Top Banner
Basic Calculus (I) Recap (for MSc & PhD Business, Management & Finance Students) First Draft: Autumn 2013 Revised: Autumn 2014 Lecturer: Farzad Javidanrad One - Variable Functions
54

Basic calculus (i)

Jul 21, 2015

Download

Education

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Basic calculus (i)

Basic Calculus (I) Recap

(for MSc & PhD Business, Management & Finance Students)

First Draft: Autumn 2013Revised: Autumn 2014

Lecturer: Farzad Javidanrad

One-Variable Functions

Page 2: Basic calculus (i)

Exponents (Powers)

โ€ข Given ๐’ a positive integer and ๐’‚ a real number, ๐’‚๐’ indicates that ๐’‚ is multiplied by itself ๐’ times:

๐’‚๐’ = ๐’‚ ร— ๐’‚ ร— โ‹ฏ ร— ๐’‚๐’ ๐’•๐’Š๐’Ž๐’†๐’”

โ€ข According to definition:

๐’‚๐ŸŽ = ๐Ÿ and ๐’‚๐Ÿ= ๐’‚

Page 3: Basic calculus (i)

Exponents Rules If ๐’Ž and ๐’ are positive integers and ๐’‚ is a real

number, then:

๐’‚๐’Ž ร— ๐’‚๐’ = ๐’‚๐’Ž+๐’

With this rule we can define the concept of negative exponent (power):

๐‘Ž0 = 1๐‘Ž๐‘šโˆ’๐‘š = 1

๐‘Ž๐‘š+(โˆ’๐‘š) = 1

๐‘Ž๐‘š ร— ๐‘Žโˆ’๐‘š = 1

๐’‚โˆ’๐’Ž =๐Ÿ

๐’‚๐’Ž

Page 4: Basic calculus (i)

Exponents Rulesโ€ข We can also define rational power as:

๐’‚๐’Ž๐’ =

๐’๐’‚๐’Ž

Some other rules are: (๐’‚ and ๐’ƒ are real numbers)

๐’‚๐’Ž

๐’‚๐’ = ๐’‚๐’Žโˆ’๐’ e.g.(311

38 = 311โˆ’8 = 33 = 27)

๐’‚๐’Ž ๐’ = ๐’‚๐’ ๐’Ž = ๐’‚๐’Ž.๐’ ( 23 2 = 22 3 = 26 = 64)

๐’‚. ๐’ƒ ๐’Ž = ๐’‚๐’Ž. ๐’ƒ๐’Ž ( 3. ๐‘ฅ 2 = 32. ๐‘ฅ2 = 9๐‘ฅ2)

๐’‚

๐’ƒ

๐’Ž=

๐’‚๐’Ž

๐’ƒ๐’Ž (3

5

3=

33

53 =27

125)

๐’‚โˆ’๐’Ž

๐’ =๐Ÿ

๐’‚๐’Ž๐’

=๐Ÿ

๐’๐’‚๐’Ž =

๐Ÿ๐’ ๐’‚

๐’Ž (๐‘ฅโˆ’2

3 =1

๐‘ฅ23

=1

3๐‘ฅ2

)

Page 5: Basic calculus (i)

Algebraic Expressions, Equations and Identities

โ€ข An algebraic expression is a combination of real numbers and variables, such as:

Monomials :

5๐‘ฅ3 , โˆ’1.75 ๐‘ฆ ,3๐‘ฅ

4๐‘ง2=

3

4๐‘ฅ๐‘งโˆ’2

Binomials:

4๐‘ฅ3 + 3๐‘ฅ2 ,3๐‘ฅ + 1

4๐‘ง2=

3

4๐‘ฅ๐‘งโˆ’2 +

1

4๐‘งโˆ’2

Polynomials:๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 6 , ๐‘ฅ3 + ๐‘ฅ๐‘ฆ2 + 6๐‘ฅ๐‘ฆ๐‘ง

Page 6: Basic calculus (i)

Algebraic Expressions, Equations and Identities

โ€ข Equations can be made when two expressions are equal to one another or an expression is equal to a number:

3๐‘ฅ โˆ’ 1 = ๐‘ฅ4๐‘ฅ + 3๐‘ฆ = 2

5๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฆ = ๐‘ฅ โˆ’ 6๐‘ฆ2

๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 6 = 0

The first and second equations are linear with one and two variables respectively and the third equation is a quadratic in terms of ๐’™ and ๐’š and the forth equation is a quadratic equation in terms of ๐’™ .

Note: Not all equations are solvable and many of them have no unique solutions.

Page 7: Basic calculus (i)

Algebraic Expressions, Equations and Identities

โ€ข If two expressions are equal for all values of their variable(s), the equation is called an identity.

โ€ข For example;๐‘ฅ + 3 2 = ๐‘ฅ2 + 6๐‘ฅ + 9

Some important identities are:

โ€ข ๐’‚ ยฑ ๐’ƒ ๐Ÿ = ๐’‚๐Ÿ ยฑ ๐Ÿ๐’‚๐’ƒ + ๐’ƒ๐Ÿ

โ€ข ๐’‚ ยฑ ๐’ƒ ๐Ÿ‘ = ๐’‚๐Ÿ‘ ยฑ ๐Ÿ‘๐’‚๐Ÿ๐’ƒ + ๐Ÿ‘๐’‚๐’ƒ๐Ÿ ยฑ ๐’ƒ๐Ÿ‘

โ€ข ๐’‚ โˆ’ ๐’ƒ ๐’‚ + ๐’ƒ = ๐’‚๐Ÿ โˆ’ ๐’ƒ๐Ÿ

โ€ข ๐’‚ ยฑ ๐’ƒ ๐’‚๐Ÿ โˆ“ ๐’‚๐’ƒ + ๐’ƒ๐Ÿ = ๐’‚๐Ÿ‘ ยฑ ๐’ƒ๐Ÿ‘

โ€ข ๐’™ ยฑ ๐’‚ ๐’™ ยฑ ๐’ƒ = ๐’™๐Ÿ ยฑ ๐’‚ + ๐’ƒ ๐’™ + ๐’‚๐’ƒ

Page 8: Basic calculus (i)

Some Other Identitiesโ€ข ๐’™ โˆ’ ๐’š = ๐’™ โˆ’ ๐’š ๐’™ + ๐’š

= ๐Ÿ‘ ๐’™ โˆ’ ๐Ÿ‘ ๐’š๐Ÿ‘

๐’™๐Ÿ + ๐Ÿ‘ ๐’™๐’š +๐Ÿ‘

๐’š๐Ÿ

โ‹ฎ

= ๐’ ๐’™ โˆ’ ๐’ ๐’š๐’

๐’™๐’โˆ’๐Ÿ +๐’

๐’™๐’โˆ’๐Ÿ๐’š +๐’

๐’™๐’โˆ’๐Ÿ‘๐’š๐Ÿ + โ‹ฏ +๐’

๐’š๐’โˆ’๐Ÿ

โ€ข ๐’™ + ๐’š + ๐’› ๐Ÿ = ๐’™๐Ÿ + ๐’š๐Ÿ + ๐’›๐Ÿ + ๐Ÿ๐’™๐’š + ๐Ÿ๐’™๐’› + ๐Ÿ๐’š๐’›

โ€ข ๐‘ ๐‘–๐‘›2๐‘ฅ + ๐‘๐‘œ๐‘ 2๐‘ฅ = 1

โ€ข ๐‘ ๐‘–๐‘› ๐‘ฅ ยฑ ๐‘ฆ = ๐‘ ๐‘–๐‘›๐‘ฅ. ๐‘๐‘œ๐‘ ๐‘ฆ ยฑ ๐‘๐‘œ๐‘ ๐‘ฅ. ๐‘ ๐‘–๐‘›๐‘ฆ

โ€ข ๐‘๐‘œ๐‘  ๐‘ฅ ยฑ ๐‘ฆ = ๐‘๐‘œ๐‘ ๐‘ฅ. ๐‘๐‘œ๐‘ ๐‘ฆ โˆ“ ๐‘ ๐‘–๐‘›๐‘ฅ. ๐‘ ๐‘–๐‘›๐‘ฆ

โ€ข ๐‘ก๐‘Ž๐‘› ๐‘ฅ ยฑ ๐‘ฆ =๐‘ก๐‘Ž๐‘›๐‘ฅยฑ๐‘ก๐‘Ž๐‘›๐‘ฆ

1โˆ“๐‘ก๐‘Ž๐‘›๐‘ฅ.๐‘ก๐‘Ž๐‘›๐‘ฆ

Page 9: Basic calculus (i)

โ€ข ๐’™ + ๐’š ๐’ =๐ŸŽ๐’

๐’™๐’ +๐Ÿ๐’

๐’™๐’โˆ’๐Ÿ๐’š + โ‹ฏ +๐’“๐’

๐’™๐’โˆ’๐’“๐’š๐’“ + โ‹ฏ +๐’๐’

๐’š๐’

Where ๐’“๐’

= ๐‘ช๐’“๐’

= ๐’“๐‘ช๐’ =๐’!

๐’“! ๐’ โˆ’ ๐’“ !

And ๐’! = ๐’ ร— ๐’ โˆ’ ๐Ÿ ร— ๐’ โˆ’ ๐Ÿ ร— โ‹ฏ ร— ๐Ÿ‘ ร— ๐Ÿ ร— ๐Ÿ

๐ŸŽ! = ๐Ÿ! = ๐Ÿ

So,

๐ŸŽ๐’

= ๐ถ0๐‘›

= 0๐ถ๐‘› =๐‘›!

0! ๐‘› โˆ’ 0 !=

๐‘›!

๐‘›!= ๐Ÿ

๐Ÿ๐’

= ๐ถ1๐‘›

= 1๐ถ๐‘› =๐‘›!

1! ๐‘› โˆ’ 1 !=

๐‘›!

๐‘› โˆ’ 1 !=

๐‘› ร— ๐‘› โˆ’ 1 !

๐‘› โˆ’ 1 != ๐’

๐Ÿ๐’

= ๐ถ2๐‘›

= 2๐ถ๐‘› =๐‘›!

2! ๐‘› โˆ’ 2 !=

๐‘›!

๐‘› โˆ’ 2 !=

๐‘› ร— ๐‘› โˆ’ 1 ร— ๐‘› โˆ’ 2 !

2! ๐‘› โˆ’ 2 !=

๐’(๐’ โˆ’ ๐Ÿ)

๐Ÿ

Some Other Identities

Page 10: Basic calculus (i)

Functionsโ€ข All equations represent a relationship between two or

more variables, e.g.:

๐‘ฅ๐‘ฆ = 1 ,๐‘ฅ

2๐‘ฆ+ ๐‘ง = 0

โ€ข Given two variables in relation, there is a functional relationship between them if for each value of one of them there is one and only one value of another.

โ€ข If the relationship between ๐’š and ๐’™ can be shown by ๐’š =๐’‡ ๐’™ and for each value of ๐’™ there is one and only one value of ๐’š , then there is a functional relationship between them or alternatively it can be said that ๐’š is a function of ๐’™ , which means ๐’š as a dependent variable follows ๐’™ as an independent variable.

Page 11: Basic calculus (i)

Functions

โ€ข The idea of function is close to a processing (matching) machine. It receives inputs (which are the values of ๐’™ and is called domain of the function, ๐‘ซ๐’‡) and after the processing

them the output will be values of ๐’š in correspondence with ๐’™โ€ฒ๐’” (which is called range of the function, ๐‘น๐’‡).

โ€ข There should be no element from ๐‘ซ๐’‡ without a match from

๐‘น๐’‡, but it might be found some free elements in ๐‘น๐’‡.

๐’‡ = ๐’™๐Ÿ, ๐’š๐Ÿ , ๐’™๐Ÿ, ๐’š๐Ÿ , โ€ฆ , ๐’™๐’, ๐’š๐’

๐’‡๐’™๐Ÿ, ๐’™๐Ÿ, โ€ฆ , ๐’™๐’ ๐’š๐Ÿ, ๐’š๐Ÿ, โ€ฆ , ๐’š๐’

Page 12: Basic calculus (i)

Functions

โ€ข Functions can be considered as correspondence (matching) rules, which corresponds all elements of ๐’™ to some elements of ๐’š.*

โ€ข For example, the correspondence rule (f), which corresponds ๐’™ to each value of ๐’™, can be written as:

Or ๐‘ฆ = ๐‘ฅ

xxf : 124

15

1

๐Ÿ2

๐Ÿ๐Ÿ“20

x y

Page 13: Basic calculus (i)

Functions

โ€ข The correspondence rule, which corresponds ๐’™๐Ÿ โˆ’ ๐Ÿ๐ŸŽ to each value of ๐’™ can be shown as:

Or ๐’š = ๐’™๐Ÿ โˆ’ ๐Ÿ๐ŸŽ

10: 2 xxg

-3-2023

-1

-6

-10

x y

Page 14: Basic calculus (i)

Functions

โ€ข Some correspondence rules indicate there is a relationship between ๐’™ and ๐’š but not a functional relationship, i.e. the relationship cannot be considered as a function.

โ€ข For example, ๐’š = ยฑ ๐’™ (๐’š๐Ÿ = ๐’™) is

not a function (according to the

definition of function) because

for each value of ๐’™ there are

two symmetrical values of ๐’š .

Adopted from http://www.education.com/study-help/article/trigonometry-help-inverses-circular/

Page 15: Basic calculus (i)

Functionsโ€ข Note that in the graphical representation of a

function, any parallel line with y-axis cross the graph of a function at one and only one point. Why?

Adopted from http://mrhonner.com/archives/8599

Page 16: Basic calculus (i)

Some Basic Functions

โ€ข Power Function : ๐’š = ๐’™๐’

Ad

op

ted

from

http

://mysite

.verizo

n.n

et/b

nap

ho

ltz/Math

/po

wers.h

tml

If n>0 they all pass

through the origin. If n<0 the

function is not defined

at x=0

๐‘ฆ = ๐‘ฅโˆ’1

๐‘ฆ = ๐‘ฅโˆ’1

Page 17: Basic calculus (i)

Some Basic Functions

โ€ข Exponential Function : ๐’š = ๐’‚๐’™ (๐’‚ > ๐ŸŽ, โ‰  ๐Ÿ)

Adopted from http://www.softmath.com/tutorials-3/relations/exponential-functions-2.html

All exponential functions passing through the point (0,1)

Page 18: Basic calculus (i)

Some Basic Functions

โ€ข Logarithmic Function : ๐’š = ๐ฅ๐จ๐ ๐’‚ ๐’™ (๐’‚ > ๐ŸŽ, โ‰  ๐Ÿ)

Adopted fromhttp://mtc.tamu.edu/9-12/index_9-12.htm?9-12M2L2.htm

Adopted from http://www.cliffsnotes.com/math/calculus/precalculus/exponential-and-

logarithmic-functions/logarithmic-functions

All logarithmic Functions passing through the point (1,0)

Page 19: Basic calculus (i)

Some Basic Functionsโ€ข Trigonometric Functions:

๐’š = ๐ฌ๐ข๐ง ๐’™ , ๐’š = ๐œ๐จ๐ฌ ๐’™ , ๐’š = ๐ญ๐š๐ง ๐’™ , ๐’š = ๐œ๐จ๐ญ ๐’™

Ad

op

ted fro

m h

ttp://w

ww

.do

cstoc.co

m/d

ocs/4

12

84

63

5/Grap

hs-o

f-the-Six-Trigo

no

metric-

Fun

ction

s

Page 20: Basic calculus (i)

โ€ข All trigonometric functions are periodic, i.e. after adding or subtracting a constant, which is called principal periodic constant, they repeat themselves. This periodic constant is ๐Ÿ๐… for ๐’”๐’Š๐’๐’™and ๐’„๐’๐’”๐’™ but it is ๐… for ๐’•๐’‚๐’๐’™ and ๐’„๐’๐’•๐’™ , i.e. :

(k is a positive integer)

๐‘ ๐‘–๐‘›๐‘ฅ = sin ๐‘ฅ ยฑ ๐Ÿ๐… = sin ๐‘ฅ ยฑ 4๐œ‹ = โ‹ฏ = sin ๐‘ฅ ยฑ 2๐‘˜๐œ‹๐‘๐‘œ๐‘ ๐‘ฅ = cos ๐‘ฅ ยฑ ๐Ÿ๐… = cos ๐‘ฅ ยฑ 4๐œ‹ = โ‹ฏ = cos ๐‘ฅ ยฑ 2๐‘˜๐œ‹๐‘ก๐‘Ž๐‘›๐‘ฅ = tan ๐‘ฅ ยฑ ๐… = tan ๐‘ฅ ยฑ 2๐œ‹ = โ‹ฏ = tan(๐‘ฅ ยฑ ๐‘˜๐œ‹)๐‘๐‘œ๐‘ก๐‘ฅ = cot ๐‘ฅ ยฑ ๐… = cot ๐‘ฅ ยฑ 2๐œ‹ = โ‹ฏ = cot(๐‘ฅ ยฑ ๐‘˜๐œ‹)

Some Basic Functions

Page 21: Basic calculus (i)

Elementary Functionsโ€ข Elementary functions can be made by combining

basic functions through adding, subtracting, multiplying, dividing and also composing these basic functions.

โ€ข For example:๐‘ฆ = ๐‘ฅ2 + 4๐‘ฅ โˆ’ 1

๐‘ฆ = ๐‘ฅ. ๐‘’โˆ’๐‘ฅ =๐‘ฅ

๐‘’๐‘ฅ

๐‘ฆ = ๐‘’๐‘ ๐‘–๐‘›๐‘ฅ

๐‘ฆ = ln ๐‘ฅ2 + 4

๐‘ฆ = ๐‘’๐‘ฅ(๐‘ ๐‘–๐‘›3๐‘ฅ โˆ’ ๐‘๐‘œ๐‘ 3๐‘ฅ)

Page 22: Basic calculus (i)

Behaviour of a Functionโ€ข After finding the relationship between two variables ๐’™

and ๐’š in the functional form ๐’š = ๐’‡(๐’™) the first question is how this function behaves.

โ€ข Here we are interested in knowing about the magnitude and the direction of the change of ๐’š (๐‘–. ๐‘’. โˆ†๐’š) when the change of ๐’™ (๐‘–. ๐‘’. โˆ†๐’™) is getting smaller and smaller around a point in its domain. The technical term for this locality around a point is neighbourhood. So, we are trying to find the magnitude and the direction of the change of ๐’š in the neighbourhood of ๐’™.

โ€ข Slope of a function is the concept which helps us to have this information. The value of the slope shows the magnitude of the change and the sign of slope shows the direction of the change.

Page 23: Basic calculus (i)

Slope of a Linear Function

โ€ข Letโ€™s start with one of the most used functions in science , which is the linear function:

๐’š = ๐’Ž๐’™ + ๐’‰

Where ๐’Ž shows the slope of the line (the average change

of ๐’š in terms of a change in ๐’™). That is; ๐’Ž =๐šซ๐’š

๐šซ๐’™= ๐ญ๐š๐ง ๐œถ .

The value of intercept is ๐’‰ which is the distance between the intersection point of the graph and y-axis from the Origin.

The slope of a liner

function is constant in its

whole domain.

y

xh

๐’š = ๐’Ž๐’™ + ๐’‰

โˆ†๐’™

โˆ†๐’š

๐œถ

๐œถ

Page 24: Basic calculus (i)

Slope of a Function in its General Form

โ€ข Imagine we want to find the slope of the function ๐’š = ๐’‡(๐’™)at a specific point (for e.g. at ๐’™๐ŸŽ) in its domain.

โ€ข Given a change of

๐’™ from ๐’™๐ŸŽ to ๐’™๐ŸŽ + โˆ†๐’™

the change of ๐’š

Would be from ๐’‡ ๐’™๐ŸŽ

to ๐’‡(๐’™๐ŸŽ + โˆ†๐’™) .

โ€ข This means a

movement along the

curve from A to B.Adopted from http://www.bymath.com/studyguide/ana/sec/ana3.htm

Page 25: Basic calculus (i)

Slope of a Function in its General Form

โ€ข The average change of ๐’š in terms of a change in ๐’™

can be calculated by ๐šซ๐’š

๐šซ๐’™= ๐ญ๐š๐ง ๐œถ , which is the

slope of the line AB.

โ€ข If the change in ๐’™ gradually disappear (โˆ†๐’™ โ†’ ๐ŸŽ)*, point B moves toward point A and the slope line (secant line) AB reaches to a limiting (marginal) situation AC, which is a tangent line on the curve of ๐’š = ๐’‡(๐’™) at point ๐‘จ(๐’™๐ŸŽ, ๐’‡(๐’™๐ŸŽ)).

Page 26: Basic calculus (i)

Slope of a Function in its General Form

โ€ข The slope of this tangent line AC is what is called derivative of ๐’š in terms of ๐’™ at point ๐‘ฅ0 and it is shown by different

symbols such as ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ ๐‘ฅ=๐‘ฅ0

, ๐‘“โ€ฒ ๐‘ฅ0 , ๐‘‘๐‘“

๐‘‘๐‘ฅ ๐‘ฅ=๐‘ฅ0

, ๐‘ฆโ€ฒ(๐‘ฅ0) , .

โ€ข The slope of the tangent line at any point of the domain of the function is denoted by:

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ, ๐‘“โ€ฒ ๐‘ฅ ,

๐‘‘๐‘“

๐‘‘๐‘ฅ, ๐‘ฆโ€ฒ, ๐‘“๐‘ฅ

โ€ฒ

โ€ข Definition: The process of finding a derivative of a function is called differentiation .

'

0xf

Page 27: Basic calculus (i)

Slope of a Function in its General Form

โ€ข Therefore, the derivative of ๐’š = ๐’‡(๐’™)at any point in its domain is:

๐’šโ€ฒ =๐’…๐’š

๐’…๐’™= ๐’๐’Š๐’Ž

โˆ†๐’™โ†’๐ŸŽ

โˆ†๐’š

โˆ†๐’™= ๐’๐’Š๐’Ž

โˆ†๐’™โ†’๐ŸŽ

๐’‡ ๐’™+โˆ†๐’™ โˆ’๐’‡(๐’™)

โˆ†๐’™

And the derivative of ๐’š = ๐’‡(๐’™) at the specific point ๐’™ = ๐’™๐ŸŽis:

๐’‡โ€ฒ ๐’™๐ŸŽ = ๐ฅ๐ข๐ฆโˆ†๐’™โ†’๐ŸŽ

๐’‡ ๐’™๐ŸŽ + โˆ†๐’™ โˆ’ ๐’‡(๐’™๐ŸŽ)

โˆ†๐’™

Where ๐ฅ๐ข๐ฆ stands for โ€œlimitโ€, showing limiting (marginal)

situation of the ratio ๐šซ๐’š

๐šซ๐’™.

Page 28: Basic calculus (i)

Slope of a Function in its General Form

โ€ข Note: For non-linear functions, slope of the function at any point depends on the value of that point and it is not constant in the whole domain of the function. This means that the derivative of a function is a function of the same variable itself.

Adopted from http://www.columbia.edu/itc/sipa/math/slope_nonlinear.html

http

://ww

w.p

leacher.co

m/m

p/m

lesson

s/calc20

06

/day2

1.h

tml

Page 29: Basic calculus (i)

Derivative of Fundamental Basic Functions

โ€ข Find the derivative of ๐‘ฆ = 2๐‘ฅ โˆ’ 1 at any point in its domain.

๐‘“ ๐‘ฅ = 2๐‘ฅ โˆ’ 1๐‘“ ๐‘ฅ + โˆ†๐‘ฅ = 2 ๐‘ฅ + โˆ†๐‘ฅ โˆ’ 1 = 2๐‘ฅ + 2โˆ†๐‘ฅ โˆ’ 1โˆ†๐’š = ๐’‡ ๐’™ + โˆ†๐’™ โˆ’ ๐’‡ ๐’™ = ๐Ÿโˆ†๐’™

According to definition:

๐‘ฆโ€ฒ =๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= lim

โˆ†๐‘ฅโ†’0

๐‘“ ๐‘ฅ + โˆ†๐‘ฅ โˆ’ ๐‘“(๐‘ฅ)

โˆ†๐‘ฅ

= limโˆ†๐‘ฅโ†’0

2โˆ†๐‘ฅ

โˆ†๐‘ฅ= 2

Page 30: Basic calculus (i)

Derivative of the Fundamental Basic Functions

โ€ข Applying the same method, the derivative of the fundamental basic functions can be obtained as following:

๐’š = ๐’™๐’ โ†’ ๐’šโ€ฒ = ๐’๐’™๐’โˆ’๐Ÿ

e.g. : ๐‘ฆ = 3 โ†’ ๐‘ฆโ€ฒ = 0

๐‘ฆ = ๐‘ฅ3 โ†’ ๐‘ฆโ€ฒ = 3๐‘ฅ2

๐‘ฆ = ๐‘ฅโˆ’1 โ†’ ๐‘ฆโ€ฒ = โˆ’๐‘ฅโˆ’2

๐‘ฆ = 5 ๐‘ฅ โ†’ ๐‘ฆโ€ฒ =1

5๐‘ฅ

15โˆ’1 =

1

55

๐‘ฅ4

Page 31: Basic calculus (i)

Derivative of the Fundamental Basic Functions

๐’š = ๐’‚๐’™ โ†’ ๐’šโ€ฒ = ๐’‚๐’™. ๐’๐’๐’‚ ๐‘Ž > 0, โ‰  1e.g. :

๐‘ฆ = 2๐‘ฅ โ†’ ๐‘ฆโ€ฒ = 2๐‘ฅ. ๐‘™๐‘›2๐‘ฆ = ๐‘’๐‘ฅ โ†’ ๐‘ฆโ€ฒ = ๐‘’๐‘ฅ

๐’š = ๐ฅ๐จ๐ ๐’‚ ๐’™ โ†’ ๐’šโ€ฒ =๐Ÿ

๐’™.๐’๐’๐’‚e.g. :

๐‘ฆ = log ๐‘ฅ โ†’ ๐‘ฆโ€ฒ =1

๐‘ฅ. ๐‘™๐‘›10

๐‘ฆ = ln ๐‘ฅ โ†’ ๐‘ฆโ€ฒ =1

๐‘ฅ

Page 32: Basic calculus (i)

Derivative of the Fundamental Basic Functions

๐’š = ๐ฌ๐ข๐ง ๐’™ โ†’ ๐’šโ€ฒ = ๐œ๐จ๐ฌ ๐’™

๐’š = ๐œ๐จ๐ฌ ๐’™ โ†’ ๐’šโ€ฒ = โˆ’ ๐ฌ๐ข๐ง๐’™

๐’š = ๐ญ๐š๐ง ๐’™ โ†’ ๐’šโ€ฒ = ๐Ÿ + ๐ญ๐š๐ง๐Ÿ๐ฑ =๐Ÿ

๐œ๐จ๐ฌ๐Ÿ๐ฑ

๐’š = ๐œ๐จ๐ญ ๐’™ โ†’ ๐’šโ€ฒ = โˆ’ ๐Ÿ + ๐œ๐จ๐ญ๐Ÿ๐ฑ =โˆ’๐Ÿ

๐ฌ๐ข๐ง๐Ÿ๐ฑ

Page 33: Basic calculus (i)

Differentiability of a Function

A function is differentiable at a point if despite any side approach to the point in its domain (from left or right) the derivative is the same and a finite number. Sharp corner points and points of discontinuity* are not differentiable.

Adopted from Ahttp://www-math.mit.edu/~djk/calculus_beginners/chapter09/section02.html

Page 34: Basic calculus (i)

Rules of Differentiationโ€ข If ๐’‡(๐’™) and ๐’ˆ ๐’™ are two differentiable functions in their

common domain, then:

๐’‡(๐’™) ยฑ ๐’ˆ(๐’™) โ€ฒ = ๐’‡โ€ฒ(๐’™) ยฑ ๐’ˆโ€ฒ(๐’™)

๐’‡ ๐’™ . ๐’ˆ(๐’™) โ€ฒ = ๐’‡โ€ฒ ๐’™ . ๐’ˆ ๐’™ + ๐’ˆโ€ฒ ๐’™ . ๐’‡(๐’™)

๐’‡(๐’™)

๐’ˆ(๐’™)

โ€ฒ=

๐’‡โ€ฒ ๐’™ .๐’ˆ ๐’™ โˆ’๐’ˆโ€ฒ ๐’™ .๐’‡(๐’™)

๐’ˆ(๐’™) ๐Ÿ (Quotient Rule)

๐’‡(๐’ˆ ๐’™ ) โ€ฒ = ๐’ˆโ€ฒ ๐’™ . ๐’‡โ€ฒ(๐’ˆ ๐’™ ) (Chain Rule)

(Summation & Sub. Rules. They can be extended to n functions)

(Multiplication Rule and can be extended

to n functions)

Page 35: Basic calculus (i)

Find the derivative of the following functions:

o ๐‘ฆ = ๐‘ฅ + ๐‘™๐‘›๐‘ฅ โˆถ ๐’šโ€ฒ = ๐Ÿ +๐Ÿ

๐’™

o ๐‘ฆ = ๐‘’๐‘ฅ . ๐‘ ๐‘–๐‘›๐‘ฅ โˆถ ๐’šโ€ฒ = ๐’†๐’™. ๐’”๐’Š๐’๐’™ + ๐’†๐’™. ๐’„๐’๐’”๐’™

= ๐’†๐’™ ๐’”๐’Š๐’๐’™ + ๐’„๐’๐’”๐’™

o ๐‘ฆ =2๐‘ฅ

๐‘ฅ2+1โˆถ ๐’šโ€ฒ =

๐Ÿ ๐’™๐Ÿ+๐Ÿ โˆ’๐Ÿ๐’™.๐Ÿ๐’™

๐’™๐Ÿ+๐Ÿ๐Ÿ =

๐Ÿโˆ’๐Ÿ๐’™๐Ÿ

๐’™๐Ÿ+๐Ÿ๐Ÿ

o ๐‘ฆ =3

๐‘ฅ2 + 1 โˆถ ๐’šโ€ฒ = ๐Ÿ๐’™.๐Ÿ

๐Ÿ‘. ๐’™๐Ÿ + ๐Ÿ

๐Ÿ

๐Ÿ‘โˆ’๐Ÿ

=๐Ÿ๐’™

๐Ÿ‘๐Ÿ‘

๐’™๐Ÿ+๐Ÿ๐Ÿ

Rules of Differentiation

Page 36: Basic calculus (i)

o ๐‘ฆ = ๐‘™๐‘›2๐‘ฅ โˆถ ๐’šโ€ฒ =๐Ÿ

๐’™. ๐Ÿ. ๐’๐’๐’™ =

๐Ÿ๐’๐’๐’™

๐’™

o ๐‘ฆ = 5๐‘ฅ2+ tan 3๐‘ฅ โˆถ ๐’šโ€ฒ = ๐Ÿ“๐’™๐Ÿ

. ๐ฅ๐ง๐Ÿ“. (๐Ÿ๐’™) + ๐Ÿ‘(๐Ÿ + ๐’•๐’‚๐’๐Ÿ๐Ÿ‘๐’™)

โ€ข The last rule(page 32) is called the chain rule which should be applied for composite functions such as the above functions, but it can be extended to include more functions.

โ€ข If ๐’š = ๐’‡ ๐’– and ๐’– = ๐’ˆ ๐’› and ๐’› = ๐’‰ ๐’ and ๐’ = ๐’Œ(๐’™)then ๐’š depends on ๐’™ but through some other variables

๐’š = ๐’‡ ๐’ˆ ๐’‰ ๐’Œ ๐’™

Rules of Differentiation

Page 37: Basic calculus (i)

โ€ข Under such circumstances we can extend the chain rule to cover all these functions, i.e.

๐’…๐’š

๐’…๐’™=

๐’…๐’š

๐’…๐’–.๐’…๐’–

๐’…๐’›.๐’…๐’›

๐’…๐’.๐’…๐’

๐’…๐’™

o ๐‘ฆ = ๐‘๐‘œ๐‘ 3 2๐‘ฅ + 1 โˆถ ๐‘ฆ = ๐‘ข3

๐‘ข = ๐‘๐‘œ๐‘ ๐‘ง๐‘ง = 2๐‘ฅ + 1

๐’šโ€ฒ =๐’…๐’š

๐’…๐’™=

๐’…๐’š

๐’…๐’–.๐’…๐’–

๐’…๐’›.๐’…๐’›

๐’…๐’™= ๐Ÿ‘๐’–๐Ÿ. โˆ’๐’”๐’Š๐’๐’› . ๐Ÿ

= โˆ’๐Ÿ”๐’„๐’๐’”๐Ÿ ๐Ÿ๐’™ + ๐Ÿ . ๐ฌ๐ข๐ง(๐Ÿ๐’™ + ๐Ÿ)

Rules of Differentiation

Page 38: Basic calculus (i)

Implicit Differentiationโ€ข ๐’š = ๐’‡ ๐’™ is an explicit function because the dependent

variable ๐’š is at one side and explicitly expressed by independent variable ๐’™. Implicit form of this function can be shown by ๐‘ญ ๐’™, ๐’š = ๐ŸŽ where both variables are in one side:

o Explicit Functions: ๐‘ฆ = ๐‘ฅ2 โˆ’ 3๐‘ฅ , ๐‘ฆ = ๐‘’๐‘ฅ . ๐‘™๐‘›๐‘ฅ , ๐‘ฆ =๐‘ ๐‘–๐‘›๐‘ฅ

๐‘ฅ

o Implicit Functions: 2๐‘ฅ โˆ’ 7๐‘ฆ + 3 = 0 , 2๐‘ฅ๐‘ฆ โˆ’ ๐‘ฆ2 = 0

โ€ข Many implicit functions can be easily transformed to an explicit function but it cannot be done for all. In this case, differentiation with respect to ๐’™ can be done part by part and ๐’š should be treated as a function of ๐’™.

Page 39: Basic calculus (i)

o Find the derivative of ๐Ÿ๐’™ โˆ’ ๐Ÿ•๐’š + ๐Ÿ‘ = ๐ŸŽ.

Differentiating both sides with respect to ๐’™, we have:๐‘‘

๐‘‘๐‘ฅ2๐‘ฅ โˆ’ 7๐‘ฆ + 3 =

๐‘‘

๐‘‘๐‘ฅ0

2 โˆ’ 7๐‘ฆโ€ฒ + 0 = 0 โ†’ ๐’šโ€ฒ =๐Ÿ

๐Ÿ•

o Find the derivative of ๐’™๐Ÿ โˆ’ ๐Ÿ๐’™๐’š + ๐’š๐Ÿ‘ = ๐ŸŽ.

Using the same method, we have:

2๐‘ฅ โˆ’ 2๐‘ฆ โˆ’ 2๐‘ฅ๐‘ฆโ€ฒ + 3๐‘ฆ2๐‘ฆโ€ฒ = 0 โ†’ ๐’šโ€ฒ =๐Ÿ๐’š โˆ’ ๐Ÿ๐’™

๐Ÿ‘๐’š๐Ÿ โˆ’ ๐Ÿ๐’™

Implicit Differentiation

Page 40: Basic calculus (i)

o Find the derivative of ๐Ÿ๐’™๐’š โˆ’ ๐’š๐Ÿ = ๐ŸŽ

๐‘ฆ + ๐‘ฅ๐‘ฆโ€ฒ 2๐‘ฅ๐‘ฆ โˆ’ 2๐‘ฆ๐‘ฆโ€ฒ = 0 โ†’ ๐’šโ€ฒ =๐’š. ๐Ÿ๐’™๐’š

๐Ÿ๐’š โˆ’ ๐’™. ๐Ÿ๐’™๐’š

o Find the derivative of ๐’”๐’Š๐’๐’™

๐’šโˆ’ ๐ฅ๐ง ๐’™๐’š = ๐ŸŽ

๐‘ฆ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ

๐‘ฆ2. ๐‘๐‘œ๐‘ 

๐‘ฅ

๐‘ฆโˆ’

๐‘ฆ + ๐‘ฅ๐‘ฆโ€ฒ

๐‘ฅ๐‘ฆ= 0

Then

๐’šโ€ฒ =

๐Ÿ๐’š

. ๐’„๐’๐’”๐’™๐’š

โˆ’๐Ÿ๐’™

๐’™๐’š๐Ÿ . ๐’„๐’๐’”

๐’™๐’š

+๐Ÿ๐’š

Implicit Differentiation

Page 41: Basic calculus (i)

Higher Orders Derivatives

โ€ข As ๐’šโ€ฒ = ๐’‡โ€ฒ(๐’™) is itself a function of ๐’™ , in case it is differentiable, we can think of second, third or even n-th derivatives:

โ€ข Second Derivative:

๐’šโ€ฒโ€ฒ ,๐’…๐Ÿ๐’š

๐’…๐’™๐Ÿ,

๐’…(๐’…๐’š๐’…๐’™

)

๐’…๐’™,

๐’…

๐’…๐’™๐’‡โ€ฒ , ๐’‡โ€ฒโ€ฒ ๐’™

โ€ข Third Derivative:

๐’šโ€ฒโ€ฒโ€ฒ ,๐’…๐Ÿ‘๐’š

๐’…๐’™๐Ÿ‘,

๐’…(๐’…๐Ÿ๐’š๐’…๐’™๐Ÿ)

๐’…๐’™,

๐’…

๐’…๐’™๐’‡โ€ฒโ€ฒ , ๐’‡โ€ฒโ€ฒโ€ฒ ๐’™

โ€ข N-th Derivative:

๐’š(๐’) ,๐’…๐’๐’š

๐’…๐’™๐’,

๐’…(๐’…(๐’โˆ’๐Ÿ)๐’š๐’…๐’™(๐’โˆ’๐Ÿ))

๐’…๐’™,

๐’…

๐’…๐’™๐’‡(๐’โˆ’๐Ÿ) , ๐’‡(๐’) ๐’™

Page 42: Basic calculus (i)

o Find the second and third derivatives of ๐’š = ๐’†โˆ’๐’™.๐‘ฆโ€ฒ = โˆ’๐‘’โˆ’๐‘ฅ

๐‘ฆโ€ฒโ€ฒ = ๐‘’โˆ’๐‘ฅ

๐‘ฆโ€ฒโ€ฒโ€ฒ = โˆ’๐‘’โˆ’๐‘ฅ

o If ๐’š = ๐’†๐œฝ๐’™ show that the equation ๐’šโ€ฒโ€ฒโ€ฒ โˆ’ ๐’šโ€ฒโ€ฒ = ๐ŸŽ has two roots.

๐‘ฆโ€ฒ = ๐œƒ๐‘’๐œƒ๐‘ฅ

๐‘ฆโ€ฒโ€ฒ = ๐œƒ2๐‘’๐œƒ๐‘ฅ

๐‘ฆโ€ฒโ€ฒโ€ฒ = ๐œƒ3๐‘’๐œƒ๐‘ฅ

๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ฆโ€ฒโ€ฒ = ๐œƒ3๐‘’๐œƒ๐‘ฅ โˆ’ ๐œƒ2๐‘’๐œƒ๐‘ฅ = 0

๐œƒ2๐‘’๐œƒ๐‘ฅ ๐œƒ โˆ’ 1 = 0

๐‘’๐œƒ๐‘ฅ โ‰  0 โ†’ ๐œƒ = 0, ๐œƒ = 1

Higher Orders Derivatives

Page 43: Basic calculus (i)

First & Second Order Differentialsโ€ข If ๐’š = ๐’‡(๐’™) is differentiable on an interval then at any point of that

interval the derivative of ๐’‡ can be defined as:

๐’šโ€ฒ = ๐’‡โ€ฒ ๐’™ =๐’…๐’š

๐’…๐’™= ๐ฅ๐ข๐ฆ

โˆ†๐’™โ†’๐ŸŽ

๐šซ๐’š

๐šซ๐’™โ€ข This means when ๐šซ๐’™ becomes โ€œinfinitesimalโ€ (getting smaller

infinitely; โˆ†๐’™ โ†’ ๐ŸŽ), the ratio ๐šซ๐’š

๐šซ๐’™approaches to the derivative of the

function, i.e. the difference between ๐šซ๐’š

๐šซ๐’™and ๐’‡โ€ฒ ๐’™ is infinitesimal

itself and ignorable:๐šซ๐’š

๐šซ๐’™โ‰ˆ ๐’‡โ€ฒ ๐’™ ๐’๐’“ โˆ†๐’š โ‰ˆ ๐’‡โ€ฒ ๐’™ . โˆ†๐’™

โ€ข ๐’‡โ€ฒ ๐’™ . โˆ†๐’™ is called โ€œ differential of ๐’š โ€ and is shown by ๐’…๐’š, so:โˆ†๐’š โ‰ˆ ๐’‡โ€ฒ ๐’™ . โˆ†๐’™ = ๐’…๐’š

As โˆ†๐’™ is an independent increment of ๐’™ we can always assume that ๐’…๐’™ = โˆ†๐’™; so we can re-write the above as โˆ†๐’š โ‰ˆ ๐’‡โ€ฒ ๐’™ . ๐’…๐’™ = ๐’…๐’š

Page 44: Basic calculus (i)

โ€ข The geometric interpretation of ๐’…๐’š and โˆ†๐’š :

โˆ†๐’š represents the change in height of the curve and ๐’…๐’š represents the

change in height of the tangent line when โˆ†๐’™ changes (see the graph)

Adopted fromhttp://www.cliffsnotes.com/math/calculus/calculus/applications-of-the-derivative/differentials

So: ๐’…๐’š = ๐’šโ€ฒ. ๐’…๐’™

Some rules: If ๐’– and ๐’— are differentiable functions, then:

i. ๐’… ๐’„๐’– = ๐’„. ๐’…๐’– (c is constant)

ii. ๐’… ๐’– ยฑ ๐’— = ๐’…๐’– ยฑ ๐’…๐’— (can be extended to more than two functions)

iii. ๐’… ๐’–. ๐’— = ๐’—. ๐’…๐’– + ๐’–. ๐’…๐’— (extendable)

iv. ๐’…๐’–

๐’—=

๐’—.๐’…๐’–โˆ’๐’–.๐’…๐’—

๐’—๐Ÿ

First & Second Order Differentials

Page 45: Basic calculus (i)

โ€ข Using the third rule of differentials, the second order differential of ๐’š can be calculated, i.e. :

๐’…๐Ÿ๐’š = ๐’… ๐’…๐’š = ๐’… ๐’šโ€ฒ. ๐’…๐’™

= ๐’…๐’šโ€ฒ. ๐’…๐’™ + ๐’šโ€ฒ. ๐’… ๐’…๐’™

= ๐’šโ€ฒโ€ฒ. ๐’…๐’™. ๐’…๐’™ + ๐’šโ€ฒ. ๐’…๐Ÿ๐’™

= ๐’šโ€ฒโ€ฒ. ๐’…๐’™ ๐Ÿ + ๐’šโ€ฒ. ๐’…๐Ÿ๐’™

As ๐’™ is not dependent on another variable and ๐’…๐’™ is a constant :๐’…๐Ÿ๐’™ = ๐’… ๐’…๐’™ = ๐ŸŽ

So, ๐’…๐Ÿ๐’š = ๐’šโ€ฒโ€ฒ. ๐’…๐’™ ๐Ÿ = ๐’šโ€ฒโ€ฒ. ๐’…๐’™๐Ÿ (or in the familiar form ๐’šโ€ฒโ€ฒ =๐’…๐Ÿ๐’š

๐’…๐’™๐Ÿ )

Where ๐’…๐’™ ๐Ÿ = ๐’…๐’™๐Ÿ is always positive and the sign of ๐’…๐Ÿ๐’š depends on the sign of ๐’šโ€ฒโ€ฒ.

โ€ข Applying the same method we have ๐’…๐’๐’š = ๐’š(๐’). ๐’…๐’™๐’ .

First & Second Order Differentials

Page 46: Basic calculus (i)

Derivative and Optimisation of Functions

โ€ข Function ๐’š = ๐’‡ ๐’™ is said to be an increasing function at ๐’™ = ๐’‚ if at any small neighbourhood (โˆ†๐’™) of that point:

๐‘Ž + โˆ†๐‘ฅ > ๐‘Ž โ†” ๐‘“ ๐‘Ž + โˆ†๐‘ฅ > ๐‘“ ๐‘Ž

From the above inequality we can conclude that:

๐‘“ ๐‘Ž+โˆ†๐‘ฅ โˆ’๐‘“(๐‘Ž)

โˆ†๐‘ฅโ‰ˆ ๐‘“โ€ฒ(๐‘Ž) > 0

So, the function is increasing at ๐’™=๐’‚ if ๐’‡โ€ฒ(๐’‚)>๐ŸŽ , and decreasing if ๐’‡โ€ฒ(๐’‚)<๐ŸŽ .

Adopted from http://portal.tpu.ru/SHARED/k/KONVAL/Sites/English_sites/calculus/3_Geometric_f.htm

a a

Page 47: Basic calculus (i)

โ€ข More generally, the function ๐’š = ๐’‡(๐’™) is increasing(decreasing) in an interval if at any point in that interval ๐’‡โ€ฒ ๐’™ > ๐ŸŽ ( ๐’‡โ€ฒ ๐’™ < ๐ŸŽ ).

Derivative and Optimisation of Functions

Adopted from http://www.webgraphing.com/polynomialdefs.jsp

Page 48: Basic calculus (i)

Derivative and Optimisation of Functions

โ€ข If the sign of ๐’‡โ€ฒ(๐’™) is changing when passing a point such as ๐’™ =๐’‚ (from negative to positive or vice versa) and ๐’š = ๐’‡(๐’™) is differentiable at that point, It is very logical to think that ๐’‡โ€ฒ(๐’™)at that point should be zero, i.e. : ๐’‡โ€ฒ ๐’‚ = ๐ŸŽ. (in this case the tangent line is horizontal)

โ€ข This point is called local (relative) maximum or local (relative) minimum. In some books it is called critical point or extremum point.

http://www-rohan.sdsu.edu/~jmahaffy/courses/s00a/math121/lectures/graph_deriv/diffgraph.html

Not an extremum or critical point

Page 49: Basic calculus (i)

โ€ข If ๐’‡โ€ฒ ๐’‚ = ๐ŸŽ but the sign of ๐’‡โ€ฒ(๐’™) does not change when passing the point ๐’™ = ๐’‚, the point (๐’‚, ๐’‡ ๐’‚ ) is not a extremum or critical point (point C in the previous slide).

โ€ข For a function which is differentiable in its domain(or part of that), a sign change of ๐’‡โ€ฒ when passing a point is a sufficient evidence of the point being a extremum point. Therefore, at that point ๐’‡โ€ฒ(๐’™)will be necessarily zero.

Necessary and Sufficient Conditions

๐’‡โ€ฒ ๐’™ > ๐ŸŽ

๐’‡โ€ฒ ๐’™ < ๐ŸŽ

๐‘“โ€ฒ ๐‘Ž = 0

Adopted and altered from http://homepage.tinet.ie/~phabfys/maxim.htm/

๐’‡โ€ฒ(๐’™) > ๐ŸŽ

๐‘“โ€ฒ ๐‘ = 0

๐’‡โ€ฒ ๐’™ < ๐ŸŽ

ab

Page 50: Basic calculus (i)

โ€ข If a function is not differentiable at a point (see the graph, point x=c) but the sign of ๐’‡โ€ฒ changes, it is sufficient to say the point is a extremum point despite non-existence of ๐’‡โ€ฒ(๐’™) .

Necessary and Sufficient Conditions

Adopted from http://www.nabla.hr/Z_IntermediateAlgebraIntroductionToFunctCont_3.htm

๐’‡โ€ฒ(๐’„) is not defined as it goes to infinity

These types of critical points cannot be obtained through

solving the equation๐’‡โ€ฒ ๐’™ = ๐ŸŽ as they are not differentiable at

these points.

Page 51: Basic calculus (i)

Second Derivative Test

โ€ข Apart from the sign change of ๐’‡โ€ฒ(๐’™) there is another test to distinguish between extremums. This test is suitable for those functions which are differentiable at least twice at the critical points.

โ€ข Assume that ๐’‡โ€ฒ ๐’‚ = ๐ŸŽ; so, the point (๐’‚, ๐’‡ ๐’‚ ) is suspicious to be a maximum or minimum. If ๐’‡โ€ฒโ€ฒ ๐’‚ > ๐ŸŽ, the point is a minimum point and if ๐’‡โ€ฒโ€ฒ ๐’‚ < ๐ŸŽ, the point is a maximum point.

Adopted and altered from http://www.webgraphing.com/polynomialdefs.jsp

Inflection point

Concave Down

Concave up

๐‘“โ€ฒ ๐‘ฅ = 0

๐‘“โ€ฒ ๐‘ฅ = 0

๐‘“โ€ฒโ€ฒ ๐‘ฅ = 0

Page 52: Basic calculus (i)

Inflection Point & Concavity of Function

โ€ข If ๐’‡โ€ฒ ๐’‚ = ๐ŸŽ and at the same time ๐’‡โ€ฒโ€ฒ ๐’‚ = ๐ŸŽ, we need other tests to find out the nature of the point. It could be a extremum point [e.g. ๐’š = ๐’™๐Ÿ’, which has minimum at ๐’™ = ๐ŸŽ]or just an inflection point (where the tangent line crosses the graph of the function and separate that to two parts; concave up and concave down)

Adopted and altered from http://www.ltcconline.net/greenl/courses/105/curvesketching/SECTST.HTM Adopted from http://www.sparkle.pro.br/tutorial/geometry

๐‘“โ€ฒโ€ฒ ๐‘ฅ = 0

๐‘“โ€ฒ ๐‘ฅ > 0

Concave Down

Concave up

Page 53: Basic calculus (i)

Some Examples

o Find extremums of ๐’š = ๐’™๐Ÿ‘ โˆ’ ๐Ÿ‘๐’™๐Ÿ + ๐Ÿ, if any.

To find the points which could be our extremums (critical points) we need to find the roots of this equation: ๐’‡โ€ฒ ๐’™ = ๐ŸŽ,

So, ๐’‡โ€ฒ ๐’™ = ๐Ÿ‘๐’™๐Ÿ โˆ’ ๐Ÿ”๐’™ = ๐ŸŽ โ†’ ๐Ÿ‘๐’™ ๐’™ โˆ’ ๐Ÿ = ๐ŸŽโ†’ ๐’™ = ๐ŸŽ, ๐’™ = ๐Ÿ

Two points ๐‘จ(๐ŸŽ, ๐Ÿ) and ๐‘ฉ(๐Ÿ, โˆ’๐Ÿ) are possible extremums.

Sufficient condition(1st method): As the sign of ๐’šโ€ฒ = ๐’‡โ€ฒ(๐’™) changes while passing through the points there is a maximum and a minimum.

๐’™ โˆ’โˆž +โˆž

๐‘ฆโ€ฒ + โˆ’ +

๐‘ฆ

0 2

2 -2

Max Min

Page 54: Basic calculus (i)

Some Examplesโ€ข Sufficient condition (2nd method): we need to find the sign of ๐’‡โ€ฒโ€ฒ(๐’™)

at those critical points:๐’‡โ€ฒโ€ฒ ๐’™ = ๐Ÿ”๐’™ โˆ’ ๐Ÿ”

๐’‡โ€ฒโ€ฒ ๐’™ = ๐ŸŽ = โˆ’๐Ÿ” โ†’ ๐‘จ ๐ŸŽ, ๐Ÿ ๐’Š๐’” ๐’Ž๐’‚๐’™๐’Š๐’Ž๐’–๐’Ž๐’‡โ€ฒโ€ฒ ๐’™ = ๐Ÿ = ๐Ÿ” โ†’ ๐‘ฉ ๐Ÿ, โˆ’๐Ÿ ๐’Š๐’” ๐’Ž๐’Š๐’๐’Š๐’Ž๐’–๐’Ž

o Find the extremum(s) of ๐’š = ๐Ÿ โˆ’๐Ÿ‘

๐’™๐Ÿ, if any.

๐’šโ€ฒ =โˆ’๐Ÿ

๐Ÿ‘๐Ÿ‘ ๐’™

Although ๐’šโ€ฒ cannot be zero but its sign changes when passing through ๐’™ = ๐ŸŽ, so the function has a maximum at point ๐‘จ(๐ŸŽ, ๐Ÿ). The second method of the sufficient condition cannot be used here. Why?

๐’™ โˆ’โˆž +โˆž

๐‘ฆโ€ฒ +

๐‘ฆ

0

1Max