Top Banner
Basic Dividers Lecture 9
28

Basic Dividers

Feb 25, 2016

Download

Documents

bien

Lecture 9. Basic Dividers. Required Reading. Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design. Chapter 13, Basic Division Schemes 13.1, Shift/Subtract Division Algorithms 13.3, Restoring Hardware Dividers 13.4, Non-Restoring and Signed Division. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Basic Dividers

Basic Dividers

Lecture 9

Page 2: Basic Dividers

Required Reading

Chapter 13, Basic Division Schemes13.1, Shift/Subtract Division Algorithms13.3, Restoring Hardware Dividers13.4, Non-Restoring and Signed Division

Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design

Page 3: Basic Dividers

Notation and

Basic Equations

Page 4: Basic Dividers

4

Notation

z Dividend z2k-1z2k-2 . . . z2 z1 z0

d Divisor dk-1dk-2 . . . d1 d0

q Quotient qk-1qk-2 . . . q1 q0

s Remainder sk-1sk-2 . . . s1 s0

(s = z - dq)

Page 5: Basic Dividers

5

Basic Equations of Division

z = d q + s

sign(s) = sign(z)

| s | < | d |

z > 00 s < | d |

z < 0- | d | < s 0

Page 6: Basic Dividers

6

Unsigned Integer Division Overflow

z = zH 2k + zL < d 2k

Condition for no overflow (i.e. q fits in k bits):

z = q d + s < (2k-1) d + d = d 2k

zH < d

• Must check overflow because obviously the quotient q can also be 2k bits. • For example, if the divisor d is 1, then the quotient q is the

dividend z, which is 2k bits

Page 7: Basic Dividers

7

Sequential Integer DivisionBasic Equations

s(0) = z

s(j) = 2 s(j-1) - qk-j (2k d) for j=1..k

s(k) = 2k s

Page 8: Basic Dividers

8

Sequential Integer DivisionJustification

s(1) = 2 z - qk-1 (2k d)s(2) = 2(2 z - qk-1 (2k d)) - qk-2 (2k d)s(3) = 2(2(2 z - qk-1 (2k d)) - qk-2 (2k d)) - qk-3 (2k d)

. . . . . .

s(k) = 2(. . . 2(2(2 z - qk-1 (2k d)) - qk-2 (2k d)) - qk-3 (2k d) . . . - q0 (2k d) = = 2k z - (2k d) (qk-1 2k-1 + qk-2 2k-2 + qk-3 2k-3 + … + q020) = = 2k z - (2k d) q = 2k (z - d q) = 2k s

Page 9: Basic Dividers

9

Fig. 13.2 Examples of sequential division with integer and fractional operands.

Page 10: Basic Dividers

Fractional Division

Page 11: Basic Dividers

11

Unsigned Fractional Division

zfrac Dividend .z-1z-2 . . . z-(2k-1)z-2k

dfrac Divisor .d-1d-2 . . . d-(k-1) d-k

qfrac Quotient .q-1q-2 . . . q-(k-1) q-k

sfrac Remainder .000…0s-(k+1) . . . s-(2k-1) s-2kk bits

Page 12: Basic Dividers

12

Integer vs. Fractional Division

For Integers:

z = q d + s 2-2k

z 2-2k = (q 2-k) (d 2-k) + s (2-2k)

zfrac = qfrac dfrac + sfrac

For Fractions:

where zfrac = z 2-2k

dfrac = d 2-k

qfrac = q 2-k

sfrac = s 2-2k

Page 13: Basic Dividers

13

Unsigned Fractional Division Overflow

Condition for no overflow:

zfrac < dfrac

Page 14: Basic Dividers

14

Sequential Fractional DivisionBasic Equations

s(0) = zfrac

s(j) = 2 s(j-1) - q-j dfrac for j=1..k

2k · sfrac = s(k)

sfrac = 2-k · s(k)

Page 15: Basic Dividers

15

Sequential Fractional DivisionJustification

s(1) = 2 zfrac - q-1 dfrac

s(2) = 2(2 zfrac - q-1 dfrac) - q-2 dfrac

s(3) = 2(2(2 zfrac - q-1 dfrac) - q-2 dfrac) - q-3 dfrac

. . . . . .

s(k) = 2(. . . 2(2(2 zfrac - q-1 dfrac) - q-2 dfrac) - q-3 dfrac . . . - q-k dfrac = = 2k zfrac - dfrac (q-1 2k-1 + q-2 2k-2 + q-3 2k-3 + … + q-k20) = = 2k zfrac - dfrac 2k (q-1 2-1 + q-2 2-2 + q-3 2-3 + … + q-k2-k) = = 2k zfrac - (2k dfrac) qfrac = 2k (zfrac - dfrac qfrac) = 2k sfrac

Page 16: Basic Dividers

Restoring Unsigned Integer Division

Page 17: Basic Dividers

17

Restoring Unsigned Integer Division

s(0) = z

for j = 1 to k

if 2 s(j-1) - 2k d > 0 qk-j = 1 s(j) = 2 s(j-1) - 2k d else qk-j = 0 s(j) = 2 s(j-1)

Page 18: Basic Dividers

18

Fig. 13.6 Example of restoring unsigned division.

Page 19: Basic Dividers

19

Fig. 13.5 Shift/subtract sequential restoring divider.

Page 20: Basic Dividers

Signed Integer Division

Page 21: Basic Dividers

21

Signed Integer Division

z d

| z | | d | sign(z) sign(d)

| q | | s |

sign(s) = sign(z)

sign(q) =+

-

Unsigneddivision

sign(z) = sign(d)

sign(z) sign(d)

q s

Page 22: Basic Dividers

22

Examples of division with signed operands

z = 5 d = 3 q = 1 s = 2

z = 5 d = –3 q = –1 s = 2

z = –5 d = 3 q = –1 s = –2

z = –5 d = –3 q = 1 s = –2

Magnitudes of q and s are unaffected by input signsSigns of q and s are derivable from signs of z and d

Examples of Signed Integer Division

Page 23: Basic Dividers

Fast Review ofFast Dividers

Page 24: Basic Dividers

24

Classification of Dividers

Sequential

Radix-2 High-radix

RestoringNon-restoring

• regular• SRT• regular using carry save adders• SRT using carry save adders

ArrayDividers

Dividersby Convergence

Page 25: Basic Dividers

25

ArrayDividers

Page 26: Basic Dividers

26

Fig. 15.7 Restoring array divider composed of controlledsubtractor cells.

Page 27: Basic Dividers

27

Multiply/DivideUnit

Page 28: Basic Dividers

28

The control unit proceeds through necessary steps for multiplication or division (including using the appropriate shift direction)

Fig. 15.9 Sequential radix-2 multiply/divide unit.

Multiplier x or quotient q

Mux

Adder out c

0 1

Partial product p or partial remainder s

Multiplicand a or divisor d

Shift control

Shift

Enable

in c

q k–j

MSB of 2s (j–1)

k

k

k

j x

MSB of p (j+1)

Divisor sign

Multiply/ divide control

Select

Mul Div

The slight speed penalty owing to a more complex control unit is insignificant

Multiply-Divide Unit