wave”

↑↑ pg hv v×= *1Re[ ]2 E HS

phase and group velocities in the same direction

Page 34: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

μ

Double negative media: why “backward wave media”?

E

kH

“backward wave”

↑↑S k “forward wave”

↓↑S k

↑↑ pg hv v

kH

×= *1Re[ ]2 E HS

E

phase and group velocities in the same direction

×= *1Re[ ]2 E HS

ε

Page 35: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

μ

Double negative media: why “backward wave media”?

E

kH

“backward wave”

↑↑S k “forward wave”

↓↑S k

↑↑ pg hv v

↑↓ pg hv vkH

×= *1Re[ ]2 E HS

E

phase and group velocities in the same direction

×= *1Re[ ]2 E HS

ε

opposite phase and group velocities

Page 36: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

More

on terminology

for

single/double negative media

ε

με>0, μ>0 „double positive“„DPS“

ε<0, μ>0 „single negative“„ENG“

ε>0, μ<0 „single negative“„MNG“

ε<0, μ<0 „double negative“„DNG“

Page 37: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

H H

Negative refraction

Maxwell‘s equations and appropriate boundary conditions!

Page 38: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Boundary

condition for

the Poynting

vector

H H

Boundary

condition for

the wave

vector

k k

⊥ >0S⊥ >0S

+

Negative refraction

Maxwell‘s equations and appropriate boundary conditions!

Page 39: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Positive refraction

vs

negative refraction

wedge ε=2.2, μ=1 wedge ε=-1, μ=-1

↑↑S k “backward wave”“forward wave” ↑↓S k

Page 40: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Historic remark…

Page 41: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ARTHUR SCHUSTER, An Introduction to the Theory of Optics, 19041904

forward wave

backward wave

Page 42: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Historic remark…

Backward waves, negative refraction

1904 Lamb, Schuster

1944 Mandelstam

1968 Veselago: ε<0 and μ

<0 → n<0

Page 43: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Historic remark…

ε<0silver (ω<ωp )

1961

Rotman: rods1996

Pendry: rods

μ<01956 Thompson: ferrites1981

Hardy: split rings1999

Pendry:

split rings

Backward waves, negative refraction

1904 Lamb, Schuster

1944 Mandelstam

1968 Veselago: ε<0 and μ

<0 → n<0

Page 44: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ε<0silver (ω<ωp )

1961

Rotman: rods1996

Pendry: rods

μ<01956 Thompson: ferrites1981

Hardy: split rings1999

Pendry:

split rings

2000 Smith et al.: ε<0 and μ

<0 → n<0

2001 Shelby et al.: first experiment

Backward waves, negative refraction

1904 Lamb, Schuster

1944 Mandelstam

1968 Veselago: ε<0 and μ

<0 → n<0

Historic remark…

Page 45: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Artificial

medium

with

ε<0: realisation?

ωω

ε = −2

21 p

ω ωε

<<0

p

Drude response

ωp

ω

ε

plasma frequencyε

ω =

2

0p

Nem

bulk metal

Page 46: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Artificial

medium

with

ε<0: realisation?

Brown 1950‘s, Rotman 1960‘s, Pendry 1996

ωω

ε = −2

21 p

ω ωε

<<0

p

Drude-like response

ωpω

ε„wire medium“

ωω

ε = −2

21 p

ω ωε

<<0

p

Drude response

ωp

ω

ε

plasma frequencyε

ω =

2

0p

Nem

bulk metal

E

Page 47: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Artificial

medium

with

ε<0: realisation?

Brown 1950‘s, Rotman 1960‘s, Pendry 1996

ωω

ε = −2

21 p

ω ωε

<<0

p

Drude-like response

ωpω

ε„wire medium“

ωω

ε = −2

21 p

ω ωε

<<0

p

Drude response

ωp

ω

ε

plasma frequencyε

ω =

2

0p

Nem

bulk metal

E

plasma frequency

tunable, depends on the geometry!

πε

ω =

2

0

2ln( / )p

ca r

Page 48: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Artificial

medium

with

μ<0: realisation?

single split ring: LC circuit

ω

I

ω0

L

CV

Page 49: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Artificial

medium

with

μ<0: realisation?

Pendry 1999

ωμ πω ω ω ω

ωω

= =− −

=2

020

2

2( 1/ )V V j H rZ j L C j L

I

single split ring: LC circuit

ω

I

resonant frequency

ω =01LC

L

CV

voltage

ωμ π=∂Φ= −∂

20j H r

tV

impedanceωω ω

ω ω⎛ ⎞

− = −⎜ ⎟⎝ ⎠

=202

1( ) 1j L j LC

Z

ω0

Page 50: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Artificial

medium

with

μ<0: realisation?

Pendry 1999

ωμ πω ω ω ω

ωω

= =− −

=2

020

2

2( 1/ )V V j H rZ j L C j L

I

strongdiamagnetic response

single split ring: LC circuit

ω

I

resonant frequency

ω =01LC

ω0

L

CV

voltage

ωμ π=∂Φ= −∂

20j H r

tV

impedanceωω ω

ω ω⎛ ⎞

− = −⎜ ⎟⎝ ⎠

=202

1( ) 1j L j LC

Z

Page 51: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Artificial

medium

with

μ<0: realisation?

Pendry et al.1999

„split ring medium“

ω πω ω ω ω

ωω

= =− −

=2

20

2

2( 1/ )V V j H rZ j L C j L

I

single split ring: LC circuit

ω

I

resonant frequency ω =01LC

frequencies

depend on the geometry!

ω0

ωω

ωμ

−= − 2

0

2

21 F

ω ω ωμ

< <<

0

0F

ω

μ

Hω ω0, F

ω0 ωF

μ

strongdiamagnetic response

Page 52: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Exploring

magnetic

„atoms“: Split Ring Resonators

Kafesaki et al. 2005

Aydin et al. 2005

Marques et al. 2003

Page 53: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Exploring

magnetic

„atoms“: the family

grows…

O‘Brien & Pendry 2005

Guo et al. 2005 Hsu et al. 2004 Bulu et al. 2005

Radkovskaya et al. 2007 Kafesaki et al. 2005 Kafesaki et al. 2005

Page 54: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Isotropic magnetic „atoms“

in 2D

in 3D

Gay-Balmaz,Martin 2002

Chen et al. 2006

Gay-Balmaz,Martin 2002

Baena 2005 Padilla 2005

Page 55: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Double negative media: realisations

Combination of SRRs (μ<0) & wires (ε<0)

ω ω ωμ

< <<

0

0F

ω

μ

ω0 ωF

μ

ω ωε

<<0

p

ωpω

ε

H

E

EH k

Smith et al. 2000

Page 56: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Double negative media: realisations

Omega-particlesSRR+rod

chiral

particles

Smith et al. 2000

Shelby et al. 2001

Saadoun, Engheta 1992, 1994

Tretyakov 1996

Page 57: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

From

SRR to wire

pairs

Svirko et al. 2001 Podolskiy et al. 2002, Panina et al. 2002

Dolling 2005

Page 58: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

From

microwave

to optical

frequencies

source: Wegener, Linden, von Freymann, lecture course 2007, Karlsruhe

Page 59: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Double negative metamaterials: realisation

Page 60: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Physics

Extension of electromagnetism

“inverse”

electromagnetic phenomena

-

inverse Snell’s law (negative refraction of rays)

-

inverse Doppler shift, Cherenkov

radiation, Goos-Haenchen

shift

-

“growing”

evanescent waves

Why

Metamaterials?

Applications

-

“Perfect lens”, subwavelength

imaging in photonics

-

Invisibility and cloaking

-

“Nano-circuits”, miniaturisied

waveguide components

-

Medical imaging

Page 61: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Far field

dd/2 d/2

Far field

Superlens

2000 Pendry:

metamaterial plate with n<0 acts as a perfect lens

Page 62: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Far field

dd/2 d/2

Far field2000 Pendry:

metamaterial plate with n<0 acts as a perfect lens

also for a sub-λ-object?

Superlens

Page 63: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

2000 Pendry:

metamaterial plate with n<0 acts as a perfect lens

also for a sub-λ-object?

Explanation: Near fieldn>0 exponential decayn<0 exponential growth

Mechanism: surface resonant modescouple to the evanescent part of the object spectrum and lead to the reconstruction of the object in the image plane

Near field

dd/2 d/2

Far field

Superlens

Page 64: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Surface

modes

in metamaterials?

Page 65: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Surface

modes

in metamaterials?

ε

μ

TM: „transverse magnetic“TE: „transverse electric“

Domains of existence of surface modes

Page 66: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Silver

slab

as a superlens: surface

plasmon-polaritons

coordinate x, nm spatial frequency kx/k0

1 10 1000.1-40 40 80-80 0

•Coupled modes of surface plasmon-polariton resonances

•Two spatial resonances; flat transfer function in-between

the thinner the slab, the flatter the transfer function

Shamonina et al., Electr.Lett. (2001)

λ=360nm

d

d/2

d/2

(z=2d)

Page 67: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Surface electromagneticeigenmode of the medium

Silver

slab

as a superlens: surface

plasmon-polaritons

ω ωε

<<0

p

ωpω

ε

Page 68: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Surface electromagneticeigenmode of the medium

Silver

slab

as a superlens: surface

plasmon-polaritons

ω ωε

<<0

p

ωpω

ε

ω =/ x ck

xk

ωωp

light line

Surface plasmon-polariton

slow waves of short wavelength!

cannot interact with propagating waves!

Page 69: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Surface electromagneticeigenmode of the medium

do interact with the evanescent,near field components of the Fourier spectrum of an object!

Silver

slab

as a superlens: surface

plasmon-polaritons

ω ωε

<<0

p

ωpω

ε

slow waves of short wavelength!

cannot interact with propagating waves!

ω =/ x ck

xk

ωωp

light line

Surface plasmon-polariton

Page 70: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

SLAB: TWO SURFACES

Page 71: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ARBITRARY VALUES OF μ,ε

Page 72: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ARBITRARY VALUES OF μ,ε

Page 73: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ARBITRARY VALUES OF μ,ε

Page 74: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

ARBITRARY VALUES OF μ,ε

Page 75: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

SLAB, ARBITRARY VALUES OF μ,ε

Page 76: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

In order to achieve a cut-off at 10 k0 (for resolution λ/10) a slab of d=0.1 λ tolerates a loss of 0.002,a slab of d=0.67 λ tolerates a loss of not more than 10-19!

:

Near-perfect? Near-sighted!

Podolskiy and Narimanov (2005)Smith et al. (2003), French et al. (2006).

ε μ− −1, 1

Page 77: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Silver lens: Near-perfect?

d=40 nmthick!

d=20 nm

Page 78: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Silver lens: perfect without losses? No!

Page 79: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

T. Taubner et al., SCIENCE 313, 2006

Experiment: SiC

Superlens

for IR

• Resolution λ/20 (λ=10.85μm)• Optical Signal Processing

Page 80: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Experiment: Silver Superlens

for UV

N Fang et al., Science 308, 2005

Page 81: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Shamonina et al., Electron. Lett. (2001)

Silver slab: Poynting

vector optics

ε=-1-jα, α=10-4

Shamonina et al., PIERS 2002

NEGATIVE REFRACTION?! (only ε

is negative!)

Page 82: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

NEGATIVE REFRACTION?! (only ε

is negative!)

ω =/ x ck

xk

ω

ωp

light line

Surface plasmon-polariton

Poynting vector

Group velocity near zero!

Page 83: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

60nm slab too thick for λ=360nm!

Shamonina et al., Electron. Lett. (2001)

Multilayered superlens

Microscopic picture: „Poynting vector

optics”

λ=360nm, ε=-1-jα, α=0.1 ε=-1-jα, α=10-4

Shamonina et al., PIERS 2002

Page 84: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Multilayered superlens

Microscopic picture: „Poynting vector

optics”

Numerical simulation (CST Microwave Studio)

E.Tatartschuk (Erlangen)

Page 85: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Magnifying multilayered superlens

flat „near-sighted“ lens

The image is not magnified

!

cylindrical „far-sighted“ lens

The image is magnified and can be captured with an optical microscope

Microscopic picture: „Poynting vector optics“

Theory: Jacob et al. Opt. Expr. (2006), Salandrino and Engheta, Phys. Rev. B (2006)Experiment: Liu et al. Science (2007), Smolyaninov et al., Science (2007)

Page 86: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Magnifying multilayered superlens: simulation

Microscopic picture: „Poynting vector

optics”

Numerical simulation (CST Microwave Studio): E.Tatartschuk (Erlangen)

Page 87: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Cylindrical multilayered superlens: experiment

I.I. Smolyaninov et al., Science 315 (2007)

Page 88: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Cylindrical multilayered superlens: experiment

Z. Liu et al., Science 315 (2007)

Page 89: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Physics

Extension of electromagnetism

“inverse”

electromagnetic phenomena

-

inverse Snell’s law (negative refraction of rays)

-

inverse Doppler shift, Cherenkov

radiation, Goos-Haenchen

shift

-

“growing”

evanescent waves

Metamaterials

Applications

-

“Perfect lens”, subwavelength

imaging in photonics

-

Invisibility and cloaking

-

“Nano-circuits”, miniaturisied

waveguide components

-

Medical imaging

Page 90: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative metamaterials

Summary

• Definition of single negative and double negative media• Properties and resulting applications• Common ε-negative and μ-negative media• How they work

• Example: Near field imaging with silver superlens

Page 91: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Basics of single negative and double negative metamaterials

Summary

• Definition of single negative and double negative media• Properties and resulting applications• Common ε-negative and μ-negative media• How they work

• Example: Near field imaging with silver superlens

• Near field imaging with magnetic metamaterials(Anna Radkovskaya’s lecture)

Page 92: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Invisibility

and cloaking

Page 93: Basics of single negative and double negative metamaterialsesperia.iesl.forth.gr/~wip/lectures/pdfs/Shamonina.pdf · Basics of single negative and double negative metamaterials. Contents

Positive and negative Goos-Haenchen

Shift

Ziolkowski 2003