Top Banner
AIC05 - S. Mocanu 1 NUMERICAL ALGORITHMS FOR TRANSIENT ANALYSIS OF FLUID QUEUES Stéphane Mocanu Laboratoire d’Automatique de Grenoble FRANCE
21

Basic tandem model

Jan 05, 2016

Download

Documents

blach baalkdk

NUMERICAL ALGORITHMS FOR TRANSIENT ANALYSIS OF FLUID QUEUES Stéphane Mocanu Laboratoire d’Automatique de Grenoble FRANCE. Basic tandem model. Two machines separated by a finite buffer Unreliable machines Deterministic service times Infinite arrivals an machine M 1 - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Basic tandem model

AIC05 - S. Mocanu 1

NUMERICAL ALGORITHMS FOR TRANSIENT ANALYSIS OF FLUID

QUEUESStéphane Mocanu

Laboratoire d’Automatique de GrenobleFRANCE

Page 2: Basic tandem model

AIC05 - S. Mocanu 2

Basic tandem model

• Two machines separated by a finite buffer• Unreliable machines • Deterministic service times

• Infinite arrivals an machine M1

• Infinite available places at the exit of M2

SM1 M2

Page 3: Basic tandem model

AIC05 - S. Mocanu 3

Fluid (continuous) modem

Arrival Waiting Service

X1X1 X2 X2Y1 Y1 Y2 Y2C or

T1 T2

Arrival Waiting Service

X1X1 X2 X2Y1 Y1 Y2 Y2C or

U1=1/T1 U2=1/T2

Page 4: Basic tandem model

AIC05 - S. Mocanu 4

Versions

• Non-blocking, Time Dependent Failures

Communication systems (Mitra)

• Blocking, Operation Dependent Failures

Production systems (Gershwin)

Page 5: Basic tandem model

AIC05 - S. Mocanu 5

Operation depending failures

Suppose M1 slowed down by M2 (U1>U2, x=C)

Work Blocked

T1=1/U1

T2=1/U2

Work Blocked

The failure rate is reduced to: ' 21 1

1

U

U

A completely blocked (starved) machine cannot fail !A completely blocked (starved) machine cannot fail !

Page 6: Basic tandem model

AIC05 - S. Mocanu 6

Internal equations

• Not an ordinary Markov chain

• Continuous transitions on the “fluid direction”

• Infinitesimal variation of the probability mass

U

Discrete transitions

Discrete state

Continuous transition

Page 7: Basic tandem model

AIC05 - S. Mocanu 7

An example: homogeneous case

State = {M1 state, M2 state, buffer level}

U U

0 0

Machines driven by two state Markov chains

Page 8: Basic tandem model

AIC05 - S. Mocanu 8

Joint evolution

(1,1,h)

(1,0,h)

(0,1,h)

(0,0,h)

2

2

1

1

1

1

2

2

U

U

Page 9: Basic tandem model

AIC05 - S. Mocanu 9

Evolution equations

MxtVx

xt

t

xt,

,,

A PDE system

Markov chain generator

Drift matrix In the example

0000

000

000

0000

U

UV

Page 10: Basic tandem model

AIC05 - S. Mocanu 10

Boundary conditions for ODF systems

Discontinuities of the probability distribution

CCc tPtxtPtx )(),()(),( 00 (t,x)

X

c(t,x)

P0(t)

PC(t)

Page 11: Basic tandem model

AIC05 - S. Mocanu 11

Difficulties

Boundary condition does NOT verify the PDE– Some boundary states are of 0 probability

– Some transitions are modified (due to ODF)

MxtVx

xt

t

xt,

,,

M0 on lower boundary

MC on upper boundary

Page 12: Basic tandem model

AIC05 - S. Mocanu 12

Homogeneous case

Example: state (0,0,C)

Matrix form

)()()( )0,0(21)1,0(2 tPtP CC (0,0,C)(1,0,C)

(0,1,C)

0)(0)( )0,0()1,0( tPtP CC

CCCx

C MxtPVx

xt

t

tP,

,

Page 13: Basic tandem model

AIC05 - S. Mocanu 13

Initial conditions

Specify

Example : machine state (1,1) (both ON), buffer empty

)(),0(),,0( 0 hPPx C

Page 14: Basic tandem model

AIC05 - S. Mocanu 14

The problem

Find an integration algorithm for

– under boundary conditions b.c.

– with initial conditions i.c.

MxtVx

xt

t

xt,

,,

)(),0(),,0( 0 hPPx C

Page 15: Basic tandem model

AIC05 - S. Mocanu 15

The integration scheme

• Decompose the system in – Linear evolution

– Wave evolution

• Apply b.c.

V

x

xt

t

xt

,,

Mxtt

xt,

,

Page 16: Basic tandem model

AIC05 - S. Mocanu 16

Recurrent solution

• Linear transform

• Wave transform

iwavei

wavei

iW Vxkxkxk ,,1,,

Mi

lineari

lineari

iL exkxkxk ,,1,,

ini V

x

,...,1max

Page 17: Basic tandem model

AIC05 - S. Mocanu 17

Recurrent form of the b.c.

Vx

xCkCkMkPtkPkP

Vx

kxkMktkk

CCCC

),(),()0,()()1(

)0,(),()0,()0,()0,1( 0

Page 18: Basic tandem model

AIC05 - S. Mocanu 18

Numerical results

0 10 20 30 40 50 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

10

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

01

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

11

0 10 20 30 40 50 600

0.005

0.01

0.015

0.02

x

00

Initial state : (0,1) buffer half full

Page 19: Basic tandem model

AIC05 - S. Mocanu 19

Numerical results

Initial state : (0,1) buffer half full

0 0.2 0.4 0.6 0.8 1 1.2

0.88

0.9

0.92

0.94

0.96

0.98

1

time

Exp

ecte

d ef

ficie

ncy

First starvation

Page 20: Basic tandem model

AIC05 - S. Mocanu 20

Numerical results

0 1 2 3 4 5 620

25

30

time

Exp

ecte

d bu

ffer

leve

l

0 0.1 0.2 0.3 0.4 0.5 0.6

22

24

26

28

30

time

Exp

ecte

d bu

ffer

leve

l

Page 21: Basic tandem model

AIC05 - S. Mocanu 21

Some limitations

• Needs compatible i.c.– Warning : machine state (1,1), buffer empty is

NOT compatible– But : machine state (1,1), buffer = x, it IS

• Some boundaries propagates bad• For the instance we need explicit analysis of

boundary conditions• Actual numerical implementation is limited to

ON/OFF machines