Top Banner
Electronics Overview Basic Circuits, Power Supplies, Transistors, Cable Impedance diode bridge
40

Basic Circuits, Power Supplies, Transistors, Cable Impedance

Feb 24, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Basic Circuits, Power Supplies, Transistors, Cable Impedance

ElectronicsOverview

BasicCircuits,PowerSupplies,Transistors,CableImpedance

diodebridge

Page 2: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 2

BasicCircuitAnalysis

•  Whatwewon’tdo:–  commonelectronics-classthings:RLC,filters,detailedanalysis

•  Whatwewilldo:–  setoutbasicrelaGons–  lookatafewexamplesoffundamentalimportance(mostlyresisGvecircuits)

–  lookatdiodes,voltageregulaGon,transistors–  discussimpedances(cable,output,etc.)

Page 3: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 3

TheBasicRelaGons

•  Visvoltage(volts:V);Iiscurrent(amps:A);Risresistance(ohms:Ω);Ciscapacitance(farads:F);Lisinductance(henrys:H)

•  Ohm’sLaw:V=IR;V=;V=L(dI/dt)•  Power:P=IV=V2/R=I2R•  Resistorsandinductorsinseriesadd•  Capacitorsinparalleladd•  Resistorsandinductorsinparallel,andcapacitorsinseriesaddaccordingto:

1C

Idt∫

1Xtot

=1X1

+1X2

+1X3

+…

Page 4: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 4

Example:Voltagedivider•  Voltagedividersareaclassicwaytoseta

voltage

•  Worksontheprinciplethatallchargeflowingthroughthefirstresistorgoesthroughthesecond–  soΔV∝R-value–  providedanyloadatoutputisnegligible:

otherwisesomecurrentgoestheretoo

•  SoVout=V(R2/(R1+R2))

•  R2hereisavariableresistor,orpoten.ometer,or“pot”–  typicallythreeterminals:R12isfixed,tap

slidesalongtovaryR13andR23,thoughR13+R23=R12always

1

2

3

R1

R2

V Vout

Page 5: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 5

RealBa[eries:OutputImpedance•  Apowersupply(ba[ery)ischaracterizedbyavoltage

(V)andanoutputimpedance(R)–  someGmescalledsourceimpedance

•  Hookinguptoload:Rload,weformavoltagedivider,sothatthevoltageappliedbytheba[eryterminalisactuallyVout=V(Rload/(R+Rload))–  thusthesmallerRis,the“sGffer”thepowersupply

–  whenVoutsagswithhigherloadcurrent,wecallthis“droop”

•  Example:If10.0Vpowersupplydroopsby1%(0.1V)whenloadedto1Amp(10Ωload):–  internalresistanceis0.1Ω–  calledoutputimpedanceorsourceimpedance

–  mayvarywithload,though(notarealresistor)

V

R

Page 6: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 6

PowerSuppliesandRegulaGon•  Apowersupplytypicallystartswithatransformer

–  toknockdownthe340Vpeak-to-peak(120VAC)tosomethingreasonable/manageable

•  Wewillbeusingacenter-taptransformer

–  (A’-B’)=(windingraGo)×(A-B)•  whenA>B,soisA’>B’

–  geometryofcentertap(CT)guaranteesitismidwaybetweenA’andB’(frequentlyGethistogroundsothatA’=-B’)

–  notethatsecondarysidefloats:nogroundreferencebuilt-in

A

B

A’

CT

B’

ACinput ACoutput

Page 7: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 7

Transformerisjustwirecoiledaroundmetal•  MagneGcfieldisgeneratedby

currentinprimarycoil•  IroncorechannelsmagneGcfield

throughsecondarycoil•  SecondaryVoltageis

V2=(N2/N1)V1•  SecondaryCurrentis

I2=(N1/N2)I1•  ButPowerin=Powerout

–  negligiblepowerlostintransformer

•  WorksonlyforAC,notDC

Page 8: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 8

TypicalTransformers

transformersusuallyheavyduetoironcore

Page 9: Basic Circuits, Power Supplies, Transistors, Cable Impedance

9

= 170 Volts

= -170 Volts

120 VAC is a root-mean-square number: peak-to-peak is 340 Volts!

Page 10: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 10

ACReceptacle•  Receptacleshavethreeholeseach•  Lower(rounded)holeisearthground

–  connectedtopipes,usually–  greenwire

•  Largerslotis“neutral”–  forcurrent“return”–  neverfarfromground–  whitewire–  ifwiredcorrectly

•  Smallerslotis“hot”–  swingsto+170and-170–  blackwire–  dangerousone

Page 11: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 11

Diodes•  DiodesareessenGallyone-waycurrentgates•  Symbolizedby:•  Currentvs.voltagegraphs:

V

I

V

I

V

I

V

I

0.6V

plainresistor diode idealizeddiode WAYidealizeddiode

nocurrentflows currentflows

thedirecGonthearrowpointsinthediodesymbolisthedirecGonthatcurrentwillflow

actsjustlikeawire(willsupportarbitrarycurrent)providedthatvoltageisposiGve

Page 12: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 12

DiodeMakeup

•  Diodesaremadeofsemiconductors(usuallysilicon)

•  EssenGallyastackofp-dopedandn-dopedsilicontoformap-njunc.on–  dopingmeansdeliberateimpuriGesthatcontributeextraelectrons(n-doped)or“holes”forelectrons(p-doped)

•  Transistorsaren-p-norp-n-parrangementsofsemiconductors

p-type n-type

Page 13: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 13

LEDs:Light-EmiingDiodes•  MaindifferenceismaterialismoreexoGcthansiliconusedinordinarydiodes/

transistors–  typically2-voltdropinsteadof0.6Vdrop

•  WhenelectronflowsthroughLED,losesenergybyemiingaphotonoflightratherthanvibraGnglaice(heat)

•  LEDefficiencyis30%(comparetoincandescentbulbat10%)

•  Mustsupplycurrent-limiGngresistorinseries:–  figureon2VdropacrossLED;aimfor1–10mAofcurrent

Page 14: Basic Circuits, Power Supplies, Transistors, Cable Impedance

14

GeingDCbackoutofAC•  ACprovidesameansforustodistributeelectrical

power,butmostdevicesactuallywantDC–  bulbs,toasters,heaters,fansdon’tcare:plugstraightin–  sophisGcateddevicescarebecausetheyhavediodesand

transistorsthatrequireacertainpolarity•  ratherthanoscillaGngpolarityderivedfromAC•  thisiswhyba[eryorientaGonma[ersinmostelectronics

•  Usediodesto“recGfy”ACsignal•  Simplest(half-wave)recGfierusesonediode:

ACsource load

inputvoltage

voltageseenbyloaddiodeonlyconductswheninputvoltageisposiGve

Page 15: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 15

DoingBe[er:Full-waveDiodeBridge•  ThediodeintherecGfyingcircuitsimplypreventedthenegaGveswingofvoltagefromconducGng–  butthiswasteshalftheavailablecycle–  alsoveryirregular(bumpy):farfroma“good”DCsource

•  Byusingfourdiodes,youcanrecoverthenegaGveswing:

A

C

B

D

ACsource

load

inputvoltage

voltageseenbyload

B&Cconduct

A&Dconduct

Page 16: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 16

Full-WaveDual-Supply•  Bygroundingthecentertap,wehavetwooppositeACsources–  thediodebridgenowpresents+and-voltagesrelaGvetoground

–  eachcanbeseparatelysmoothed/regulated–  cuingoutdiodesAandDmakesahalf-waverecGfier

A

C

B

D

ACsource

+load

-load

voltagesseenbyloads

canbuypre-packageddiodebridges

Page 17: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 17

SmoothingouttheBumps•  SGllabumpyride,butwecansmooththisoutwithacapacitor–  capacitorshavecapacityforstoringcharge–  actslikeareservoirtosupplycurrentduringlowspots–  voltageregulatorsmoothesoutremainingripple

A

C

B

D

ACsource

load

capacitor

Page 18: Basic Circuits, Power Supplies, Transistors, Cable Impedance

UCSD Physics 122 18

Howsmoothissmooth?

•  AnRCcircuithasaGmeconstantτ=RC–  becausedV/dt=I/C,andI=V/R→dV/dt=V/RC–  soVisV0exp(±t/τ)

•  AnyexponenGalfuncGonstartsoutwithslope=Amplitude/τ

•  Soifyouwant<10%rippleover120Hz(8.3ms)Gmescale…–  musthaveτ=RC>83ms–  ifR=100Ω,C>830µF

RC

V

Page 19: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 19

RegulaGngtheVoltage•  Theunregulated,ripplyvoltagemaynotbeatthe

valueyouwant–  dependsontransformer,etc.–  supposeyouwant15.0V

•  Youcoulduseavoltagedividertosetthevoltage•  Butitwoulddroopunderload

–  outputimpedance→R1||R2–  needtohaveverysmallR1,R2tomake“sGff”–  thedividerwilldrawalotofcurrent–  perhapsstrainingthesource–  powerexpendedindivider>>powerinload

•  Nota“real”soluGon•  Importantnote:a“bigload”meansasmallresistor

value:1Ωdemandsmorecurrentthan1MΩ

1

2

3

R1

R2

Vin

Vout

Rload

Page 20: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 20

TheZenerRegulator•  Zenerdiodesbreakdownatsomereverse

voltage–  canbuyatspecificbreakdownvoltages–  aslongassomecurrentgoesthroughzener,it’ll

work–  goodforroughregulaGon

•  CondiGonsforworking:–  let’smaintainsomeminimalcurrent,Izthrough

zener(sayafewmA)

–  then(Vin-Vout)/R1=Iz+Vout/RloadsetstherequirementonR1

–  becausepresumablyallelseisknown

–  ifloadcurrentincreasestoomuch,zenershutsoff(nodedropsbelowbreakdown)andyoujusthaveavoltagedividerwiththeload

R1

Z

Vin

Vout=Vz

Rload

zenervoltage

highslopeiswhatmakesthezeneradecentvoltageregulator

Page 21: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 21

VoltageRegulatorIC•  Cantrimdownripplyvoltageto

precise,rock-steadyvalue

•  Nowthingsgetcomplicated!–  Wearenowintherealmof

integratedcircuits(ICs)

•  ICsarewholecircuitsinsmallpackages

•  ICscontainresistors,capacitors,diodes,transistors,etc.

notezeners

Page 22: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 22

VoltageRegulators•  ThemostcommonvoltageregulatorsaretheLM78XX

(+voltages)andLM79XX(-voltages)–  XXrepresentsthevoltage

•  7815is+15;7915is-15;7805is+5,etc–  typicallyneedsinput>3voltsaboveoutput(reg.)voltage

•  AversaGleregulatoristheLM317(+)orLM337(-)–  1.2–37Voutput–  Vout=1.25(1+R2/R1)+IadjR2

•  Iadjissmall:50µA–  Upto1.5A–  pictureatrightcangoto25V–  datasheetcatalog.comfordetails

bewarethathousingisnotalwaysground

Page 23: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 23

Transistors•  TransistorsareversaGle,highlynon-linear

devices•  TwofrequentmodesofoperaGon:

–  amplifiers/buffers–  switches

•  Twomainflavors:–  npn(morecommon)orpnp,describingdoping

structure•  AlsomanyvarieGes:

–  bipolarjuncGontransistors(BJTs)suchasnpn,pnp–  fieldeffecttransistors(FETs):n-channelandp-

channel–  metal-oxide-semiconductorFETs(MOSFETs)

•  We’lljusthittheessenGalsoftheBJThere–  MOSFETinlaterlecture

B

C

E

B

E

C

npn pnp

Page 24: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 24

BJTAmplifierMode•  Centralideaisthatwhenintherightregime,theBJT

collector-emi[ercurrentisproporGonaltothebasecurrent:–  namely,Ice=βIb,whereβ(someGmeshfe)istypically~100–  Inthisregime,thebase-emi[ervoltageis~0.6V–  below,Ib=(Vin−0.6)/Rb;Ice=βIb=β(Vin−0.6)/Rb–  sothatVout=Vcc−IceRc=Vcc−β(Vin−0.6)(Rc/Rb)–  ignoringDCbiases,wigglesonVinbecomeβ(Rc/Rb)bigger(and

inverted):thusamplified

out

Rc

Rb

in

Vcc

B

C

E

Page 25: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 25

Switching:DrivingtoSaturaGon

•  WhatwouldhappenifthebasecurrentissobigthatthecollectorcurrentgotsobigthatthevoltagedropacrossRcwantstoexceedVcc?–  wecallthissaturated:Vc−Vecannotdipbelow~0.2V–  evenifIbisincreased,Icwon’tbudgeanymore

•  Theexamplebelowisagoodlogicinverter–  ifVcc=5V;Rc=1kΩ;Ic(sat)≈5mA;needIb>0.05mA–  soRb<20kΩwouldputussafelyintosaturaGonifVin=5V–  now5Vin→~0.2Vout;<0.6Vin→5Vout

out

Rc

Rb

in

Vcc

Page 26: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 26

TransistorBuffer

•  Inthehookupabove(emi[erfollower),Vout=Vin−0.6–  soundsuseless,right?–  thereisnovoltage“gain,”butthereiscurrentgain–  ImaginewewiggleVinbyΔV:VoutwigglesbythesameΔV–  sothetransistorcurrentchangesbyΔIe=ΔV/R–  butthebasecurrentchanges1/βGmesthis(muchless)–  sothe“wiggler”thinkstheloadisΔV/ΔIb=β·ΔV/ΔIe=βR–  theloadthereforeislessformidable

•  The“buffer”isawaytodrivealoadwithoutthedriverfeelingthepain(asmuch):it’simpedanceisolaGon

out

R

in

Vcc

Page 27: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 27

ImprovedZenerRegulator•  Byaddingatransistortothezenerregulator

frombefore,wenolongerhavetoworryasmuchaboutthecurrentbeingpulledawayfromthezenertotheload–  thebasecurrentissmall

–  RloadeffecGvelylooksβGmesbigger

–  realcurrentsuppliedthroughtransistor•  Cano~enfindzenersat5.6V,9.6V,12.6V,

15.6V,etc.becausedropfrombasetoemi[erisabout0.6V–  sotransistor-bufferedVregcomesoutto5.0,

9.0,etc.

•  Izvarieslessinthisarrangement,sotheregulatedvoltageissteadier

Vreg

Rload

Vz

Vin

Rz

Z

Vin

Page 28: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 28

SwitchingPowerSupplies•  Powersupplieswithouttransformers

–  lightweight;lowcost–  canbeelectromagneGcallynoisy

•  UseaDC-to-DCconversionprocessthatreliesonflippingaswitchonandoff,storingenergyinaninductorandcapacitor–  regulatorswereDC-to-DCconverterstoo,

butlossy:loseΔP=IΔVofpowerforvoltagedropofΔVatcurrentI

–  regulatorsonlydown-convert,butswitcherscanalsoup-convert

–  switchersarereasonablyefficientatconversion

Page 29: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 29

Switchertopologies

from:h[p://www.maxim-ic.com/appnotes.cfm/appnote_number/4087

TheFETswitchisturnedofforoninapulse-width-modulaGon(PWM)scheme,thedutycycleofwhichdeterminestheraGoofVouttoVin

Page 30: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 30

Step-DownCalculaGons

•  IftheFETisonfordutycycle,D(fracGonofGmeon),andtheperiodisT:–  theaverageoutputvoltageisVout=DVin

–  theaveragecurrentthroughthecapacitoriszero,theaveragecurrentthroughtheload(andinductor)is1/DGmestheinputcurrent

–  undertheseidealizaGons,powerin=powerout

Page 31: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 31

Step-downwaveforms•  Shownhereisanexampleofthe

step-downwiththeFETdutycyclearound75%

•  Theaverageinductorcurrent(dashed)isthecurrentdeliveredtotheload–  thebalancegoestothe

capacitor

•  Theripple(parabolicsecGons)haspeak-to-peakfracGonalamplitudeofT2(1-D)/(8LC)–  sowinbysmallT,largeL&C

–  10kHzat1mH,1000µFyields~0.1%ripple

–  means10mVon10V

FET

InductorCurrent

SupplyCurrent

CapacitorCurrent

OutputVoltage

(rippleexag.)

Page 32: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 32

CableImpedances

•  RG58cableischaracterizedas50Ωcable–  RG59is75Ω–  someantennacableis300Ω

•  Isn’tthecablenearlyzeroresistance?Andshouldn’tthelengthcomeintoplay,somehow?

•  ThereisadisGncGonbetweenresistanceandimpedance–  thoughsameunits

•  Impedancescanbereal,imaginary,orcomplex–  resistorsarereal:Z=R–  capacitorsandinductorsareimaginary:Z=−i/ωC;Z=iωL–  mixturesarecomplex:Z=R−i/ωC+iωL

Page 33: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 33

Impedances,cont.

•  Notethat:–  capacitorsbecomeless“resisGve”athighfrequency–  inductorsbecomemore“resisGve”athighfrequency–  biggercapacitorsaremoretransparent–  biggerinductorsarelesstransparent–  i(√-1)indicates90°phaseshi~betweenvoltageandcurrent

•  a~erall,V=IZ,soZ=V/I•  thusifVissinewave,Iis±cosineforinductor/capacitor•  andgiventhatoneisderivaGve,oneisintegral,thismakessense(slide#3)

–  addingimpedancesautomaGcallytakescareofsummaGonrules:addZinseries

•  capacitanceaddsasinverse,resistors,inductorsstraight-up

Page 34: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 34

ImpedancePhasorDiagram•  Impedancescanbedrawnona

complexplane,withpureresisGve,inducGve,andcapaciGveimpedancesrepresentedbythethreecardinalarrows

•  AnarbitrarycombinaGonofcomponentsmayhaveacompleximpedance,whichcanbebrokenintorealandimaginaryparts

•  Notethatasystem’simpedanceisfrequency-dependent

R

ωL

Z

Zi

Zr

1/ωC

realaxis

imag.axis

Page 35: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 35

TransmissionLineModel

•  Thecablehasafinitecapacitanceperunitlength–  propertyofgeometryanddielectricseparaGngconductors–  C/l=2πε/ln(b/a),wherebandaareradiiofcylinders

•  Alsohasaninductanceperunitlength–  L/l=(μ/2π)ln(b/a)

•  Whenavoltageisapplied,capacitorschargeup–  thusdrawcurrent;propagatesdownthelinenearspeedoflight

•  QuesGon:whatistheraGoofvoltagetocurrent?–  becausethisisthecharacterisGcimpedance

•  Answer:Z0=sqrt(ωL/ωC)=sqrt(L/C)=(1/2π)sqrt(μ/ε)ln(b/a)–  notethatZ0isfrequency-independent

CLinput output

Page 36: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 36

TypicalTransmissionLines

•  RG58coaxisabundant–  30pFperfoot;75nHperfoot;50Ω;v=0.695c;~5ns/m

•  RG174isthethinversion–  sameparametersasabove,butscaled-downgeometry

•  RG59–  usedforvideo,cableTV–  21pF/~;118nHperfoot;75Ω;v=0.695c;~5ns/m

•  twistedpair–  110Ωat30turns/~,AWG24–28

•  PCB(PC-board)trace–  get50Ωifthetracewidthis1.84GmestheseparaGonfromthe

groundplane(assumingfiberglassPCBwithε=4.5)

Page 37: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 37

Whyimpedancema[ers

•  Forfastsignals,getbounces(reflecGons)ateveryimpedancemismatch–  reflecGonamplitudeis(Zt−Zs)/(Zt+Zs)

•  sandtsubscriptsrepresentsourceandterminaGonimpedances•  sourcesintendingtodriveaZ0cablehaveZs=Z0

•  Consideralongcableshortedatend:insertpulse–  drivingelectronicscan’tknowabouttheterminaGon

immediately:mustchargeupcableasthepulsepropagatesforward,lookinglikeZ0ofthecableatfirst

–  surpriseatfarend:it’sashort!retreat!–  ineffect,negaGvepulsepropagatesback,nullingoutcapacitors

(reflecGonis−1)–  oneround-triplater(10nspermeter,typically),thedriving

electronicsfeelsthepainoftheshort

Page 38: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 38

Impedancema[ers,conGnued

•  Nowotherextreme:cableun-terminated:open–  pulsetravelsmerrilyalongatfirst,thedrivingelectronicsseeing

aZ0cableload–  attheend,thecurrenthasnowheretogo,butdrivercan’tknow

thisyet,sokeepsloadingcableasifit’ssGllZ0–  effecGvely,aposiGvepulsereflectsback,double-charging

capacitors(reflecGonis+1)–  drivergetswordofthisoneround-triplater(10ns/m,typically),

thenmustceasetodelivercurrent(cablefullycharged)•  Thegoldilockscase(reflecGon=0)

–  iftheendofthecableisterminatedwithresistorwithR=Z0,thencurrentisslurpedupperfectlywithnoreflecGons

–  thedriverisnotbeingliedto,andhearsnocomplaints

Page 39: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 39

SoBeware!•  Iflookingatfast(tensofnsdomain)signalsonscope,be

suretoroutesignaltoscopevia50Ωcoaxandterminatethescopein50Ω–  ifthesignalcan’tdrive50Ω,thenuseacGveprobes

•  Notethatscopeprobesterminateto1MΩ,eventhoughthecablesareNOT1MΩcables(nosuchthing)–  soscopeprobescanbeverymisleadingaboutshapesoffast

signals

Page 40: Basic Circuits, Power Supplies, Transistors, Cable Impedance

Lecture 8: Electronics UCSD Physics 122 40

ReferencesandReading

•  References:–  ThecanonicalelectronicsreferenceisHorowitzandHill:TheArtofElectronics

–  AlsotheaccompanyinglabmanualbyHayesandHorowitzishighlyvaluable(farmorepracGcally-oriented)

•  Reading–  SecGons6.1.1,6.1.2–  Skim6.2.2,6.2.3,6.2.4

–  SecGons6.3.1,6.5.1,6.5.2–  Skim6.3.2