Top Banner
Basic Basic Color Color Theory Theory Susan Farnand [email protected]
35
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Basic Basic Color Color TheoryTheorySusan Farnand [email protected]

Page 2: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Tell me about color:

How would you define color?

How does color happen?Where does color

happen?

Why do things look colorful?

Page 3: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

At least two things needed for color to happen:

A source…

Page 4: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

…and a sensor

Page 5: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Visible Light SpectrumVisible Light Spectrum

400 nm

700 nm

Page 6: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Light Sources Compared

0

50

100

150

200

250

300

350

300 400 500 600 700 800

Wavelength, nm

Rel

ativ

e S

pec

tral

Po

wer

typical daylight

incandescent

mercury vapor lamp

6500K fluorescent

Page 7: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Basic Structure of the Human

Eye

Page 8: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Schematic of the Retina

PhotoreceptorsHorizontal, bipolar, and

amacrine cellsGanglion cellsIncoming light

Page 9: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Relative Spectral Sensitivity of Cones & Rods

0

50

100

350 450 550 650 750

Wavelength, nm

Rel

ativ

e S

ensi

tivi

ty

S rods M L

Page 10: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Rods Cones

S R M L

Spectral sensitivity

Page 11: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Mixing–Color Mixing–AdditiveAdditive

Adding light Mixing light sources Red, Green, Blue primaries

Page 12: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Additive Color Mixing:

Page 13: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Mixing–Color Mixing–AdditiveAdditive

Adding light Mixing light sources Red, Green, Blue primaries Can you think of examples of

systems using additive light

Page 14: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Mixing– Subtractive Removing light Mixing dyes, pigments or other colorants Cyan, magenta, & yellow primaries Can you think of examples of systems using subtractive light?

Page 15: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

What happens to the What happens to the light?light?

Transmitted

Absorbed

Reflected

Page 16: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Subtractive Color Mixing

Page 17: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Measuring ColorMeasuring Color

Are these two patches the same?

Page 18: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Reflected Light

0

50

100

300 350 400 450 500 550 600 650 700 750 800

Wavelength, nm

Ref

lect

acn

e

Page 19: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Sensation of Color

Light Source

Object Observer

Page 20: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Light Sources Compared

0

50

100

150

200

250

300

350

300 400 500 600 700 800

Wavelength, nm

Rel

ativ

e S

pec

tral

Po

wer

typical daylight

incandescent

mercury vapor lamp

6500K fluorescent

Page 21: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Cone mosaic data from experiment by Hofer, Singer, and Williams (2005). Different sensations from cones with the same photopigment. Journal of Vision, 5(5):5, 444–454.

Page 22: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

CIE Commission Internationale de

l’Eclairage (International Commission on Illumination), an international

organization that establishes and maintains standards of light and color. Its system of describing color is based on standardization of illuminants and

observers, not physical samples.

Page 23: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

CIE Illuminants

0

50

100

150

200

250

300

300 400 500 600 700 800

Wavelength, nm

Rel

ativ

e S

pec

tral

Po

wer

Illuminant A

illuminant C

illuminant D50

illuminant D65

illuminant D75

Page 24: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Matching Experiment

Page 25: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Matching Functions

Page 26: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Matching Experiment

Page 27: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Matching Functions1931 Standard Observer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

380 480 580 680

Wavelength, nm

CIE 2° x

CIE 2° y

CIE 2° z

Page 28: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Computing CIE Tristimulus Values

Illuminant Object Observer

The CIE tristimulus values X, Y, and Z are obtained by multiplying together the power (P) of a CIE standard illuminant, the reflectance (R) of the object, and the standard observer functions and then summing the products.

Page 29: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Computing CIE Tristimulus Values

The CIE tristimulus values X, Y, and Z are obtained by multiplying together the power of a CIE standard illuminant, the reflectance of the object, and the standard observer functions and then summing the products.

Doing the math…

Page 30: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Colorimetric MatchColorimetric Match

Colorimetric match is defined as when the tristimulus values for two stimuli match:

X1 = X2

Y1 = Y2

Z1 = Z2Sample 1 Sample 2

Page 31: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Metamerism

Two colored patches that have different reflectance curves may appear the same when viewed under one illuminant, but may appear different when viewed under a second illuminant.

0

2

4

6

8

10

350 450 550 650 750

Wavelength (nm)

Rela

tive

Sensi

tivi

tyPatch 1

Patch 2

Page 32: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Colorimetric MatchColorimetric Match

Colorimetric match is defined as when the tristimulus values for two stimuli match:

X1 = X2

Y1 = Y2

Z1 = Z2Sample 1 Sample 2

Page 33: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Chromaticity Values and the Chromaticity Diagram

The CIE tristimulus values X, Y, and Z are can be transformed to chromaticity values (x, y) and displayed on a unit plane is known as the chromaticity diagram.

Chromaticity values are calculated by:x = X/(X+Y+Z), y = Y/(X+Y+Z)

It is also possible to calculate a chromaticity for z, wherez=Z/(X+Y+Z). Since x+y+z = 1, it is redundant (i.e. z=1-x-y)

Page 34: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Chromaticity Diagram

Page 35: Basic Color Theory Susan Farnand farnand@cis.rit.edu.

Color Differences on the 1931 CIE Chromaticity Diagram