Top Banner

of 90

Basic Reservoir Engineering - Part I

Jul 05, 2018

Download

Documents

Tabitha Taylor
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/16/2019 Basic Reservoir Engineering - Part I

    1/90

    GEOPET BACHELOR PROGRAM IN

    PETROLEUM ENGINEERING

    BASIC RESERVOIRENGINEERING

    3/18/2013 1Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    2/90

    Learning Objectives

    At the end of this lecture, you should be able to understand the

    fundamentals of reservoir engineering and do some basic

    analyses/calculations as follows:

    PVT Analysis

    Special Core Analysis

    Well Test Analysis

    Production Forecast

    3/18/2013 2Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    3/90

    References

    1. L.P.Dake (1978). Fundamentals of Reservoir Engineering,

    Elsevier Science, Amsterdam.

    2. L.P.Dake (1994). The Practice of Reservoir Engineering,

    Elsevier Science, Amsterdam.

    3. B.C.Craft & M.Hawkins (1991). Applied Petroleum

    Reservoir Engineering,Prentice Hall, New Jersey.

    4. T. Ahmed (2006). Reservoir Engineering Handbook , Gulf

    Professional Publishing, Oxford.

    3/18/2013 3Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    4/90

    Outline

    Key Concepts in Reservoir Engineering

    Fundamentals of Oil & Gas Reservoirs

    Quantitative Methods in Reservoir Characterization and

    Evaluation.

    3/18/2013 4Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    5/90

    Part I

    3/18/2013 5Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Key Concepts in

    Reservoir Engineering

  • 8/16/2019 Basic Reservoir Engineering - Part I

    6/90

    Definition of Reservoir

    3/18/2013 6Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    In petroleum industry, reservoir fluids is a mixture ofhydrocarbons (oil and/or gas), water and other non-hydrocarboncompounds (such as H2S, CO2, N2, ...)

  • 8/16/2019 Basic Reservoir Engineering - Part I

    7/90

    Definition of Engineering

    Engineering is the discipline or profession of

    applying necessary knowledge and utilizing

    physical resources in order to design and

    implement systems and processes that realize a

    desired objective and meet specified criteria.

    3/18/2013 7Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    8/90

    Definition of Engineering

    Engineering is the discipline and profession of

    applying necessary knowledge and utilizing

    physical resources in order to design and

    implement systems and processes that realize a

    desired objective and meet specified criteria.

    3/18/2013 8Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    9/90

    Necessary Knowledge

    Knowledge about oil & gas reservoirs

    Reservoir Rock Properties & Behavior during the

    Production Process

    Reservoir Fluid Properties & Behavior during the

    Production Process

    Fluid Flows in Reservoirs

    3/18/2013 9Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    10/90

    Necessary Knowledge (cont’d)

    Technical & Scientific Knowledge

    Quantitative Methods for Reservoir

    Characterization

    Quantitative Methods for Reservoir

    Evaluation 

    3/18/2013 10Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    11/90

    Definition of Engineering

    Engineering is the discipline and profession of

    applying necessary knowledge and utilizing

    physical resources in order to design and

    implement systems and processes that realize a

    desired objective and meet specified criteria.

    3/18/2013 11Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    12/90

    Physical Resources

    In-place Reservoir Resources

    Reservoir’s energy source resulted from the

    initial pressure & drive mechanisms during

    production

     Available flow conduits thanks to reservoir’s

    characteristic properties such as permeability

    distribution.

    3/18/2013 12Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    13/90

    Definition of Engineering

    Engineering is the discipline and profession of

    applying necessary knowledge and utilizing

    physical resources in order to design and

    implement  systems and processes that realize a

    desired objective and meet specified criteria.

    3/18/2013 13Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    14/90

    Design and Implementation

    Design and Implement an Oil Field Development Plan

    Plan for producing oil & gas from the reservoirs in the

    field: Exploit reservoir energy sources; Design

    appropreate well patterns; Select suitable subsurface &

    surface facilities ... during the lifecycle of the oil field

    3/18/2013 14Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    15/90

    Definition of Engineering

    Engineering is the discipline and profession of

    applying necessary knowledge and utilizing

    physical resources in order to design and

    implement systems and processes that realize a

    desired objective and meet specified criteria.

    3/18/2013 15Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    16/90

    Desired Objective

    To Maximize the profit resulted from the

    recovered oil & gas

    To recover as much as possible oil & gas from

    the reservoirs

    To recover high-quality oil & gas

    3/18/2013 16Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    17/90

    Definition of Engineering

    Engineering is the discipline and profession of

    applying necessary knowledge and utilizing

    physical resources in order to design and

    implement systems and processes that realize a

    desired objective and meet specified criteria.

    3/18/2013 17Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    18/90

    Specified Criteria

    Money associated with hired manpower,

    facilities, technologies, ...

    Time

    Local regulations

    3/18/2013 18Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    19/90

    Oil Fields and Their Lifecycle

    3/18/2013 19Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    20/90

    Oil Fields and Their Lifecycle

    A lifecycle of an oil field consists of the following stages:

    Exploration

    Appraisal

    Development

    Production

    Abandonment

    3/18/2013 20Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    21/90

    Revenue Throughout LifeCycle

    3/18/2013 21Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    22/90

    Part II

    3/18/2013 22Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Basic Properties and

    Behaviors of

    Oil & Gas Reservoirs

  • 8/16/2019 Basic Reservoir Engineering - Part I

    23/90

    Five Basic

    Reservoir

    Fluids

    Black Oil

    Criticalpoint

       P  r  e  s  s  u  r  e ,  p  s   i  a

    Separator

    Pressure pathin reservoir Dewpoint line

    % Liquid

    Temperature, °F

       P  r  e  s  s  u  r  e

    Temperature

    Separator

    % Liquid

    Volatile oil

    Pressure pathin reservoir

    3

    2

    1

    3

    Criticalpoint

    3

    Separator

    % Liquid

    Pressure pathin reservoir

    1

    2Retrograde gas

    Critical

    point   P  r  e  s  s  u  r  e

    Temperature

       P  r  e  s  s  u

      r  e

    Temperature

    % Liquid

    2

    1

    Pressure pathin reservoir

    Wet gas

    Criticalpoint

    Separator

       P  r  e  s  s  u  r  e

    Temperature

    % Liquid

    2

    1

    Pressure pathin reservoir

    Dry gas

    Separator

    Retrograde Gas Wet Gas Dry Gas

    Black Oil Volatile Oil

    3/18/2013 23Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Classification of Reservoir Fluids

  • 8/16/2019 Basic Reservoir Engineering - Part I

    24/90

    Used to visualize the fluids production path from

    the reservoir to the surface

    Used to classify reservoir fluids

    Used to develop different strategies to produce

    oil/gas from reservoir

    Pressure-Temperature Diagrams

    3/18/2013 24Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    25/90

    Phase Diagrams

    Single

    Liquid

    Phase

    Region

    CriticalPoint

       P  r  e  s  s  u  r  e ,  p  s   i  a

    InitialReservoir

    State

    % Liquid

    Temperature, °F

    Cricondentherm

    3/18/2013 25Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Separator

    Cricondenbar

    Single

    Gas

    Phase

    Region

    Two-Phase

    Region

  • 8/16/2019 Basic Reservoir Engineering - Part I

    26/90

    Black Oil

    Black Oil

    CriticalPoint

       P  r  e  s  s  u  r  e ,

      p  s   i  a

    Separator

    Pressure pathin reservoir

    Dewpoint line

    % Liquid

    Temperature, °F

    3/18/2013 26Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    27/90

    Volatile-Oil

       P  r  e  s  s  u

      r  e

    Temperature, °F

    Separator

    % Liquid

    Volatile oil

    Pressure pathin reservoir

    2

    1

    3

    Criticalpoint

    3/18/2013 27Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    28/90

    Retrograde Gas

    3

    Separator

    % Liquid

    Pressure path

    in reservoir1

    2Retrograde gas

    Critical point

       P  r  e  s  s  u  r

      e

    Temperature

    3/18/2013 28Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    29/90

    Wet Gas

       P  r  e  s  s  u  r  e

    Temperature

    % Liquid

    2

    1

    Pressure path

    in reservoir

    Wet gas

    Criticalpoint

    Separator

    3/18/2013 29Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    30/90

    Dry Gas

       P  r  e  s  s  u

      r  e

    Temperature

    % Liquid

    2

    1

    Pressure path

    in reservoir

    Dry gas

    Separator

    3/18/2013 30Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    31/90

    Field Identification

    Black

    Oil

    Volatile

    Oil

    Retrograde

    Gas

    Wet

    Gas

    Dry

    Gas

    Initial Producing

    Gas/Liquid

    Ratio, scf/STB

    3200 > 15,000* 100,000*

    Initial Stock-

    Tank Liquid

    Gravity, API

    < 45 > 40 > 40 Up to 70 No

    Liquid

    Color of Stock-

    Tank Liquid

    Dark Colored Lightly

    Colored

    Water

    White

    No

    Liquid

    *For Engineering Purposes 

    3/18/2013 31Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    32/90

    Laboratory Analysis

    Black

    Oil

    Volatile

    Oil

    Retrograde

    Gas

    Wet

    Gas

    Dry

    Gas

    Phase

    Change in

    Reservoir

    Bubblepoint Bubblepoint Dewpoint No Phase

    Change

    No

    Phase

    ChangeHeptanes

    Plus, Mole

    Percent

    > 20% 20 to 12.5 < 12.5 < 4* < 0.8*

    Oil

    Formation

    VolumeFactor at

    Bubblepoint

    < 2.0 > 2.0 - - -

    *For Engineering Purposes 

    3/18/2013 32Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    33/90

    0

    50000

    0 30

    Heptanes plus in reservoir f luid, mole %

       I  n   i   t   i  a   l   p  r  o   d

      u  c   i  n  g

      g  a  s   /  o   i   l   r

      a   t   i  o ,

      s  c   f   /   S   T   B

    Dewpoint gas

    Bubblepoint oil

    Retrograde

    gas

    Volatile

    oil

    Wet

    gas

    Dry

    gas

    Blackoil

    3/18/2013 33Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Field Identification

  • 8/16/2019 Basic Reservoir Engineering - Part I

    34/90

    34  Flui

    Primary Production Trends

       G   O   R

       G   O   R

       G   O   R

       G   O   R

       G   O   R

    Time Time Time

    TimeTime TimeTimeTime

    TimeTime

    No

    liquid

    No

    liquid

    Dry

    Gas

    Wet

    Gas

    Retrograde

    Gas

    Volatile

    Oil

    Black

    Oil

       A   P   I

     

       A   P   I

     

       A   P   I

     

       A   P   I

     

       A   P   I

  • 8/16/2019 Basic Reservoir Engineering - Part I

    35/90

    Exercise 1

    Based on the phase diagrams of volatile oil

    and retrograde gas, describe some

    characteristic properties of these two

    reservoir fluids

    Name some applications of phase diagrams

    in selecting surface facilities

    3/18/2013 35Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    36/90

    Basic Properties of Natural Gas

    3/18/2013 36Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

     Equation-of-State (EOS)

     Apparent Molecular Weight of Gas Mixture

     Density of Gas Mixture

     Gas Specific Gravity

    Z-factor (Gas Compressibility or Gas Deviation

    Factor)

    Isothermal Compressibility

    Gas Formation Volume Factor

    Gas Viscosity

  • 8/16/2019 Basic Reservoir Engineering - Part I

    37/90

    Gas Equation-Of-State (EOS)

    3/18/2013 37Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

     pV nZRT =Equation of State:

    Quantity Description Unit/Value

    p Pressure psia

     V  Volume ft3

    n Mole Number lb-mol

    Z Gas Deviation

    Factor

    dimensionless

    T Temperature Rankine

    R Universal Gas

    constant

    10.73

    psia.ft3 /lb-mole. °R

    Apparent Molecular Weight of a

  • 8/16/2019 Basic Reservoir Engineering - Part I

    38/90

     Apparent Molecular Weight of aGas Mixture

    3/18/2013 38Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Normally, petroleum gas is a mixture of variouslight hydrocarbon (C1-C4). For example: 

    Component  Mole Percent MolecularWeight

    (lb/lb-mol) 

    Critical  Critical 

    Pressure  Temperature 

    (psia)  (o

    R) (1)  (2)  (3)  (4) 

    C1  0.85  16.043  666.4  343.00 

    C2  0.04  30.070  706.5  549.59 

    C3  0.06  44.097  616.0  665.73 

    iC4  0.03  58.123  527.9  734.13 nC4  0.02  58.123  550.6  765.29 

    1

    20.39 N 

    a i i

    i

     M y M =

    = =∑

  • 8/16/2019 Basic Reservoir Engineering - Part I

    39/90

    Density of Gas Mixture

    3/18/2013 39Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Gas density is calculated from the definition ofdensity and the EOS

    3 pM= = (lb/ft )g   a a

    g

    g

    m   nM p

    V nZRT ZRT   ρ    =

  • 8/16/2019 Basic Reservoir Engineering - Part I

    40/90

    Gas Specific Gravity

    3/18/2013 40Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    The specific gravity is defined as the ratio of thegas density to that of the air

    M= =

    28.97

    g   a a

    g

    air air  

     M 

     M 

     ρ γ 

     ρ =

  • 8/16/2019 Basic Reservoir Engineering - Part I

    41/90

    Gas Deviation Factor (Z-factor)

    3/18/2013 41Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Z-factor in the EOS accounts for the difference inthe behavior of natural gases in compared with idealgases.

    ; pr pr 

     pc pc

     p T  p T 

     p T = =

    Z-factor can be expressed as: Z=Z(ppr,Tpr) where

    ; pc i ci pc i ci

    i i

     p y p T y T = =∑ ∑

    ppr: pseudo-reduced pressureTpr: pseudo-reduced temperatureppc: pseudo-critical pressureTpc: pseudo-critical temperature

  • 8/16/2019 Basic Reservoir Engineering - Part I

    42/90

    Standing-Katz Chart

    3/18/2013 42Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Step 1: Calculate pseudo-criticalpressure and temperature

    Step 2: Calculate pseudo-reducedpressure and temperature:

    Step 3: Use Standings-Katz chartto determine Z

    ; pr pr 

     pc pc

     p T  p T 

     p T = =

    ; pc i ci pc i ci

    i i

     p y p T y T = =∑ ∑

    Dranchuk & Abou-Kassem

  • 8/16/2019 Basic Reservoir Engineering - Part I

    43/90

    Dranchuk & Abou-KassemCorrelation

    3/18/2013 43Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    7210.0;6134.0

    1056.0;1844.0;7361.0

    5475.0;05165.0;01569.0

    5339.0;0700.1;3265.0

    1110

    987

    654

    321

    ==

    ==−=

    =−==−=−==

     A A

     A A A

     A A A

     A A A

    2 5 2 2 22

    1 3 4 5 11 11

    3 4 5

    1 1 2 3 4 5

    2

    2

    3 6 7 8

    2

    4 9 7 8

    3

    5 10

    ( ) (1 ) exp( ) 1 0

    0.27 / ( )

    / / / /

    0.27 /

    / /

    ( / / )

    /

    r r r r r r r  r 

    r pr pr  

     pr pr pr pr 

     pr pr 

     pr pr 

     pr pr 

     pr 

     RF R R R R A A

     p ZT 

    R A A T A T A T A T  

    R p T 

    R A A T A T  

    R A A T A T  

    R A T 

     ρ ρ ρ ρ ρ ρ ρ  ρ 

    ρ 

    = − + − + + − + =

    =

    = + + + +

    =

    = + +

    = +

    =

  • 8/16/2019 Basic Reservoir Engineering - Part I

    44/90

    Exercise 2

    Component yi Mi Tci,°R pci

    CO2 0.02  44.01  547.91  1071 

    N2 0.01  28.01  227.49  493.1 

    C1 0.85  16.04  343.33  666.4 

    C2 0.04  30.1  549.92  706.5 

    C3 0.03  44.1  666.06  616.4 

    i - C4 0.03  58.1  734.46  527.9 

    n - C4 0.02  58.1  765.62  550.6 

    3/18/2013 44Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    45/90

    Wichert-Aziz Correction Method

    R ,   oε −=   pc pc   T T 

    2 2

    , psia(1 )

     pc pc

     pc

     pc H S H S 

     p T  p

    T y y   ε =

    + −

    Corrected pseudo-critical temperature:

    Corrected pseudo-critical pressure:

    ( ) ( )(   )   ( )2 2 2 2 2 20.9 1.6

    0.5 4.0120 15 , H S CO H S CO H S H S  y y y y y yε   = + − + + −

    Pseudo-critical temperature adjustment factor

    3/18/2013 45Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    46/90

    Exercise 3

    Component Mole fraction

    C1 0.76

    C2 0.07CO2 0.1

    H2S 0.07

    Given the following real gas composition,

    Determine the density of the gas mixture at 1,000psia and 110 °F using Witchert-Aziz correctionmethod.

    3/18/2013 46Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    47/90

    Sutton Correction Method

    20.5

    o

    o

    1 2, R/psia

    3 3

    , R/psiai

    i

    c ci i

    i ic ci i

    c

    i

    i c

    T T  J y y

     p p

    T K y

     p

    = +

    =

    ∑ ∑

    Step1: Calculate the parameters J and K:

    7 7

    7 7

    7 7 7

    7

    20.5

    2 2

    2 3

    1 2

    3 3

    0.6081 1.1325 14.004 64.434

    0.3129 4.8156 27.3751

    c c J 

    c c

    C  C 

     J J J J C J C 

    cK C C C  

    c C 

    T T F y y

     p p

    F F F y F y

    T  y y y

     p

    ε 

    ε 

    + +

    + +

    + + +

    +

    = +

      = + − +

    = − +

    Step 2: Calculate the adjustment parameters:

    3/18/2013 47Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    S C i M h d ( )

  • 8/16/2019 Basic Reservoir Engineering - Part I

    48/90

    Sutton Correction Method (cont.)

     J 

    K K 

     J  J 

    ε 

    ε 

    −=

    −=Step 3: Adjust the parameters J and K

     J T  p

     J 

    K T 

     pc pc

     pc

    =

    =2

    Step 4: Calculate the adjusted pseudo-criticalterms

    3/18/2013 48Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Correlations for Pseudo Properties

  • 8/16/2019 Basic Reservoir Engineering - Part I

    49/90

    Correlations for Pseudo Propertiesof Real Gas Mixture

    3/18/2013 49Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Isothermal Compressiblity of

  • 8/16/2019 Basic Reservoir Engineering - Part I

    50/90

    Isothermal Compressiblity ofNatural Gas Mixture

    1 d 

    d g

    V c

    V p= −

    By definition, the compressibility of the gas is

    1 1g

    dzc

     p z dp

    = −  

    Isothermal pseudo-reduced compressibility:

    3/18/2013 50Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    or

    1 1 d 

    d  pr 

     pr g pc pr pr  T 

     z

    c c p  p z p

    = = −  

    Gas Isothermal Compressiblity Correlation by

  • 8/16/2019 Basic Reservoir Engineering - Part I

    51/90

    Gas Isothermal Compressiblity Correlation by

    Matter, Brar & Aziz (1975)

    2

    1 0.27

    1

     pr 

     pr 

    r    T 

    g

     pr pr    r 

    r    T 

    dz

    d c

     p z T    dz

     z d 

     ρ 

     ρ 

     ρ 

    = −

    +  

    3/18/2013 51Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    ( ) ( )4 2 2 4 21 2 3 4 8 8 82 5 2 1 exp pr 

    r r r r r r  

    r    T 

    dzT T T T A A A

    d  ρ ρ ρ ρ ρ ρ 

     ρ  = + + + + − −

    3 521 1 2 43

    5 6 73 4 53

    ;

    0.27; ;

     pr pr pr 

     pr 

     pr pr pr 

     A A AT A T A

    T T T  p A A A

    T T T T T T 

    = + + = +

    = = =

    A1 0.3150624 A5 -0.61232032

    A2 -1.04671 A6 -0.10488813

    A3 -0.578327 A7 0.68157001

    A4 0.5353077 A8 0.68446549

    G F i V l F

  • 8/16/2019 Basic Reservoir Engineering - Part I

    52/90

    Gas Formation Volume Factor

    , p T 

    g

    sc

    V  B

    V =

    By definition, the gas FVF is

    Combining the above equation with the EOS yields

    3/18/2013 52Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    30.02827 (ft /scf)

    0.005035 (bbl/scf)

    g

    g

     zT  B

     p

     zT  B p

    =

    =

    Gas Viscosity Correlation Method by

  • 8/16/2019 Basic Reservoir Engineering - Part I

    53/90

    Gas Viscosity Correlation Method byCarr, Kobayashi and Burrows (1954)

    Step 1: Calculate pseudo-critical properties and thecorrections to these properties for the presence ofnonhydrocarbon gases (CO2, H2S, N2)

    3/18/2013 53Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Step 2: Obtain the (corrected) viscosity of the gas

    mixture at one atmosphere and the temperature ofinterest

    2 2 21 1uc   N CO H S  µ µ µ µ µ  = + ∆ + ∆ + ∆

    Step 3: Calculate the pseudo-reduced pressure and

    temperature, and obtain the viscosity ratio (µg /µ1)

    Step 4: Calculate the gas viscosity from µ1 and theviscosity ratio (µg /µ1)

    Carr’s Atmospheric Gas Viscosity

  • 8/16/2019 Basic Reservoir Engineering - Part I

    54/90

    Carr s Atmospheric Gas ViscosityCorrelation

    3/18/2013 54Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    G Vi it R ti C l ti

  • 8/16/2019 Basic Reservoir Engineering - Part I

    55/90

    Gas Viscosity Ratio Correlation

    3/18/2013 55Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Standing’s Correlation for

  • 8/16/2019 Basic Reservoir Engineering - Part I

    56/90

    Standing s Correlation for Atmospheric Gas Viscosity

    ( )

    ( )5 6

    1

    3 3

    1.709 10 2.062 10 460

    8.118 10 6.15 10 log

    uc   g

    g

    T µ γ  

    γ  

    − −

    − −

    = × − × − +

    × − × ×

    3/18/2013 56Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    ( )2 2

    2 2

    2 2

    3 3

    3 3

    3 3

    9.08 10 log 6.24 10

    8.48 10 log( ) 9.59 10

    8.49 10 log( ) 3.73 10

    CO CO g

     N N g

     H S H S g

     y

     y

     y

    µ γ  

    µ γ  

    µ γ  

    − −

    − −

    − −

    ∆ = × × + × ∆ = × × + ×

    ∆ = × × + ×

    2 2 21 1uc   CO N H S  µ µ µ µ µ  = + ∆ + ∆ + ∆

    Dempsey’s Correlation for Gas

  • 8/16/2019 Basic Reservoir Engineering - Part I

    57/90

    e psey s Co e at o o GasViscosity Ratio

    2 3

    0 1 2 3

    1

    2 3

    4 5 6 7

    2 2 3

    8 9 10 11

    3 2 3

    12 13 14 15

    ln  g

     pr pr pr pr 

     pr pr pr pr 

     pr pr pr pr 

     pr pr pr pr 

    T a a p a p a p

    T a a p a p a p

    T a a p a p a p

    T a a p a p a p

    µ 

    µ 

    = + + + +

    + + + +

    + + + +

    + + +

    3/18/2013 57Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    a0 = −2.46211820 a1 = 2.970547414a2 = −2.86264054 (10−1)a3 = 8.05420522 (10−3)a4 = 2.80860949a5 = −3.49803305 

    a6 = 3.60373020 (10−1)a7 = −1.044324 (10−2)a8 = −7.93385648 (10−1)a9 = 1.39643306a10 = −1.49144925 (10−1)a11 = 4.41015512 (10−3)

    a12 = 8.39387178 (10−2)a13 = −1.86408848 (10−1)a14 = 2.03367881 (10−2)a15 = −6.09579263 (10−4)

  • 8/16/2019 Basic Reservoir Engineering - Part I

    58/90

    Exercise 4

    A gas well is producing at a rate of 15,000 ft3/dayfrom a gas reservoir at an average pressure of 2,000psia and a temperature of 120°F. The specificgravity is 0.72.

    Calculate the vicosity of the gas mixture using bothgraphical and analytical methods.

    3/18/2013 58Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    59/90

    Properties of Crude Oil

    3/18/2013 59Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

     Oil density and gravity

     Gas solubility

     Bubble-point pressure

     Oil formation volume factor

    Isothermal compressibility coefficient of

    undersaturated crude oils

     Oil viscosity

    These fluid properties are usually determined by laboratoryexperiments. When such experiments are not available,empirical correlations are used 

  • 8/16/2019 Basic Reservoir Engineering - Part I

    60/90

    Crude Oil Density

    3/18/2013 60Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    The crude oil density is defined as the mass of aunit volume of the crude oil at a specifiedpressure and temperature.

    3  (lb/ft )oo

    o

    m

    V  ρ   =

    d l

  • 8/16/2019 Basic Reservoir Engineering - Part I

    61/90

    Crude Oil Gravity

    3/18/2013 61Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    The specific gravity of a crude oil is defined as theratio of the density of the oil to that of water.

    oAPI is usually used to reprensent the gravity ofthe crude oil as follow

    3; 62.4 (lb/ft )oo ww

     ρ γ ρ 

     ρ = =

    141.5 -131.5o

    o

     API γ 

    =

    The API gravity of crude oils

    usually ranges from 47° API forthe lighter crude oils to 10° APIfor the heavier crude oils.

    l k il d l

  • 8/16/2019 Basic Reservoir Engineering - Part I

    62/90

    Black Oil Model

    3/18/2013 62Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    G S l bili R

  • 8/16/2019 Basic Reservoir Engineering - Part I

    63/90

    Gas Solubility Rs

    3/18/2013 63Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Rs is defined as the number of standard cubic feetof gas dissolved in one stock-tank barrel of crudeoil at certain pressure and temperature.

    The solubility of a natural gas in a crude oil is a

    strong function of the pressure, temperature, APIgravity, and gas gravity.

  • 8/16/2019 Basic Reservoir Engineering - Part I

    64/90

    Standing’s Correlation for R

  • 8/16/2019 Basic Reservoir Engineering - Part I

    65/90

    Standing s Correlation for Rs

    3/18/2013 65Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    ( )

    1.2048

    1.4 1018.2

    0.0125 0.0009 460

     x

    s g

     p

     R

     x API T 

    γ 

     

    = + ×

    = × − × −

    Ch t i ti f R i R k

  • 8/16/2019 Basic Reservoir Engineering - Part I

    66/90

    Characteristics of Reservoir Rocks

    3/18/2013 66Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

     Porosity

     Permeability

     In-situ Saturation

    P it

  • 8/16/2019 Basic Reservoir Engineering - Part I

    67/90

     pore   bulk matrix

    bulk bulk  

    V    V V 

    V V φ   −

    = =

    Porosity

    3/18/2013 67Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    P it

  • 8/16/2019 Basic Reservoir Engineering - Part I

    68/90

    Porosity

    Porosity depends on grain packing, NOT grain size

    Rocks with different grain sizes can have the sameporosity

    • Rhombohedral packing

    •  Pore space = 26 % of total volume•  Cubic packing

    •  Pore space = 47 % of total volume

    3/18/2013 68Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    69/90

    Rock Matrix and Pore Space

    Rock matrix Pore space

    3/18/2013 69Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    P S Cl ifi ti

  • 8/16/2019 Basic Reservoir Engineering - Part I

    70/90

    Pore-Space Classification

    Total porosity 

    Effective porosity

    Total Pore Space

    Bulk Volume

     pore

    bulk 

    φ   = =

    Interconnected Pore SpaceBulk Volume

    eφ   =

    3/18/2013 70Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    bili

  • 8/16/2019 Basic Reservoir Engineering - Part I

    71/90

    Permeability is a property of the porous

    medium and is a measure of the capacity of

    the medium to transmit fluids

    Permeability

    3/18/2013 71Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    72/90

  • 8/16/2019 Basic Reservoir Engineering - Part I

    73/90

    R l i P bili

  • 8/16/2019 Basic Reservoir Engineering - Part I

    74/90

    Relative permeability  is defined as the ratio

    of the effective permeability to a fluid at a

    given saturation to the effective permeability

    to that fluid at 100% saturation

    Relative Permeability

    3/18/2013 74Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

  • 8/16/2019 Basic Reservoir Engineering - Part I

    75/90

    Darcy’s Law

  • 8/16/2019 Basic Reservoir Engineering - Part I

    76/90

    Darcy s Law

    v: Velocity

    q: Flow rate

    A: Cross-section areak: Permeability

    µ: Viscosity∆L: Length increment

    ∆p: Pressure drop

    Direction of flow  A

    q k pv

     A Lµ 

    ∆≡ = − ×

    3/18/2013 76Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Fluid Saturation

  • 8/16/2019 Basic Reservoir Engineering - Part I

    77/90

    Fluid Saturation

    Fluid saturation is defined as the fraction of porevolume occupied by a given fluid

    Phase saturations

    Sw = water saturation

    So = oil saturationSg = gas saturation

    specific fluid 

     poreSaturation

    V =

    3/18/2013 77Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    I Sit S t ti

  • 8/16/2019 Basic Reservoir Engineering - Part I

    78/90

    In-Situ Saturation

    Rock matrix Water Oil and/or gas

    3/18/2013 78Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Exercise 5

  • 8/16/2019 Basic Reservoir Engineering - Part I

    79/90

    Exercise 5

    1. Pore volume occuppied by water

    2. Pore volume occupied by hydrocarbon

    3/18/2013 79Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Given the following reservoir data:

    Bulk Volume Vb

    Porosity

    Water saturation Sw

    Calculate:

    Reservoir Drive Mechanisms

  • 8/16/2019 Basic Reservoir Engineering - Part I

    80/90

    Reservoir Drive Mechanisms

    Solution Gas Drive

    Gas Cap Drive

    Water Drive

    Gravity drainage drive

    Combination drive

    3/18/2013 80Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Reservoir Energy Sources

  • 8/16/2019 Basic Reservoir Engineering - Part I

    81/90

    Reservoir Energy Sources

    Liberation, expansion of solution gas

    Influx of aquifer water

    Expansion of reservoir rock

    Expansion of original reservoir fluids

    Free gas

    Connate water

    Oil

    Gravitational forces

    Solution-Gas Drive in Oil Reservoirs

  • 8/16/2019 Basic Reservoir Engineering - Part I

    82/90

    Solution-Gas Drive in Oil Reservoirs

    Oil

    A. Original Condition

    B. 50% Depleted

    Oilproducing

    wells

    Oilproducing

    wells

    3/18/2013 82Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Solution-Gas Drive in Oil ReservoirsF i f S d G C

  • 8/16/2019 Basic Reservoir Engineering - Part I

    83/90

    Formation of a Secondary Gas Cap

    Wellbore

    Secondarygas cap

    3/18/2013 83Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Gas Cap Drive in Oil Reservoirs

  • 8/16/2019 Basic Reservoir Engineering - Part I

    84/90

    Oil producing well

    Oilzone

    OilzoneGas cap

    Gas-Cap Drive in Oil Reservoirs

    3/18/2013 84Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Water Drive in Oil Reservoirs

  • 8/16/2019 Basic Reservoir Engineering - Part I

    85/90

    Oil producing well

    Water  Water 

    Cross Section

    Oil  Zone 

    Edgewater Drive

    3/18/2013 85Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Water Drive in Oil Reservoirs

  • 8/16/2019 Basic Reservoir Engineering - Part I

    86/90

    Oil producing well

    Cross Section 

    Oil Zone

    Water

    Bottomwater Drive

    3/18/2013 86Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Gravity Drainage Drive in OilR i

  • 8/16/2019 Basic Reservoir Engineering - Part I

    87/90

    Reservoirs

    Oil 

    Oil 

    Oil 

    Point A

    Point B

    Point C

    Gas

    Gas

    Gas

    3/18/2013 87Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Combination Drive in Oil Reservoirs

  • 8/16/2019 Basic Reservoir Engineering - Part I

    88/90

    Combination Drive in Oil Reservoirs 

    Water

    Cross Section

    Oil zone

    Gas cap

    3/18/2013 88Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Pressure and Gas/Oil Ratio Trends

  • 8/16/2019 Basic Reservoir Engineering - Part I

    89/90

    Pressure and Gas/Oil Ratio Trends

    0 20 40 60 80 100

    100

    80

    60

    40

    20

    0

    Gas-cap drive

    Water drive

    Solution-gas drive

       R

      e  s  e  r  v  o   i  r  p  r  e

      s  s  u  r  e ,

        P  e  r  c  e  n   t  o   f  o  r

       i  g   i  n  a   l

    Cumulative oil produced, percent of original oil in place

    3/18/2013 89Mai Cao Lân – Faculty of Geology & Petroleum Engineering - HCMUT

    Exercise 6

  • 8/16/2019 Basic Reservoir Engineering - Part I

    90/90

    Exercise 6

    1. How can we identify different reservoir drive

    mechanisms?

    2. Rank in descending order typical reservoir drivemechanisms in terms of efficiency

    3. How does knowledge about reservoir drive mechanisms

    help us in designing an oil field development plan?