Top Banner
Bandwidth, treewidth, separators, expansion, and universality Bandwidth, treewidth, separators, expansion, and universality Julia B ¨ ottcher Technische Universit¨ at M ¨ unchen Topological & Geometric Graph Theory, 2008 (joint work with Klaas P. Pruessmann, Anusch Taraz & Andreas W¨ urfl) Julia B ¨ ottcher TU M¨ unchen TGGT ’08
43

Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Nov 06, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, expansion, anduniversality

Julia Bottcher

Technische Universitat Munchen

Topological & Geometric Graph Theory, 2008

(joint work with Klaas P. Pruessmann, Anusch Taraz & Andreas Wurfl)

Julia Bottcher TU Munchen TGGT ’08

Page 2: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Julia Bottcher TU Munchen TGGT ’08

Page 3: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Julia Bottcher TU Munchen TGGT ’08

Page 4: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋

Julia Bottcher TU Munchen TGGT ’08

Page 5: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Page 6: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Page 7: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeTheorem CHUNG’88

Let T be a tree on n vertices and maximal degree ∆(T ) ≤ ∆. Then T hasbandwidth at most O(n/ log∆ n).

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Page 8: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeTheorem CHUNG’88

Let T be a tree on n vertices and maximal degree ∆(T ) ≤ ∆. Then T hasbandwidth at most O(n/ log∆ n).

Question: What about planar graphs?

Let ∆ be constant. Do planar graphs G on n vertices with ∆(G) ≤ ∆ havebandwidth o(n)?

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Page 9: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Page 10: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Page 11: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Page 12: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

tree decomposition

Julia Bottcher TU Munchen TGGT ’08

Page 13: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

width

tree decomposition

Julia Bottcher TU Munchen TGGT ’08

Page 14: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Page 15: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Page 16: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

≤ 23n

23n ≥ o(n)

Julia Bottcher TU Munchen TGGT ’08

Page 17: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

G is (b, ε)-bounded:

For all G ′ ⊆ G on n ′ ≥ b verticesthere is U ⊆ V (G ′) with |U| ≤ n ′

2such that |N(U)| ≤ ε|U|.

G

Julia Bottcher TU Munchen TGGT ’08

Page 18: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

G is (b, ε)-bounded:

For all G ′ ⊆ G on n ′ ≥ b verticesthere is U ⊆ V (G ′) with |U| ≤ n ′

2such that |N(U)| ≤ ε|U|.

G

G ′ ⊆ G

Julia Bottcher TU Munchen TGGT ’08

Page 19: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

G is (b, ε)-bounded:

For all G ′ ⊆ G on n ′ ≥ b verticesthere is U ⊆ V (G ′) with |U| ≤ n ′

2such that |N(U)| ≤ ε|U|.

G

G ′ ⊆ G

U N(U)

Julia Bottcher TU Munchen TGGT ’08

Page 20: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Theorem LIPTON & TARJAN ’79

Planar graphs G on n vertices have (o(n), 2/3)-separators.

Julia Bottcher TU Munchen TGGT ’08

Page 21: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Theorem ALON, SEYMOUR, THOMAS ’90

F -minor free G on n vertices have (|F |3/2o(n), 2/3)-separators.

Julia Bottcher TU Munchen TGGT ’08

Page 22: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth versus path partition width

Path partition

A partition V (G) = V1 _∪ . . . _∪Vt of G such that edges of G only run withinthe Vi and between Vi and Vi+1.The width of this partition is maxi |Vi |, and ppw(G) is the minimal width ofa path partition of G.

Julia Bottcher TU Munchen TGGT ’08

Page 23: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth versus path partition width

Path partition

A partition V (G) = V1 _∪ . . . _∪Vt of G such that edges of G only run withinthe Vi and between Vi and Vi+1.The width of this partition is maxi |Vi |, and ppw(G) is the minimal width ofa path partition of G.

V1 V2 Vt

Julia Bottcher TU Munchen TGGT ’08

Page 24: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth versus path partition width

Path partition

A partition V (G) = V1 _∪ . . . _∪Vt of G such that edges of G only run withinthe Vi and between Vi and Vi+1.The width of this partition is maxi |Vi |, and ppw(G) is the minimal width ofa path partition of G.

V1 V2 Vt

Observation

For all G we have ppw(G) ≤ bw(G) ≤ 2 ppw(G).

Julia Bottcher TU Munchen TGGT ’08

Page 25: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Julia Bottcher TU Munchen TGGT ’08

Page 26: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

Julia Bottcher TU Munchen TGGT ’08

Page 27: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

Julia Bottcher TU Munchen TGGT ’08

Page 28: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

Julia Bottcher TU Munchen TGGT ’08

Page 29: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

Julia Bottcher TU Munchen TGGT ’08

Page 30: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R1 R2

Rt

Julia Bottcher TU Munchen TGGT ’08

Page 31: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R1 R2

Rt

Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

Julia Bottcher TU Munchen TGGT ’08

Page 32: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

Julia Bottcher TU Munchen TGGT ’08

Page 33: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

|S|, |R ′

j | = o(n)

⇒ |Bi | ≤ ∆t |S| = o(n)

Julia Bottcher TU Munchen TGGT ’08

Page 34: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

|S|, |R ′

j | = o(n)

⇒ |Bi | ≤ ∆t |S| = o(n)

V1 := S

Julia Bottcher TU Munchen TGGT ’08

Page 35: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

|S|, |R ′

j | = o(n)

⇒ |Bi | ≤ ∆t |S| = o(n)

V1 := S

Vi+1 := R ′

i _∪Bi

Julia Bottcher TU Munchen TGGT ’08

Page 36: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Julia Bottcher TU Munchen TGGT ’08

Page 37: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Julia Bottcher TU Munchen TGGT ’08

Page 38: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Universality for Graphs of Bounded Bandwidth B,SCHACHT,TARAZ’08

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t. for all n ≥ n0

χ(G) = k , ∆(G) ≤ ∆, bw(G) ≤ βn

δ(H) ≥ ( k−1k + γ)n =⇒ H contains G

Julia Bottcher TU Munchen TGGT ’08

Page 39: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Universality for Graphs of Bounded Bandwidth B,SCHACHT,TARAZ’08

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t. for all n ≥ n0

χ(G) = k , ∆(G) ≤ ∆, bw(G) ≤ βn

δ(H) ≥ ( k−1k + γ)n =⇒ H contains G

Theorem KUHN, OSTHUS, TARAZ 2005

Every n-vertex graph H with min. degree δ(H) ≥ (23 + γ)n contains some

n-vertex planar triangulation G.

Julia Bottcher TU Munchen TGGT ’08

Page 40: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (23 + γ)n contains every

n-vertex planar graph G with max. degree ∆ and chromatic number 3.

Universality for Graphs of Bounded Bandwidth B,SCHACHT,TARAZ’08

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t. for all n ≥ n0

χ(G) = k , ∆(G) ≤ ∆, bw(G) ≤ βn

δ(H) ≥ ( k−1k + γ)n =⇒ H contains G

Theorem KUHN, OSTHUS, TARAZ 2005

Every n-vertex graph H with min. degree δ(H) ≥ (23 + γ)n contains some

n-vertex planar triangulation G.

Julia Bottcher TU Munchen TGGT ’08

Page 41: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Concluding remarks

Let G be a hereditary class of graphs with max. degree ∆. Then

Bandwidth, treewidth, separators, expansion are sublinearlyequivalent for G.

Each of them implies that all H with δ(H) ≥ ( r−1r + γ)n are universal

for the class of r -chromatic graphs in G.

Julia Bottcher TU Munchen TGGT ’08

Page 42: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Concluding remarks

Let G be a hereditary class of graphs with max. degree ∆. Then

Bandwidth, treewidth, separators, expansion are sublinearlyequivalent for G.

Each of them implies that all H with δ(H) ≥ ( r−1r + γ)n are universal

for the class of r -chromatic graphs in G.

Question

Let G be an r -chromatic expander on n vertices (i.e. ∀U ⊆ V (G) with|U| ≤ n

2 we have |N(U)| ≥ εU for some constant ε > 0).Is it true that there is an n-vertex H with δ(H) ≥ ( r−1

r + γ)n but G 6⊆ H forγ > 0 sufficiently small?

Julia Bottcher TU Munchen TGGT ’08

Page 43: Bandwidth, treewidth, separators, expansion, and universality fileBandwidth, treewidth, separators, expansion, and universality The bandwidth of planar graphs of bounded degree Bandwidth:

Bandwidth, treewidth, separators, expansion, and universality

Concluding remarks

Let G be a hereditary class of graphs with max. degree ∆. Then

Bandwidth, treewidth, separators, expansion are sublinearlyequivalent for G.

Each of them implies that all H with δ(H) ≥ ( r−1r + γ)n are universal

for the class of r -chromatic graphs in G.

Question

Let G be an r -chromatic expander on n vertices (i.e. ∀U ⊆ V (G) with|U| ≤ n

2 we have |N(U)| ≥ εU for some constant ε > 0).Is it true that there is an n-vertex H with δ(H) ≥ ( r−1

r + γ)n but G 6⊆ H forγ > 0 sufficiently small?

Merci beaucoup.Julia Bottcher TU Munchen TGGT ’08