Top Banner

of 178

Baitap Giaitich 1 Daihoc

Jul 18, 2015

Download

Documents

thuthao2007
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 1 LI NI U. Trongnhiunm qua, cc cuc thi Olympic ton quc gia, quc t dnh cho hc sinh, sinh vin tr thnh mt sn chi tr tu nhm pht hin v m mmnhngtinngtonhctnglai.Quamtthisinhvinihcs phmtngnhiulnthamdcckthiOlympicton,bnthntihc tp cnhng iu tht qugivvn rnluyn t duy clp, sng to thngquavicgiiccbitonkh.Hnthna,xutphttnhiuamm vyuthchvilnhvcgiitchtonhc,tiluncmongmuntmti, tnghpnhngbitoncligiipvkhtrnnhngtpchtontrong ncvncngoi. Trn c snhng bi ton su tm c, tim rngn theonhiuhng khcnhau c nhng bi tonmilhn,hp dnhn. Nhm gip cc bn hc sinh , sinh vin ang n luyn chun b thi Olympic cthmmttiliuhtrchovicgiitoncamnh,tixinmnhdnvit cunsch:BitpgiitchdnhchoOlympicton.Mongrngquacun schny,ccbnstmthycnimvuivnhngcmxcringtrc nhngdngton,nhngbitonhaymlunaytrongnhnggiotrnhgii tch cn bn cc bn rt t gp. Nidungcunschnycchiaralm7chng.Tchng1n chng5,michngcchiaralm3phngm:Tmttlthuyt-Cc dngbitp(ckmtheoligiichitit)-Bitpngh.Chng6lh thngccbitptnghp-nngcaochoccchngtrnvinhngnh hng,gicchgii.Chng7lphngiithiuccthicaHiTon hc Vit Nam ra thi t nm 1993 n 2011. Vi kinh nghim cn non tr ca mt ging vin trong bui u dy hc, chc chn rng cun sch ny cn rt nhiu nhng sai st, rtmong s ch dy thmcaquthycgio,snggpcaccbnhcsinh-sinhvinyu thch ton ti rt ra c nhiu kinh nghim qu bu. Cui cng ti xin chn thnhcmnTh.SHunhTnTrnggingvinkhoaTon-Tin,trngi hc Qung Nam ng vin, ng h v gip cho ti trong vic hon thnh cun sch ny. Mi kin trao i xin bn c lin h theo a ch sau y: Vn Ph Quc, GV.Trng i hc Qung Nam, S 102- ng Hng Vng-TP. Tam KMail: [email protected] S in thoi: 0982 333 443 MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 2 CHNG 1 DY S THC V GII HN A. TM TTL THUYT 1. nh ngha dy sDy s l mt nh x: u N R ( ) n u n Ta thng k hiu dy l( )nuhoc { }nu . 2. Dy s hi t, phn k 2.1. nh ngha 2.1.1. nh ngha 1 a) Dy( )nuhi t naeR0 00, N , n > Nnu a c c > - e < N . K hiu:limnnu a= hoc( ) nnu a . b) Dy( )nukhng hi t th c gi l dy phn k. 2.1.2. Mnh 1 Gii hn ca mt dy hi t l duy nht. 2.1.3. nh ngha 2 a) Dy( )nuc gi l b chn trn nu:nnM u M - s eN. b) Dy( )nuc gi l b chn di nu:nm u m - > n eN. c) Dy( )nuc gi l b chn nu n va b chn trn va b chn di, tc l0:nu o o - > < n eN. 2.1.4. nh ngha 3 a) 0 0lim 0, N , n > Nn nnu A u A= + > - e > N . b) 0 0lim 0, N , n> Nn nnu B u B= < - e < N . Nhn xt: Tt c cc dy s c gii hn u phn k. 2.1.5. Mnh 2 a) Mi dy s tin n+ u b chn di. b) Mi dy s tin n u b chn trn. 2.2. Tnh cht v th t ca dy s hi t 2.2.1. Mnh 1 Cho( )nul mt dy s hi t c gii hn l a v hai s thc, o | . Nua o < N N . Nua | < N N . Nua o | < < < N N . 2.2.2. Mnh 2 MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 3 Cho( )nul mt dy s hi t. Khi : a) Nu 1 1: ,nN n n N u o - e e > > N Nthlimnnu o>b) Nu 2 2: ,nN n n N u | - e e > s N Nthlimnnu |s . c) Nu 0 0: ,nn n n n u o | - e e > s s N Nthlimnnu o |s s . 2.2.3. Mnh 3 Cho hai dy s( ) ( ) ,n nu vhi t Nu 0 0: ,n nn n n n u v - e e > s N Nthlim limn nn nu v s2.2.4. Mnh 4 Cho ba dy s( ) ( ) ( )n, , wn nu vsao cho: (i) 0 0 n, , wn nn n n n v u - e e > s s N N(ii) nlim limwnn nv a = = . Khi :limnnu a= . 2.2.5.Mnh 5 Cho hai dy s( ) ( ) ,n nu vsao cho: (i) 0 0 n, ,nn n n n u v - e e > s N N(ii)limnnu= +. Khi :limnnv= +. 2.2.6. Mnh 6 Cho hai dy s( ) ( ) ,n nu vsao cho: (i) 0 0 n, ,nn n n n u v - e e > > N N(ii)limnnu= . Khi :limnnv= . 2.3. Cc tnh cht v i s ca dy s hi t 2.3.1. Mnh 1 Cho hai dy s( ) ( ) ,n nu vv cc s, , a b eR. Khi , ta c: (i)lim limn nn xu a u a = = . (ii)( )limlimlimnnn nnnnu au v a bv b= + = += (iii)lim limn nn xu a u a = =MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 4 (iv) lim 0lim 00:nnn nnnuu vM v M= =- > s (v)( )limlimlimnnn nnnnu au v abv b= == (vi) 1 1lim 0 limnn nnv bv b = = = . (vii) limlimlim 0nnnnn nnu au av b v b= == =. 2.3.2. Mnh 2 Cho( ) ( ) ,n nu vl hai dy s thc. a)( )limlim: nnnn nnnuu vm v m= + + = +- > eN. c bit:(i)( )limlimlimnnn nnnnuu vv= + + = += + (ii)( )limlimlimnnn nnnnuu vv b= + + = += b) 0 0lim0, , ,nnnun n n n v e e= + - > - e e > >N N( ) limn nnu v= +. c bit: (i)( )limlimlimnnn nnnnuu vv= + = += + (ii)( )limlimlim 0nnn nnnnuu vv b= + = += > c) 1lim lim 0nn nnuu = + = . d) 0 0lim 01lim, , 0nnnnnuun n n n u= = +- e e > >N N. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 5 2.4. Cp s cng, cp s nhn 2.4.1. Cp s cng 2.4.1.1. nh ngha Cho dy s( )nuxc nh bi 1 01, n nu xu u d n+== + eN (0x , d l cc s hng s cho trc) c gi l cp s cng. Trong 0xgi l s hng u tin, d gi l cng sai. 2.4.1.2. Cc kt qu a) Cho( )nul cp s cng. Khi :( )11nu u n d = + n- eNb) Cho( )nul cp s cng. Khi : 1 22n n n nu u u+ += + eN . c) Cho( )nul cp s cng. Khi tng ca n s hng u tin l: ( )( )1112 12 2nnn kkn u uns u u n d=+= = = + ( . Ba s a, b, c theo th t lp thnh mt cp s cng2b a c = + . 2.4.2. Cp s nhn 2.4.2.1. nh ngha. Cho dy s( )nuxc nh bi: 1 01 nn nu xu u q+== eN (0x , d l cc hng s cho trc) c gi l cp s nhn. Trong 0xgi l s hng u tin, q gi l cng bi. 2.4.2.2. Cc kt qu a) Cho( )nul cp s nhn. Khi : 11nnnu u q -= eN . b) Cho( )nul cp s nhn. Khi : 21 2 n n nu u u+ += n eN. c) Cho( )nul cp s nhn. Khi tng ca n s hng u tin l: 111 q 11n nn kkqs u uq== = =. Ba s a, b, c khc khng theo th t lp thnh mt cp s nhn 20 b ac = > . 3. Tnh n iu 3.1. Dy n iu 3.1.1. nh ngha Cho( )nul mt dy thc. Ta ni rng: a)( )nutng 1nn nu u + s eN . b)( )nugim 1nn nu u+ s eN . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 6 c)( )nutng thc s1nn nu u + < eN. d)( )nugim thc s 1nn nu u+ < eN . e)( )nun iu ( )nu tng hoc gim. f)( )nun iu thc s( )nu tng thc s hoc gim thc s * Nhn xt (i)Nuccdy( )nu ,( )nv utng(tngnggim)th dy( )n nu v +tng ( tng ng gim). (ii)Nu cc dy( )nu ,( )nvu tng (tng ng gim) v cc s hng khng m th dy( )n nu vtng (tng ng gim). (iii)Mtdyscthkhngtnghockhnggim,Vddys ( )nuxc nh bi cng thc sau y:( ) 1nnu = , n-eN . 3.1.2. nh l a) Mi dy tng v b chn trn th hi t. b) Mi dy gim v b chn di th hi t. 3.1.3. Mnh a) Mi dy tng v khng b chn trn th tin n+. b) Mi dy gim v khng b chn di th tin n. * Nhn xt: (i)( )nutng limlimnnnnuu< + = +

. (ii) Nu( )nutng v hi t n a thsupnna ue=N. (iii) Nu( )nu tng th hin thin n b chn di bi 0u . 3.2. Dy k nhau 3.2.1. nh ngha Hai dy s( )nuv( )nvc gi l k nhau khi v ch khi: (i)( )nutng (ii)( )nvgim(iii)( ) lim 0n nnv u = . 3.2.2. Mnh 1 Nuhaidys( )nu v( )nv knhauthchnghitvccnggii hn.3.2.3. Mnh 2 ( Nguyn l Cantor) Cho hai dy s( ) ( ) ,n na bsao cho : (i) n na b sn eN (ii) | | | |1 1, ,n n n na b a b+ +c n eN (iii)( ) lim 0n nnb a =MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 7 Khi tn ti duy nhtaeRsao cho | | { },n nna b ae=N. Mt cch din t gn hn: Mi dy tht dn u c mt im chung duy nht. 4. Dy con 4.1. nh ngha Cho dy s( )nuv( )knl dy cc s t nhin tng thc s. Khi ta gi ( )knul mt dy con ca( )nu . 4.2. Mnh 1 lim limkn nn nu a u a = < + = . 4.3. Mnh 2 2 1 2lim lim limn n nn n nu a u u a+ = < + = = . 4.4. nh l Bolzano- Weierstrass. Mi dy s b chn u c th trch ra mt dy con hi t. 5. Dy Cauchy 5.1. nh ngha Dy( )nuc gi l dy Cauchy nu 0 00, n , ,n mm n n x x c c- > - e > < N . 5.2. Cc kt qu a)( )nul dy Cauchy*0 00, , pn n pn n n x x c c+ > - e > < e N N. b)( )nul dy Cauchy n hi t. 6. Dy chn, dy khng ng k, dy tng ng 6.1. Dy chn Dy( )nvchn dy( )nunu tn ti hng s C > 0 v tn ti s 0n eN sao cho 0n nn nu C v s > . Ta vit:( )n nu O b = . 6.2. Dy khng ng k Dy( )nukhng ng k so vi( )nvnu vi mi0 c >tn ti mt s nc eN sao chon nn nu vcc s > ,ngha l:lim 0nnnuv= . Ta vit:( )n nu o v =6.3. Dy tng ng Dy( )nu tng ng vi( )nvnu( )n n nu v o v = ,ngha llim 1nnnuv= . Ta vit n nu v ~ . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 8 7. Mt s loi dy quan trng 7.1. Dy truy hi truy hi cp 1 vi h s hng s a)Dng tng qut: 1 n ,a, bn nu au b+ = + e e N R. b) Cng thc + Nu1 a =th dy( )nul mt cp s cng. + Nu1 a =thAannu B = + .7.2. Dy truy hi tuyn tnh cp 2 vi h s hng s a) Dng tng qut: 2 1 nn n nu au bu+ += + eN ,, a beR. b) Cng thc: Xt phng trnh c trng ca dy: 20 a b = . + Nu phng trnh ny c hai nghim phn bit 1 2, thtn ti , A BeR sao cho: 1 2 nn nnu A B = + eN. + Nu phng trnh ny c nghim kpth tn ti, A BeR sao cho ( )nnu A Bn = + . + Nu phng trnh ny c nghim phcx iy = +th ta t 2 2r x y = = +,tan,,2 2yxt t | |= e |\ .. Khi ( ) os isin r c = + v( ) osn +Bsinnnnu r Ac =(,,n A Be e R N) . 7.3. Dy truy hi cp 1 dng:( )1,n nu f u n+ = * Cch lm + Bc 1: bin i a v dng: ( ) ( ) ( )( ) ( ) ( ),n nn nu f uu f u n

=

=. + Bc 2: t dy ph( )n nv u = . Khi ta thu c mt dy truy hi mi theo nvn gin hn. 7.4. Dy truy hi cp 2 dng :( )1 1, ,n n nu f u u n+ = * Cch lm + Bc 1: bin i a v dng: ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 11 1,, ,n n n nn n n nu u f u uu u f u u n

+ =

+ = + Bc 2: t dy ph t dy ph( )n nv u = . Khi ta thu c mt dy truy hi mi theo nvn gin hn. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 9 8. Gii hn trn v gii hn di ca dy s 8.1. nh ngha a) Nu dy s( )nuc mt dy con ( )knusao cholimknnu a=th a c gi l mt gi tr ring ca dy( )nuv a c th hu hn hay l. b) Tp cc gii hn ring ca dy s b chn( )nuc gi tr ln nht.Gi tr ny c gi l gii hn trn ca dy( )nak hiu llimnnu. c) Tp cc gii hn ring ca dy s b chn( )nuc gi tr b nht.Gi tr ny c gi l gii hn di ca dy( )nak hiu llimnnu. 8.2. nh l 1 Mi dy s( )nuu c gii hn trn , gii hn di v { }{ }11lim limsup , ,... lim liminf , ,...n n nn nn n nnnu u uu u u+ +==. 8.3. nh l 2 Dy s( )nuc gii hn ( hu hn hay)lim limn nnnu u = . Khi :lim lim limn n nn nnu u u = = . 9.Gii thiu hai nh l quan trng v dy s 9.1. nh l Toeplitz Gi s ng thi xy ra cc iu kin sau y: (i)Cc s0 n,knkP-> eN . (ii) *11 nnnkkP== eN(iii)Vi mik-eNc nh,lim 0nknP+=(iv)limnnu a= < +. Khi dy( )nvxc nh bi ( )1 ,nn nk nkv P u n-== eN hi t v limnnv a= . 9.2. nh l Stolz Nu hai dy s( ) ( ) ,n nu vng thi tha mn cc iu kin sau: (i) *1 nn nv v+ > eNMATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 10 (ii)limnnv= + (iii) 11limn nnn nu uav v= th tn tilimnnnuav= . B- CC DNG BI TP 1.1. Cho dy s( )nuxc nh bi: 21arctan , n 12nun= > . Hy tnh tng 1 2 2011... S u u u = + + + . Gii Ta c: ( ) ( )( )( )2 22 1 2 11 2arctan arctan arctan2 4 1 2 1 2 1nn nun n n n+ = = =+ + =( ) ( ) arctan 2 1 arctan 2 1 n n + , 1 n > . Khi : 1 2 2011... S u u u = + + +arctan3 arctan1 arctan5 arctan3 ... arctan4023 arctan4021 = + + + =arctan4023 arctan1 arctan 40234t = . 1.2. Cho dy s( )nuxc nh bi : ( )21 !nu n n = + ,1 n >Hy tnh tng 1 2 2011... S u u u = + + + . Gii Ta c: ( ) ( ) ( ) ( )2 21 ! 1 ! 1 ! 1 !nu n n n n n n n n n n = + = + + = + ,1 n >Khi :1 2 2011... S u u u = + + +=1.2! 0.1! 2.3! 1.2! ... 2011.2012! 2010.2011! 2011.2012! + + + =1.3. Cho dy s( )nuxc nh bi : 211nun n=+ ,1 n > . Hy tnh tng 1 2 2011... S u u u = + + +. Gii BI TP RN LUYN K NNG TNH TON CC TNG HU HN MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 11 Ta c :21 11 1 1 112 .2 2 2 2nun n n nn n= =+ + + + + 21 1 1 12 2 1 11 12 22 2n nn nn n+ = = = + | |+ ++ |\ . ,1 n >Khi :1 2 2011... S u u u = + + +3 1 2011 20091 0 2 1 ... 1006 10052 2 2 2= + + + + + = 2011 1 2012 2011 11006 02 2 2+ + = . 1.4. Cho dy s( )nuxc nh bi : 221 1 11 2 1nnun n n+ | | | |= + + ||\ . \ .,1 n > . Hy tnh tng 1 2 20111 1 1... Su u u= + + + . Gii Ta c : 2 2 221 1 1 1 11 2 1 1 1 1 1nnun n n n n+ | | | | | | | |= + + = + + + + ||||\ . \ . \ . \ . Suy ra :2 22 22 21 11 1 1 11 11 11 11 1 1 11 1 1 1nn nun nn n| | | |+ + + ||\ . \ .= =| | | || | | |+ + + + + + || ||\ . \ .\ . \ . = ( ) ( )( ) ( )( )2 22 22 22 21 111 144n n n nn nn n n nn+ + + = + + + ( n 1 > ). MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 12 Khi :1 2 20111 1 1... Su u u= + + +

( )2 2 2 2 2 2 2 211 2 1 0 ... 2011 2012 2011 20104= + + + + + + += 2 22011 2012 14+ . 1.5. Cho dy s( )nuxc nh bi : 3 3 2 3 2 3 2 4 4 4 412 3 3 1nun n n n n n n n n=+ + + + + + + + + , 1 n >Hy tnh tng : 1 2 2011... S u u u = + + + . Gii Ta c : 3 3 2 3 2 3 2 4 4 4 412 3 3 1nun n n n n n n n n=+ + + + + + + + + = 4 4 4 411 1 1 1 n n n n n n n n + + + + + + + = ( ) ( )4 4 4 411 1 1 n n n n n n + + + + + + = ( )( ) ( )( )4 44 41 11 1 1 1n nn n n n n n n n+ =+ + + + ++ + = 4 41 n n = + ,1 n >Khi : 4 4 4 4 4 41 2 2011... 2 1 3 2 ... 2012 2011 S u u u = + + + = + + + = 42012 1 . -------------------------------------------------------------------------------------------- 1.6. Cho dy s( )nuxc nh bi: ( )( ) ( )( ) ( )( ) ( )0 11 23, 4

1 2 4 1 3 4 2 3, n 2 n n nu un n u n n u n n u = =+ + = + + + + > - Tnh 2011u ? BI TP XC NH CNG THC TNG QUT CA DY S MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 13 Gii Chia hai v ca (*) cho( )( )( ) 1 2 3 n n n + + +ta c: 1 24 43 2 1n n nu u un n n = + + +. t 3nnuvn=+ . Khi dy( )nvxc nh bi: 0 11 214 4 ,n 2n n nv vv v v = == > Phng trnh c trng c nghim l2 = . Do :( ) 2nnv A Bn = + . Vi 0 11 v v = = , ta c h: ( )1112 12AAA B B= = + = = ( ) ( )1 12 2 3 2 3 2n n n nn nv n u n n n = = + + . Vi n = 2011, ta c : 2011 201020112014.2 2011.2014.2 u = 1.7. Cho dy s( )nuxc nh bi : 0122011 2010, n 12010 2011nnnuuuu+=+= >+ Tnh 2011u? Gii Ta c : 111 1 40211 20102010 2011 1 1nnn n nuuu u u++ = = ++ . t 11nnvu=. Khi dy( )nvxc nh bi : 0114021 2010n nvv v+== + Khi :.4021nnv A B = + .Vi 01 v = , 16031 v =ta c h : 3124021 6031 12AA BA BB=+ = + == Do : 3 1 24021 12 2 3.4021 1nn n nv u = = + Vi2011 n = , ta c : 20112011 2011 20112 3.4021 113.4021 1 3.4021 1u+= + = . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 14 1.8. Cho dy s( )nuxc nh bi : 012532011 2012 , n 1nn nuu u+== + >. Tnh 2011? uGii t2012nn nv u = . Khi dy( )nvxc dnh bi : ( )0 0011 112522011, n 1 2012 2011 2012 2012n n nn n n nv uvv v v v++ += = = > + = + + Suy ra: ( )21 2 02011 2011 ... 2011 252. 2011n nn n nv v v v = = = = = . Do : ( )252. 2011 2012n nnu = + . Vi2011 n = , ta c: ( )2011 20112011252. 2011 2012 u = + . 1.9. Cho dy s( )nuxc nh bi : 121122 2 1, n 22nnuuu= = >. Tnh 2011u? Gii Ta c : 11sin2 6ut= = , 222 2 1 sin6sin2 2.6utt = = Chng minh bng quy np ta c : 1sin2 .6n nut=Vi2011 n = , ta c : 2011 2011sin3.2ut= . 1.10. Cho dy s( )nu( n = 1, 2, ...) c xc nh bi :

121121 1, n 22 4n n n nuu u u+=| |= + + > |\ . Tnh 2011? u MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 15 Gii Ta c : 1 1 1 11 1 1ot cot2 2 4 2 2u ct t+= = = 221 1 1 1 1 1 1 1ot cot ot2 2 4 4 4 4 2 2 4 2sin4u c ct t tt| || ||= + + = + | |\ . |\ . 22 2 12cos os 1 os1 1 1 1 18 4 4cot4 4 4 2 2sin sin sin 2sin os4 4 4 8 8c cct t ttt t t t t+| |+ |= + = = = | |\ . Chng minh bng quy np ta c : 11cot2 2n n nut+= . Vi2011 n = , ta c : 2011 2011 20121cot2 2ut= . 1.11. Cho dy s( )nuxc nh bi: 121112, n 22nnnuuuu=+ = >. Hy xc nh cng thc tng qut ca dy s( )nu . Gii Xt hai dy s( )nxv( )nyxc nh nh sau : ( )( )1 12 21 11 12, 12 2 2 2n n nn n nx yx x y ny x y n = == + >= > Chng minh bng quy np : nnnxuy=1 n > . Vn l by gi chng ta i tm cng thc tng qut ca hai dy( ) ( ) ,n nx yl xong. rng:( )( )22 22 21 11 11 121 11 11 12 22222 2 22 2n n n nn n nn n nn n nn n nn n n nx y x yx x yx x yy x yy x yx y x y + = + = + = + == = MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 16 ( )( )2222 222 22 22 2n n n nn n n nx y x yx y x y + = + = ... ( ) ( )( ) ( )1 11 12 21 12 21 12 2 2 22 2 2 2n nn nn nn nx y x yx y x y + = + = + = = .y l mt h phng trnh theo hai n,n nx y .Gii h trn ta c: ( ) ( )( ) ( )1 11 12 22 212 2 2 2212 2 2 22 2n nn nnnxy (= + + ( (= + ( . Vy ta thu c : ( ) ( )( ) ( )1 11 12 22 22 2 2 222 2 2 2n nn nnx + + =+ -------------------------------------------------------------------------------------------- 1.12. Cho cc s thc dng 1 2 2011, ,..., x x xtha mn iu kin: 201112011kkx=>. t 20111nn kku x==. Chng minh rng dy( )nutng. GiiVi x > 0 ta lun c: ( )( ) 1 1 0nx x > . iu ny tng ng vi 11n nx x x+ > . Do : 2011 2011 2011111 1 12011 0n nn n k k kk k ku u x x x++= = = = > > . Vy dy( )nutng. 1.13. Cho dy s( )nuc xc nh nh sau: 20111 1 2010120120 , 2011u 2010n nnu uu> =2, 3,... n =Chng minh rng dy s( )nugim v b chn di bi2012. BI TP V CHNG MINH TNH N IU, B CHN CA DY S MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 17 Gii T20111 201012012 2011u 2010n nnuu = , 2, 3,... n =Suy ra: 20111 201011 201220102011n nnu uu| |= + |\ . R rng0 nu-> eN . p dng bt ng thc Cauchy cho 2011 s dng ta c: 2011 20111 1 1 2011 20101 120101 2012 1 20122010 ...2011 2011n n n nn nu u u uu u | || | | = + = + + + | |\ .\ ._2012 > . Li c:( )201120111 11 2012 12010 2010 1 12011 2011nn nuu u | |= + s + = |\ .(do2012nu > ). Vy( )nugim v b chn di bi2012. 1.14. Cho dy s( )nuxc nh bi: ( ) ( )01 102011 1 , t 0,1,nn n ttnutu t uu-+ >= + e eN Chng minh dy( )nuhi t Gii Xt hm s:( ) ( )120111tttf x t xx= +,( ) ( ) 0,, t 0,1 xe + e . Ta c:( ) ( )11 1 2011tf x t x | |' = |\ .. ( ) 0 2011tf x x ' = = . Lp bng bin thin, ta d dng suy ra:( ) 2011tf x > . M( )1 n 2011 ntn n nu f u u= e > e N N hay 12011tnu >Do : 1 n nu u+ = ( )1 1120111 2011 0tt tn n n n ttntt u u tu uu| | + = s |\ . ,( ) 0,1 t eDy( )nugim v b chn di bi2011t nn hi t. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 18 1.15. Cho dy s( )nuxc nh bi: 2.4nn n nnu C =,1 n > . Chng minh dy s( )nuhi t. Gii Lp t s: ( )( ) ( )( )( )( )122 2 112 121.2 2 ! !1 4 2 14. . .4 2 !2 1 1 !.4nnn nnnn nn nnCn nu n nu n n nn n nC++ ++++++ += = =+ + = 211 1 n4 4 n n-+ > e+N . Vy dy( )nutng thc s. Hn na: 12 2 21 1 1 1 1 1 1ln ln 1 ln 14 4 2 4 4 8 8 8 1kkuu k k k k k k k k+| | | |= + = + < = ||+ + + +\ . \ . ( )1 1 1 1111 1 1 11 1 1 1 1 1ln ln ln8 1 8 1n n n nkk kk k k kkuu uu k k k k ++= = = =| | | | < < ||+ +\ . \ . Hay 811 1 1 1 1 1 1ln ln 1 ln ln 1 ln8 2 8 2 8 2n n neu u u un n| | | | < < + < + < ||\ . \ .. Vy( )nul dy hi t. 1.16. Cho 1 2 2011, ,..., x x xl cc s thc dng c nh. Xt dy s : 1 2 2011...2011n n nnnx x xu+ + += ,n-eNChng minh rng dy( )nutng . Gii t 1 2 2011...2011n n nnx x xv+ + += . p dng bt ng thc Bunhiacovski ta c : 21 1 1 1 1 122 2 2 2 2 21 1 2 2 2011 2011 21 1 1 1 1 11 2 2011 1 2 20111 11...2010... ....2010 2010n n n n n nnn n n n n nn nv x x x x x xx x x x x xv v+ + + + + + + | |= + + + |\ .+ + + + + +s = MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 19 Ta s chng minh( )nul dy tng Li p dng bt ng thc Bunhiacovski ta c : ( )2 2 222 21 2 20111 1 2 2011 2 1 2 21 ...1. 1. ... 1.2011 2011x x xu x x x u u u+ + += + + + s = s . Gi s rng 1 n nu u s . Khi : 111 1nn n nn n n nv v v v s sTa c : 1 2 21111 1 1 11nnn n n n nnn n n n n n nn nnv vu v v v uvv+++++ + += > > = = =Vy( )nul dy tng. 1.17. Cho dy s( )nuxc nh bi: 1101, n 1n nuu u == + > Chng minh rng: 1 2 20112011...2u u u + + + > . Ta c: 11, k =1, 2,3,...,nk ku u+ = +Suy ra : 2 2 2 21 11 1 12 1 2n n nk k k k k kk k ku u u u u u n+ += = == + + = + + 211 10 22n nn k kk knu u n u+= =s = + > . Cho n = 2011 , suy ra : 1 2 20112011...2u u u + + + > . 1.18.Cho dy s( )nuxc nh nh sau :( )( )2 1 112nn n nu+ + +=,1 n >Chng minh rng : 1 2 20112011...2013u u u + + + < . Gii Ta c : ( )( )( )2 122 12 1 1kk kukk k k+ = =++ + +. p dng bt ng thc Cauchy ta c :( ) ( ) 2 1 1 2 1 k k k k k + = + + > + . BI TP V DY S V BT NG THC MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 20 Suy ra : ( )1 1 11 1kk kuk k k k+< = + +. Do : 211 21 12 14 4kiikuk kk k =< < =+ ++ +. Cho2011 k =ta c : 1 2 20112011...2013u u u + + + < . 1.19. Cho( )nul dy s thc dng tha : 21 , n 1n n nu u u +s > . Chng minh rng: 1, n 1nun< > . Gii +Vi1 n = , 21 1 2 1 1111u u u u u s < < = ( ng trong trng hp ny) +Vi2 n = , 222 1 1 11 1 1 14 2 4 2u u u u| |s = s < |\ . ( ng trong trng hp ny) + Gi s khng nh trn ng n n. Ta s chng minh n ng n1 n + . Tht vy! Xt hm s:( )2f x x x = . R rng( ) f xl hm s tng trn 10;2 ( ( . Do ( )( )1 2 21 1 1 1 1 11 1 1n nu f u fn n n n n n n+| |s s = = < |+ + +\ .. Vy 1, n 1nun< > . 1.20. Cho dy( )nuxc nh bi: 021120122012n nnuu uu += =. Chng minh rng: 20122011 14023 2x < < . Gii R rng:0 1nnu < < eN. Ta c: 211 1 1 11 1 1 1 12012,2012 2012 2012 2011nn n nnn n n n n n n nuu u uvu u u u u u u u++ + + + | |= = = = = e |\ . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 21 Suy ra: 2012 12012 01 1 2012 2012 4023... 1 ,1 2,2012 2011 2011v vu u| | | |= + + + e + + = ||\ . \ . Vy 20112011 14023 2u < Chng minh rng: 1 2... 2nu u u + + + < . Gii Vik-eN , ta c: ( )231 1 1 11 1kk kk k k k k kk k| |= = = |+ + +\ . + 1 1 1 11 1kk k k k| || |= + | |+ +\ .\ .= 1 1 1 11 21 1 1kk k k k k| || | | |= + < | ||+ + +\ . \ .\ . Do : 1 21 1 1 1 1 1.. 2 1 ... 2 1 22 2 3 1 1nu u un n n| | | |+ + + < + + + = < ||+ +\ . \ . 1.22. Cho dy s( )nu ,( )nvxc nh nh sau: 1 1110 , v 01, n 11, n 1n nnn nnuu uvv vu++> >= + >= + > Chng minh rng:( )2332011 20112 2011 u v + > . Gii t( )2wn n nu v = + . Khi :( ) ( )221 1 11 1wn n n n nn nu v u vu v+ + + (| |= + == + + + (|\ . = MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 22 =( ) ( )22 1 1 1 12n n n nn n n nu v u vu v u v| | | |+ + + + + + ||\ . \ . >( ) ( )2 1 12 w 8n n n n nn nu v u vu v| |+ + + + > + |\ .( bt ng thc Cauchy) Suy ra:( )1 2 2w 8 w 2.8 ... w 2 .8n n nw n > + > + > > + M( )222 1 11 11 1w 2 2 16 u vu v ( | | | |= + + + > + = (||\ . \ . ( bt ng thc Cauchy) V th:wn > ( ) 16 2 .8 8 n n + =33w 2nn >hay( )2332n nu v n + >Chn2011 n = , ta c:( )2332011 20112 2011 u v + > . 1.23. Cho a thc( )4 3 22 3 2 2 f x x x x x = + + + +v dy s( )nuxc nh bi:( )( )12 12nnkf kuf k==[. Chng minh: 1 2 20112011...4024u u u + + + = < |\ .. Mt khc1nu > < = |+ + + +\ .

1 1 112nn nun n n+ > > = +. Vy 11 1nun < < . 1.25. Cho dy s( )nuxc nh nh sau: 12112 , n 1n n nuu u u+== + >. Chng minh rng: 1 2 20111 1 11 ... 21 1 1 u u u< + + + tng. Mt khc: 2 33 21 , u 14 16u = = >suy ra: 201211n 3 1nuu> > < . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 24 Ta c phn tch sau:( )11 11 1 1 1 1 111 1n n nn n n n n nu u uu u u u u u++ += + = = + + ( )2010 20101 11 1 2012 20121 1 1 1 1 12 1,21n nn n nu u u u u u= =+| | = = = e |+\ . . Vy 1 2 20111 1 11 ... 21 1 1 u u u< + + + - e s < + N . n eN, chia n cho m ta c:n qm r = +, *,0 1 q r m e s s N . Khng mt tnh tng qut c th xem 00 u = . Ta c: .1 2n m r m r rn qm r mu qu u u qm u uu u qu r k kn qm r m qm n nc++= s + s s = + < + ++ +V 0 1 r m s s nn rub chn. Do 0N - eN sao cho 0n N >th: 02runcs < . T suy ra: 00n > Nnuknc s < + . Vy *lim inf ,n nnu unn n = e ` )N . 1.31. Tm 31lim sin!n nnkn kn n n=[. Gii + Bng cch s dng tnh cht n iu ca hm s, ta d dng chng minh c bt ng thc: 3 3 5sinx < x6 6 5!x x xx < +,0 x >Vn dng kt qu vo bi ton ny, ta c nh gi nh sau: 2 3 2 43 3 61 1 11 sin 16 ! 6 5!n n n nk k kk n k k kn n n n n n= = =| | | | < < + ||\ . \ .[ [ [ + Trc ht, ta tnh 231lim 16nnkkn=| | |\ .[ ? Cng s dng tnh cht n iu ta chng minh c bt ng thc: ( ) ln 11 , x 01xx x xx< + < > =+. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 27 V th, ta c nh gi: 2 2 23 2 3 31 1 1ln 16 6 6n n nk k kk k kn k n n= = =| |< < | + \ . [ Hay ( )( )( )( )( )23 3 3 211 2 1 1 2 1ln 16 36 6 6nkn n n n n n kn n n n=+ + + + | |< < | +\ .[. p dng nh l kp ta suy ra c 1 2 2183 31 11lim ln 1 lim 16 18 6n nn nk kk ken n = =| | | | | | = = | ||\ . \ .\ .[ [. + Tip theo ta s chng minh 1 2 4183 61lim 16 5!nnkk ken n=| | + s |\ .[. Tht vy!2 4 2 43 6 3 61 1ln 16 5! 6 5!n nk kk k k kn n n n= =| | | | + < + = ||\ . \ . [ =( )( )( )( )( )23 61 2 1 3 3 11 2 136 30.5!n n n n nn n nn n+ + + + + +Suy ra: 1 2 4183 61lim 16 5!nnkk ken n=| | + s |\ .[ Vy cng theo nh l kp ta suy ra: 1 3181lim sin .!n nnkn ken n n==[ 1.32. Cho( )nul dy cc nghim lin tip ca phng trnh lng gic t anx x =, x > 0. Tm 1lim os4n nnu uc+ | | |\ . ? Gii D thy; n = 1, 2,... lim2n nnn u n utt t< < + = +. Hn na: 1limtan lim 02 tannn nnn uutt | |+ = = |\ . lim 02nnn utt| | + = |\ . ( dot anx y =l hm lin tc) Do :( ) ( )1 1lim lim 1 02 2n n n nn nu u n u n ut tt t t+ + ( | | | | = + + + = || (\ . \ . Vy t tnh lin tc ca hm scos y x = , ta suy ra: MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 28 12lim os os .4 4 2n nnu uc ct+ | | = = |\ . 1.33. Cho dy s thc dng( )nuc xy dng nh sau: 11201110 , n 2nn kkuu u=> = > Chng minh rng dy nun| | |\ . c gii hn hu hn khin v hy tm gii hn . Gii Ta c: 2011 2011 201111 nn k n n nku u u u u+== = + >( do *0 nnu > eN ). Suy ra: 1 2n nu u n+ > >hay dy( )nutng thc s. Mt khc: ( ) ( )2011 2011 2010 2010 2010 20101 1 11 1 1 n 2n n n n n n n n nu u u u u u u u u+ + += + = + < + < + >Chng minh bng quy np n gin ta c: 2010 20101 21nu u n+< + .Suy ra:( )nub chn trn. Do ( )nuc gii hn hu hn khin . Hn na ( )( )2010 20101 2201010 0 01 11nu u nnn nn+| | | |< < + ||+ +\ . \ . +. Vylim 0nnun= . 1.34.Cho dy s( )nuxc nh bi: ( ) ( )( )1213 23 2 2 6 5 27 18, n 1 *n n nuu u u+= += + + > t 11, 2nnkkv nu-== e+N . Hy tmlimnnv. Gii Nhn c hai v ca (*) cho3 2 +ta c: ( ) ( )213 2 3 2n n nu u u++ = + 3 MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 29 ( )( )( )2213 2 2 3 3 3 0 nn n n n nu u u u u-+ + = + = > eN( )*1nn n nu u u+ > e Nl dy s tng. Hn na 13 2nu u > = + . Gi s( )nub chn trn. Khi dy( )nuhi t. t ( )lim3 2nnL u L= > + . Chuyn gi thuyt bi ton qua gii hn ta c: ( ) ( ) ( )223 2 2 6 5 27 18 3 0 3 L L L L L = + + = =( iu ny v l). Vylimnnu= +. Ta li c:( )( ) ( )( )( )( )113 2 3 3 21 3 2 1 13 3 23 2k k kk k kk ku u uu u uu u+++ = ++ = = + + 11 1 12 3 3k k ku u u + = + 1 111 1 12 3 3n nnk kk k kvu u u= =+| | = = |+ \ . 1 1 11 1 2 12 3 3 3n nu u u+ += = 2lim2nnv = . 1.35. Cho dy s( )nuxc nh bi: ( )12 2 21 2011ln 2011 2011, n 12010n nu au u+= = + >. Chng minh rng dy s( )nuc gii hn khin + v tm gii hn . Gii Xt hm s:( ) ( )2 2 22011ln 2011 20112010f x x = + MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 30 ( )( )2 22011 2 2011 2 1. .2010 2011 2010 2.2011 20101, 2010x x xf xx x xf x x' = s =+' s eR t( ) ( ) g x x f x = ( ) ( ) 1 0g x f x x ' ' = > eR. Suy ra:( ) y g x =tng thc s trnR v y l hm lin tc. V ( ) ( )22011 0 0 g g 00 x x o < th 0xl im cc tiu ; n chn v ( )( )00nf x = > . Chng minh rng tn ti( ) c a;b esao cho( ) f c 0 =v( ) f c 0 ' s . Gii T gi thit suy ra f bng 0 ti t nht mt im trong khong( ) a; b . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 70 t( ) () { }c inf x a;b : f x 0 = e = , ta c( ) f c 0 = . V( ) f a 0 ' >nn() ( ) f x 0x a;c > e . Hn na( ) f c 'tn ti nn ( )( ) ( ) ( )h 0 h 0f c h f c f c hf c lim lim 0h h + +' = = s . 3.8. Gi s f c o hm trn mt khong cha| | 0,1 ,( ) ( ) 0 0 , f 1 0 f ' ' > < . Chng minh rng tn ti( ) ( ) ( ) | |0 00;1 : x 0;1 x f x f x e s e . Gii f c o hm trn mt khong cha | | 0,1| | ( ) ( )| |( )0 00,10;1 : maxxx f x f x f xe - e s = . Ta s chng minh: 0 00,x 1 x = = . Tht vy! ( ) ( )( ) ( )( ) ( )( |00 0lim 0 0 0;1 : 0x 0;xf x f f x ff h hx x+ ' = > - e > e( ) ( ) ( | ( ) 0 x 0; 0 f x f h f > e khng phi l gi tr ln nht ca( ) f xtrn| |00,1 0 x = . ( ) ( )( ) ( )( ) ( )| )111 1lim 1 0 0;1 : 0x ;11 1xf x f f x ff k kx x ' = < - e < e ( ) ( ) | ) ( ) 1 x ;1 1 f x f k f < e khng phi l gi tr ln nht ca( ) f xtrn | )0;1 1 k x = . 3.9. Cho mt hm s f xc nh trnR tho mn ( ) ( ) 0 0 , f sin x f x x = > eR. Chng minh rng o hm ca f ti 0 khng tn ti. Gii Gi s( ) 0 f 'tn ti.0;2xt| | e |\ . ta c: ( ) ( )( )( ) ( )0 00 0 sin sin0 lim lim 10 0x xf x f f x f x xfx x x x+ ++ ' > = > = . Tng t ta cng chng minh c ( )10 1 f' < iu ny chng t( ) 0 f 'khng tn ti. ------------------------------------------------------------------------------------------------ BI TP VO HM CP CAO MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 71 3.10. Chng minh rng:() f x arctan x =tho mn phng trnh: ( )()() ( )( )() ( )( )( )()n n 1 n 2 21 x f x 2 n 1 xf x n 2 n 1 f x 0 + + + =vix eR v n 2 > .Gii () f x arctan x =() ( ) ()221f x 1 x f x 11 x' ' = + =+(1) Ly o hm hai v ca (1) suy ra: ( ) () ()21 x f x 2xf x 0 '' ' + + = . Bng quy np ta chng minh c: ( )( )() ( )( )() ( )( )( )()n n 1 n 2 21 x f x 2 n 1 xf x n 2 n 1 f x 0 + + + = ( ) x ,n 2 e > R+ Mnh ng trong trng hp n = 2. + Gi s mnh ng nn k =tc l: ( )( )() ( )( )() ( )( )( )()k k 1 k 2 21 x f x 2 k 1 xf x k 2 k 1 f x 0 + + + =(*) Ly o hm hmhaiv ca (*) ta c ()() ( )( )() ( )( )()( )( )() ( )( )( )()( )( )()()() ( )( )()k k 1 k 1 2k k 1k 1 k k 1 22xf x 1 x f x 2 k 1 f x2 k 1 xf x k 2 k 1 f x 01 x f x 2kxf x k 1 kf x 0+ + + + + + + = + + + =

3.11. Cho f l hm kh vi n cp n trn( ) 0;+ . Chng minh rng vix 0 > , ()( )() nnn n 1n 11 1 1f 1 x fx x x+| | | | | |= |||\ . \ . \ . Gii + Mnh ng trong trng hpn 1 = . + Gi s mnh ng trong trng hpn k s , tc l:

()( )() kkk k 1k 11 1 1f 1 x fx x x+| | | | | |= |||\ . \ . \ . + Ta s chng minh mnh trn ng vin k 1 = + . Tht vy! ( )( )( )()( )()kk 1 kk 1 k k 1k k k 1 k 21 1 1 11 x f 1 x f 1 kx f x fx x x x++ + | | '| | | | | | | | | | | | | | |' = = ||||||| |\ . \ . \ . \ . \ . \ . \ .\ . =( )( )( )() k kk 1 k 1k 1 k 21 11 k x f 1 x fx x+ + | | | | | | | |' ||||\ . \ . \ . \ . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 72 ( )( )( ) kk 1k k 2k 1k 1 1f 1 x fx x x+| | | | | |' = |||\ . \ . \ .. Li c:( )( )( )( ) k k 1k 1 k 1k 2 k 21 11 x f 1 x fx x '| || | | | | | | |' ' = | |||| |\ . \ . \ . \ .\ . Theo gi thit quy np vi trng hpn k 1 = ta c: ( )( )( ) k 1k 1k k 2k1 1 1f 1 x fx x x| | | | | |' = |||\ . \ . \ ..T suy ra( )( )( )k 1k 1k 1 kk 21 1 11 x f fx x x++++| | | | | | = |||\ . \ . \ .. Vy bi ton c chng minh xong 3.12. Cho fkh vi trn( ) a; bsao cho vi( ) x a;b eta c:() () ( )f x g f x ' = , trong g ( ) C a;be . Chng minh fCe ( ) a; b . Gii Ta c:() () ( ) () () ( ) () () ( ) () ( )f x g f x f x g f x f x g f x g f x ' '' ' ' ' = = =() () ( ) () ( ) ( ) () ( ) ( ) () ( )2 2f x g f x g f x g f x g f x ''' ' ' = +Do f, f '' '''u lin tc trn( ) a; b . Chng minh bng quy np ta c ()( )nf n 3 >u l tng cc o hm ()( )kg fvik 0; n 1 = . T suy ra iu phi chng minh. ------------------------------------------------------------------------------------------------ 3.14. Cho| | f : ; 1;12 2t t ( ( l mt hm kh vi c o hm lin tc v khng m. Chng minh tn ti 0x ;2 2t t| |e |\ . sao cho( ) ( ) ( ) ( )2 20 0f x f x 1 ' + s . Gii Xt hm s: ()g : ; ;2 2 2 2x arctanf xt t t t (( (( BI TP VNH L GI TR TRUNG BNH MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 73 g l hm lin tc trn;2 2t t ( ( . Nu() f x 1 = th g kh vi ti mi x v ()()()2f xg x1 f x'' =. Nu tn ti 0x ;2 2t t| |e |\ . sao cho ( )( )00f x 1f x 1=

=

th 0xl cc tr a phng ca hm f nn theo nh l Fermat ta suy ra c( )0f x 0 ' = . V th ta c: ( ) ( ) ( ) ( )2 20 0f x f x 1 ' + = . Nu() f x 1x ;2 2t t| |= e |\ . th p dng nh l Lagrange cho hm g trn on;2 2t t ( ( ta c :( )( ) ( )0020f xx ; : g g2 2 2 2 2 21 f xt t t t t t'| | | | | | | | | |- e = |||||\ . \ . \ . \ .\ .. D thy: ( )( ) ( )020f x01 f xt t's s. Vy ta chng minh c( ) ( ) ( ) ( )2 20 0f x f x 1 ' + s . 3.15. Cho f l mt hm thc kh vi n cp1 n +trnR. Chng minh rng vi mi s thc,, a < b a btho mn ( ) ( )( )( )( ) ( )( )()...ln...nnf b f b f bb af a f a f a| | ' + + += |' + + +\ . tn ti( ) ; c a b esao cho ( )( ) ( )1 nf c f c+= .Gii Vi a, b l s thc,a b . Chng minh phng trnh( )21' = f xx c nghim ln hn 1 Gii t( ) ( )1g x f xx= fkh vi lin tc trn( ) ( ) ( )11; lim 1 0xf x f++ = =( ) ( )1 11lim lim 0x xg x f xx+ + | | = = |\ .. ( ) ( ) ( ) ( )1 10 lim 0 lim lim 0x x xf x f x g x f xx x+ + +| |s s = = = |\ . ( ) ( ) ( ) ( )0 01lim lim 1; : 0x xg x g x x g x++ ' = - e + =hay( )0 201f xx' = . Vy phng trnh( )21' = f xx c nghim ln hn 1. BI TP VMT S NGDNGCA O HM MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 76 3.20. Chng minh phng trnh: 2010sin3x 2011cos 2x 2012cos x sin x 0 + + + =c nghim trnR. Gii Xt hm s:()2010 2011f x cos3x sin2x 2012sin x cos x3 2= + + Hm sflin tc trn| | 0;2t , kh vi trn( ) 0;2t . Theo nh l Lagrange tn ti( ) c 0;2t esao cho: ( )( ) ( ) ( ) f 2 f 0 2011 2012 2011 2012f c 02 0 2tt t + +' = = = 3.21. Gi s: f R R c o hm cp 2 tho mn:( ) ( ) 0 1,f 0 0 f ' = =v ( ) ( ) ( ) | ) 5 6 00; f x f x f x x '' + > e + . Chng minh rng: ( )2 33 2x xf x e e > ,| ) 0; x e + . Gii Ta c: ( ) ( ) ( ) | ) 5 6 00; f x f x f x x '' ' + > e +( ) ( ) ( ) ( ) ( ) | ) 2 3 2 00; f x f x f x f x x '' ' ' > e +t( ) ( ) ( ) | ) 2, x 0; g x f x f x ' = e + . Khi ( ) ( ) | ) ( ) ( ) | )33 0 , x 0; 0 ,x 0;xg x g x e g x '' > e + > e + ( )3xe g xtng trn| ) 0; + () ()3 22 2x x xe g x e g x e > > () ( ) | ) ( ) ( ) | )2 22, x 0; 2 0 x 0;x x x xe f x e e f x e ' ' > e + + > e + ( )22x xe f x e+tng trn| ) 0; +( ) ( ) | )2 0 02 0 2 3 ,0;x xe f x e e f e + > + = +( )2 33 2x xf x e e > , | ) 0; x e + . 3.22 Cho: f R R l hm kh vi cp hai vi o hm cp 2 dng. Chng minh rng:( ) ( ) ( ) f x f x f x ' + > vi mi s thc x. Gii + Nu( ) 0 f x ' =th( ) ( ) ( ) f x f x f x ' + = vi mi x : hin nhin. + Nu( ) 0 f x ' l hm tng( ) ( ) 0 f c f x ' ' < < . V vy ( ) ( ) ( )0 f x f x f x ' + < . + Nu( ) 0 f x ' >th chng minh tng t nh trng hp( ) 0 f x ' = . Vy( ) 1 cos cos 11x xx xt t+ >+| ) 2; x e + . 3.24. Gi s( ) f xkh vi trn( ) ; a bsao cho( ) lim,limx a x bf x+ = + = v ( ) ( ) ( )21x ; f x f x a b ' + > e . Chng minh rngb a t > . Cho v d b a t = . Gii Ta c:( ) ( ) ( )( )( )( )221x ; 1 0x ;1f xf x f x a b a bf x'' + > e + > e+ ( ) ( ) ( ) ( ) arctan 0x ; arctan f x x a b f x x' + > e +tng trn( ) ; a bChuyn qua gii hn ta c: 2 2a b b at tt + s + > . V d:cot, a = 0 , b =y x t = . 3.25. Chof : R R l hm kh vi n cp hai sao cho ta c th tm c hm g :+ R R cho() () () () f x f x xg x f x x '' ' + = eR. Chng minh rng f(x) l hm b chn. Gii MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 78 Ta c:() () () () f x f x xg x f x x '' ' + = eR () () () () () () ( )22f x f x 2f x f x 2xg x f x ' ' '' ' + = . Xt hm s() () ( ) () ( ) ()2 2F x f x f x F x ' ' = + = () () ( )22xg x f x ' () F x 0' >vi x < 0v() F x 0 ' svi x 0 > . 3.26. Cho| | f : 0,1 R kh vi hai ln sao cho vi mi| | x 0,1 e ,() f x 1 '' s . Chng minh rng:( ) ( )1 1f 0 2f f 12 4| | + s |\ .. Gii Xt nh x sau: () () () () ()1 2xg x f x g x f x 1 0 g x2' ' '' '' = + = s l hm lm. T :( ) ( ) ( )1 1g g 0 g 12 2| |> + |\ .. Do :( ) ( ) ( )1 1 1f f 0 f 12 8 2| |+ > + |\ .( ) ( )1 1f 0 2f f 12 4| | + s |\ .. 3.27. Chof : R R kh vi hai ln, li sao cho() f x 0x > eR. Chng minh rngg : R R ( )xx2011x e f e . l hm li. Gii V f kh hai ln trnR nn g cng l hm kh vi hai ln trnR. Ta c:() ( ) ( )x 2010xx x2011 20111g x e f e e f e2011 ' ' = () ( ) ( ) ( ) ( )( ) ( ) ( )x 2010x 2010x 4021xx x x x2011 2011 2011 2011x 2010x 4021xx x x2011 2011 201121 1 2010g x e f e e f e e f e e f e2011 2011 20111 2009e f e e f e e f e 0x2011 2011 ('' ' ' '' = + + ( ' '' = + + > eR ( do f li v() f x 0x > eR) ------------------------------------------------------------------------------------------------ | |()( )g : 0,1x 1 x x f x2+RMATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 79 3.28. Cho( ) f xkh vi 2 ln tho( ) ( ) 0 1 0 = = f f , | | ()x 0;1minf x 1e= .Chng minh rng: | |( )0;1max 8e'' >xf x . Gii flintctrn| | | | ( )| | ()x 0;10;1 a 0;1 : f a minf x 1e - e = = .Suyrac( ) 0 ' = f a , ( ) 0;1 ae . Khai trin Taylor ti a:( )( ) ( )( )212u + = + f a x af x x a ,0 1 u < < . + Vi0 = x , ta c: ( )2 10 12''= +f ca, 10 < < c a+ Vi1 = x , ta c: ( )( )220 1 12''= + f ca, 21 < < a c . Do :( )1 228 '' = > f ca nu 1 2s a; ( )( )2 2281'' = >f ca nu 12> a . Vy | |( )0;1max 8e'' >xf x . 3.29.Gisfkhvilintcncphaitrn( ) 0;+ thomn () ()x xlimxf x 0 ,limxf x 0+ +'' = = . Chng minh rng:()xlimxf x 0+' = . Gii Vix 0 >ta c:( ) () () ( )1f x 1 f x f x f c2' '' + = + +vi( ) c x; x 1 e +Do :() ( ) ( ) () ( )x 1 xxf x x 1 f x 1 xf x . cf cx 1 2 c' '' = + + +. Suy ra:()xlimxf x 0+' = . 3.30.Chofkhvitrn| | a; b vgisrng( ) ( ) f a f b 0 ' ' = = .Chngminh rng nuf ''tn ti trong( ) a; bth tn ti( ) c a;b e sao cho: ( )( )( ) ( )24f c f b f ab a'' > Gii Ta c:( )()2f u a b b af f a2 2! 2''+ | | | |= + ||\ . \ . ; ( )( )2f v a b b af f b2 2! 2''+ | | | |= + ||\ . \ . BI TP V KHAI TRIN TAYLOR MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 80 vi a b a bu a;, v ;b2 2+ +| | | |e e ||\ . \ .. Do :( ) ( ) ( ) () ( ) (){ }2 2b a 1 b af b f a f v f u max f v , f u2 2 2 | | | |'' '' '' '' = s ||\ . \ .. t( ) ( ) (){ }f c max f v , f u '' '' '' = . T suy ra iu phi chng minh. 3.31. Cho f l hm lin tc kh vi cp hai trn( ) 1;1 v( ) f 0 0 = . Hy tnh gii hn sau:( )1xx 0j 1lim f jx+ ( ( =. Gii Theo cng thc Taylor, ta c: ( ) ( ) ( ) ( ) ()1 1x x2 2j 1 j 11 111 x xf jx f 0 jx f cjx j x f 0 x x2 2 (( (( = =| |(( + | ((| | \ .' '' ' = + = + |\ . vi() ( )1x2 2j 11x f cjx j x2, ( ( ='' =. Vf ''b chn trong ln cn ca 0 nn 1x2j 11 1 11 2 1x x xj6 ( ( =| || |(((+ + | | ((( \ .\ .= D thy()x 0lim x 0 += . T suy ra( )1xx 0j 1lim f jx+ ( ( =( ) f 02'= . 3.32. Gi s() f xl hm chn, kh vi hai ln v( ) f 0 0 '' = . Chng minh rng x 0 =l im cc tr. Gii () f xl hm chn ( ) () ( ) () ( ) f x f x f x f x f 0 0 ' ' ' = = = . Theo khai trin Taylor, ta c:() ( )( )( )2 2f 0f x f 0 x o x2''= + + . + Nu( ) f 0 0 '' >th ( )( )2 2f 0x o x 02''+ >vi x b suy rax 0 =l im cc tiu. +Tng t nu( ) f 0 0 '' > >vi mix 0 > . Chng minh rng nu () ()() ( )2xf x f xlim af x' '''='' th () ()() ( )2xf x f x 1lim2 af x''= '. Gii S dng quy tc LHospital ta c: ()()()() () ()() ( )2x x xf xxf x f x f x f xlim 1 lim lim axf x xf x '| | ' |'' | | ' ' '''\ . = = = |'' '''\ .. Do ()()xf xlim 1 axf x'= ''. T gi thit bi ton suy ra: a < 1.Ta c: ()()xxf x 1limf x 1 a''=' (*) Ta s chng minh()xlimf x= +. Theo cng thc Taylor, ta c: ( ) () () ( ) ( ) () ()2hf x h f x f x h f c , h >0 f x h f x f x h2' '' ' + = + + + > + . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 83 Choh ta c()xlimf x= +. Li p dng quy tc LHospital ta c: ()()() ()()x xxf x f x xf x 2 alim limf x f x 1 a ' ' '' + = =' . Kt hp vi (*) ta c:() ()() ( )()()()()2x xf x f x xf x f x 1 1 a 1lim lim . .f x xf x 1 a 2 a 2 af x '' ''= = =' ' '. 3.36. Chng minh rng vi f kh vi lin tc n cp 2 trnR tho mn ( ) f 0 1 = ,( ) f 0 0 ' =v( ) f 0 1 '' = th 2x20112x2011lim f ex| | |\ .+| || |= ||\ . \ .. Gii Ta c: x2011x ln fxx x2011lim f limex| | | | ||\ . \ .+ +| || |= | | |\ .\ .. ( ) ( ) ( )( )x t 0 t 0ln f 2011 t 2011f 2011 t2011limxlnf lim limt x2 t.f 2011 t+ ++ '| | = = |\ . ( )( ) ( )222t 02011 f 2011 t2011 2011lim2 22f 2011 t 2.2011 t.f 2011 t+''| |= = = |' \ . +. Vy x2011x ln fxx x2011lim f limex| | | | ||\ . \ .+ +| | | |= ||\ . \ .= 220112e| | |\ ..

3.37. Tm hm s() f xxc nh trnR tho mn iu kin:() ()2011f x f y x y s vi mix, y, x y e = R . Gii T gi thit ta suy ra: () ()()() ()()2010y xf y f x f y f x0 y x f x lim 0 f x C consty x y x ' s s = = = = . 3.38. Tm tt c cc hm f(x) xc nh v lin tc trnR sao cho ( ) ( ) 0x f x f x ' '' = eR. Gii S DNG O HM TRONG VIC GII PHNG TRNH HM MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 84 t( ) ( ) ( )2g x f x ' =( ) ( ) ( ) 2 0x g x f x f x ' ' '' = = eR ( ) ( ) ( ) g x C const f x const f x ax b ' = = = = + x eR. 3.39. Tmhm() f x 0 >v kh vi trn +Rng thi tho mn iu kin: () ()2 2 n nf x f y x yfx, y , n2 2-| |+ += e e | |\ .R N . Gii o hm 2 v ca ng thc cho ln lut theo bin x, bin y ta c: () ()() ()n n n 1n n 2 2f x f x x y nxf .2x y f x f y4 22 2| | '+' = | |+ +\ . () ()() ()n n n 1n n 2 2f y f y x y nyf .2x y f x f y4 22 2| | '+' = | |+ +\ . T suy ra: () () () () () ()()nn 1 n 1 n 1f x f x f y f y f x f x 2C f x Cxx y x n ' ' '= = = ( ) C 0 > . Th li thy ng. 3.40. Tm tt c cc hm s f(x) kh vi cp hai trnR v tho mn iu kin: () () f x f x '' =vi mix eR. Gii Gi s tn ti hm s f(x)tho mn yu cu bi ton. () () () () () () () () ( )xf x f x f x f x f x f x 0 e f x f x 0''' ' ' '' '( = + = =(( () () () ( ) ()x x 2x x 2xCf x f x Ce e f x C.e e f x .e B2 '' = = = +t CA2= , ta suy ra:()x xf x Ae Be ,A ,B: const= + . Vy()x xf x Ae Be ,A ,B: const= +l hm s cn tm. C-MT S BI TP NGH MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 85 3.41. Xem xt tnh kh vi ca hm s sau()22 xx e,x 1f x1,x 1es= >. 3.42. Chng minh rng hm s()2x cos ,x 0f x x0 , x = 0t == khng kh vi ti cc im n2x, n2n 1= e+Z nhng kh vi ti 0 l im gii hn ca dy( )nx . 3.43. Cho f kh vi ti 0x . Hy tnh cc gii hn sau: a) () ( )() ( )( )0x00x x0f x e f xlim , x = 0 , f 0 0.f x cos x f x' = b)( )n0 0 2xk 1klim f x nf xn=| || |+ ||\ . \ . 3.44. Cho ( )2n2nf ln 1 x, n = + eN. Hy chng minh rng: ( )( )2n2nf 1 0. =3.45. Xt 0 1 2011b , b ,..., b eR tho mn: 2 2010 20112 2010 20110 12 b 2 b 2 bb 2b ... 03 2011 2012+ + + + + = . Chng minh rng phng trnh:2011 22011 2 1 0b ln x ... b ln x b ln x b 0 + + + + =c t nht mt nghim trong ( )21;e . 3.46. Cho cc hm s, , | lin tc trn| | a; bv kh vi trn( ) a; b . Xt()() () ()( ) ( ) ( )( ) ( ) ( )x x xx det a a ab b b | | | | | |u = | |\ ..Chng minh rng tn ticsao cho( ) c 0 ' u = . 3.47. Cho f, g l cc hm s kh vi lin tc n cp n ti mt ln cn ca im a tho mn:( ) ( ) ( ) ( )( )( )( )( )n 1 n 1f a g a ,f a g a, ...,f a g a ' ' = = = =v ()( )( )( )n nf a g a = . Tnh () ( )() ()f x g xx ae elimf x g x. 3.48.Cho1 > . Ta k hiu() f l mt nghim thc ca phng trnh: ( ) x 1 lnx + = . Chng minh rng: () flim 1/ ln = . 3.49. Hy chng minh cc bt ng thc sau: MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 86 a)( ) ( ) ( )e x e xe x e x , x 0;e ++ > eb) ( )2 232 xx 4x sin x , x 0;2ttt t (+ s e ( . c) ( )k2011x xk 0x xe e 1k! 2011 = < ,( ) x 0; e + . d) ( )2011kk 12011 12011 a3k kk 13a ea 0 , k = 1, 2011e==| |s > |\ .[. e)( ) ( )20112 2011 kk k2011k 02011k 2011x C x 1 x4= s. f) 2 222 2lnab b a a b a babba ba + +< < < 0,a b a = . 3.50.Chng minh rng nu cc o hm() () f x, f x '' '''tn ti th a)()( ) () ( )( )2x 0f x x 2f x f x xf x limxA + A + A'' =A. b)()( ) ( ) ()( )2x 0f x 2 x 2f x x f xf x limxA + A + A +'' =A.c)()( ) ( ) ( ) ()( )3x 0f x 3 x 3f x 2 x 3f x x f xf x limxA + A + A + + A ''' =A. 3.51. Cho: f R R kh vi n cp n + 1 trnR. Chng minh rng vi mi xeR tn ti( ) 0,1 cesao cho : a)( ) ( ) ( ) ( )20 ...2xf x f xf x f x ' '' = + + + ( )( )( ) ( )( )( )( )11 211 1! 1 !n nn nn nx xf x f cxn n++ +++ + +. b)( ) ( ) ( )( )( )( )2 2... 11 1 !1nnnnf x x x xf f x f xx x nx| |' = + + + |+ +\ . + +( )( )( )( )212 21111 ,x 11 !1nnnnx cxfx xnx++++| | + |+\ . = ++. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 87 6.52. Cho Q(x) l mt a thc bc n. Chng minh rng: ( )( )( )( )( )( )( )1 10 0011 ! 1 !i in nii ii iQ Q xx xi i+ += == + + . 6.53. Cho I, J l hai khong m v: f J R ,: f I J l cc hm kh vi v hn trn J, I. Chng minh rng: ( )( )( )( )( ) ( )( ) ( )( )( )1 201!...1! 2! !!nkk knnknjjg t g t g tnf g t f g tnk=| |' '' | | | |= | || |\ . \ .\ .[ Trong 1

njjk k== v ly tng trn cc gi tr jksao cho: 1njjjk n==. 6.54. Cho: f R R kh vi n cp2 1 n +trnR. Chng minh rng vi mi xeR, tn ti( ) 0,1 u esao cho: ( ) ( )32 20 . . ...1! 2 2 3! 2 2x x x xf x f f f| | | | | |' ''' = + + + |||\ . \ . \ .+ ( )( )( )( )( )2 1 2 12 1 2 12 2. .2 1 ! 2 2 2 1 ! 2n nn nx x xf f xn nu + + | | | | | |+ + ||| +\ . \ . \ .. 6.55. Gi s| | : , f t t R kh vi cp hai trn| | , t t v t | |( )( ),sup, i = 0,1,2.iix t tK f xe =Chng minh rng: a)( ) ( ) | |2 2 0 2 ,2K Kf x x t x t tt c' s + + e . b) 1 0 22 K K K svi 02KtK> . 6.56. Cho f kh vi n cp hai trnR , t ( )( )0,supixK f xe += < +vi( ) 1, 2,...,2 k j j = > . Chng minh rng: ( )120 22 , i = 1,2,...,j 1i i i j ij jiK K Ks . 6.57. Gi s f kh vi lin tc n cp n trnR, 0x eR. Chng minh rng: ( )( ) ( ) ( )( ) 0 0001lim 1nn kn kn nkf x C f x kqqq== +. 6.58. Chng minh rng nu| | ( ), f C a b evf'tn ti trn( ) , a bth MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 88 ( )( )( ) ( )( )( ),,inf supx a bx a bf b f af x f xb a ee' ' s s. 6.59. Gi s rng hm f lm v tng thc s trn( ) , a bvi{ } ,b a e R . Chng minh rng nu( ) ( ) , f x a x evi( ) , x a b ev( ) lim 1x af x++' =th ( ) ,y a,b x eta c: ( ) ( )() ()11lim 1n nn nnf x f xf y f y++= y0 0 0...nnf f f f =_. 6.60. Gi s| | ( )2, f C a b e,() ( ) 0 f a f b eth ()baf x dx 0 >}. 6.2. Mnh 2 Nu f, g l cc hm s lin tc trn| | a, bv() () | | f x g x x a, b s eth () ()b ba af x dx g x dx s} }. 6.3. Mnh 3 Nu f l hm s lin tc trn| | a, b ,() | | f x 0x a, b > ev f(x) khng ng nht bng 0 trn| | a, bth()baf x dx 0 >}. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 94 6.4. Mnh 4 Nu f, g l cc hm s lin tc trn| | a, bv() () | | f x g x x a, b s ev () () f x ,g xkhng ng nht vi nhau trn| | a, bth() ()b ba af x dx g x dx 1 vf, g l cc hm s lin tc trn| | a, b . Khi : () () () ()1 1 1b b bp p pp p pa a af x g x dx f x dx g x dx| | | | | |+ s + |||\ . \ . \ .} } }. 6.10. Mnh 10 ( Bt ng thc Holder) Cho p, q > 1 tho1 11p q+ =v f, g l cc hm s lin tc trn| | a, b .Khi :()() () ()1 1b b bp qp qa a af x g x dx f x g x| | | |s + ||\ . \ .} } }. III. TCH PHN SUY RNG TRN KHONG V HN 1. nh ngha Cho hm s| ) : , f a + R kh tch trn mi on| | , a A ( A > a). Biu thc:( ) ( ) limAAa af x dx f x dx++=} } (1)c goi l tch phn suy rng ( loi 1) ca hm f(x) trong khong| ) , a + . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 95 Nu gii hn (1) tn ti v hu hn th tch phn( )af x dx+} c gi l hi t. Nu gii hn (1) khng tn ti hoc bng th tch phn( )af x dx+} c gi l phn k. Tch phn( )af x dx+} c nh ngha tng t. Nu( ) : , f + R l hm kh tch trn mi on hu hn | | ( ) , , B A c +th biu thc ( ) ( )limAABBf x dx f x dx++=} } (2) c gi l tch phn suy rng ca hm ( ) f xtrong khong( ) ; + . Nu gii hn (2) tn ti hu hn th tch phn( ) f x dx+} c gi l hi t; trong trng hp ngc li ta ni tch phn ny phn k. Cho a l s thc bt k. Nu c hai tch phn( ) ()+a ,f xaf x dx dx} } cng hi t th( ) ( ) ( )aaf x dx f x dx f x dx+ + = +} } }. Nu tch phn suy rng trn cc khong( | | ) ,,a,+ a ,( ) , +ca hm f(x) hi t th ta ni f(x) kh tch trn cc khong tng ng. 2. Tiu chun hi t Cauchy Tch phn( )af x dx+} hi t( )0 00, A,A, A > A :AAf x dx c c'''' > - a a Asao cho :( ) ( ) 0 f x g x s svi mi| ) , x a e + . Khi : nu( )ag x dx+} hi t th( )af x dx+} hi t. Nu ( )af x dx+} phn k th ( )ag x dx+} cng phn k. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 96 b) Gi s f(x) v g(x) xc nh v khng m trong khong| ) , a + , kh tch trong mi on hu hn| |( ) ,A > a a Asao cho tn ti gii hn : ( )( )lim , 0 < k < + .xf xkg x+= Khi cc tch phn( )af x dx+} v( )ag x dx+} cng hi t hay cng phn k. c) Gi s( ) f xc dng :( )( )( )> 0xf xxoo =Khi :Nu1 o >v( ) x l hm khng m v b chn trn : ( ) | ) 0 x a ,+ x M s s e th tch phn( )af x dx+} hi t. Nu1 o s , cn( ) x l hm khng m v b chn di : ( ) | ) 0 x a,+ m x < s e th tch phn( )af x dx+} phn k. 4. Cc nh l Abel v Dirichlet 4.1. nh l Abel Gi s f(x) v g(x) xc nh trong khong| ) , a + . Gi s rng : Tch phn ( )af x dx+} hi t ; Hm g(x) n iu v b chn trong| ) , : a + ( ) | ) x a,+ , g x L s e L l hng s. Khi :( ) ( )af x g x+} hi t. 4.2. nh l Dirichlet Cho cc hm s f(x) v g(x) xc nh trong khong| ) , a + . Gi s rng : a) f(x) kh tch trn on hu hn| | ( ) , A > a a Asao cho : ( )A a , KAaf x dx K s >} l hng s. b) Hm g(x) n iu dn v 0 khix + :( ) lim 0xg x+= . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 97 Khi :( ) ( )af x g x+} hi t. 5. S hi t tuyt i v bn hi t Cho hm f(x) xc nh trong khong| ) , a + . Nu( )af x dx+} hi t th tch phn( )af x dx+} cng hi t. Khi tch phn( )af x dx+} c gi l hi t tuyt i. Nu tch phn( )af x dx+} hi t nhng tch phn( )af x dx+} phn k th tch phn( )af x dx+} c gi l bn hi t hay hi t khng tuyt i. B.CC DNG BI TP dng bi tp ny c gi cn ch nhiu hn n cc bi ton vn dng tch phn xc nh tnh gii hn ca dy s. Thc t c rt nhiu bi ton dy s m ch s dng nhng kin thc trong ni b dy s th khng th gii quyt c hoc nu gii quyt c th tn km nhiu thi gian v cng sc. V vy chng ta cn linh hot trong cng viclm xut hin tng tch phn trong bi ton gii hn dy s. yl mt trong nhng dng ton hay thng xuyn c mt trong cc thi Olympic ton sinh vin ton quc cu v gii hn dy s. 4.1. Cho f l hm lin tc, dng trn on| | 0,1 . Chng minh rng: ()10lnf x dxnn1 2 nlim f .f ...f en n n+}| | | | | | = |||\ . \ . \ .. Gii Ta c: nni 11 i 1 2 nlnf ln f .f ...fn n n n nn1 2 nf .f ...f e en n n=| | | | | | | | ||||\ . \ . \ . \ .| | | | | | = = |||\ . \ . \ .. BI TP VNH NGHA TCH PHN XC NH MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 98 ni 11ilnfnn=| | |\ .l tng tch phn ca hm() () g x lnf x =trn on| | 0,1ng vi cch chia on| | 0,1thnh n phn bng nhau v chn | | ( )i i i 1 i1x x , x i 1, 2,..., nn= = e = . V f l hm lin tc, dng trn on| | 0,1nn g(x)l hm xc nh, lin tc trn on . Do :()1nni 101 ilnf x dx lim lnfn n+=| |= |\ .}. Vy ()10lnf x dxnn1 2 nlim f .f ...f en n n+}| | | | | | = |||\ . \ . \ .. 4.2. Chng minh rng gii hn n2 nsin sin sinn 1 n 1 n 1lim ... 01 2 nt t t| | |+ + ++ + + > | |\ . Gii Xt hm s()( |sin x, x 0,f xx1 , x = 0te= .R rng f(x) l mt hm lin tc trn| | 0,tv dng trn| ) 0,t . Nhng vy f(x) kh tch Riemann v()0f x dx 0t>}. Ta c: ()nn ni 102 n isin sin sin sinn 1 n 1 n 1 n 1lim ... lim f x dx 0i1 2 n n 1n 1tt t t ttt =| | |+ + + ++ + + = = > |+ |\ . +}. 4.3. Tnh n1 1 1lim ...2 8 6n 4n n n3 3 3+| | |+ + + | | + + +\ .. Gii t ni 11 1 1 1 2 1... .2 8 6n 4 6i 42 nn n n 13 3 3 3n=+ + + = + + + + MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 99 Xt hm s()1f x1 x=+lin tc trn| | 0, 2 nn kh tch trn on ny. Chia| | 0, 2bi cc im chia( )i2ixi 0,1, 2,..., nn= =Chn| |i i 1 i i 1 i2 1 6i 4x x x , x3 3 3n = + = eD thy

n1 1 1lim ...2 8 6n 4n n n3 3 3+| | |+ + + | | + + +\ . ( )( )2ni i i 1ni 101 1 dxlim . f x x ln 32 2 1 x+== = =+} 4.4.Chng minh rng nu f kh vi lin tc trn| | 0,1th ()( ) ( )1nni 10f 1 f 0 1 ilimn f f x dxn n 2= | || | = ||\ . \ .} Gii Trc ht, chng ta c:() ()i1 n n n ni 1 i 1 i 1 i 1 0n1 i 1 in f f x dx n f f x dxn n n n = = = | || | | | | | | = ||| |\ . \ . \ .\ . } } =() () ( )i in n n nii 1 i 1 i 1 i 1n ni in f f x dx n f x x dxn n= = | || | | |' = |||\ . \ . \ . } } t()ii 1 ix ,n nm inf f x(e ( ' = ; ()ii 1 ix ,n nM sup f x(e ( ' =Do :() ( )i i in n ni i ii 1 i 1 i 1n n ni i im x dx f x x dx M x dxn n n | | | | | |' s s |||\ . \ . \ .} } } Suy ra:() ( )in n ni i ii 1 i 1 i 1n1 i 1m n f x x dx M2n n 2n= = | |' s s |\ . } Hn na,f 'l mt hm lin tc nn () ()( ) ( )1 1nni 10 0f 1 f 0 1 i 1limn f f x dx f x dxn n 2 2= | || |' = = ||\ . \ .} }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 100 4.5. Chng minh rng() | | f x x =kh tch trn| | 0, 2011v tnh | |20110x dx}. Gii R rng() | | f x x =b chn trn| | 0, 2011v 2011 im gin on: 1,2,,2011 Ta c: | | | |2011 i 12011 2010i 0 i 00 ix dx x dx i 2021055+= == = = } }. 4.6. Gi s f(x) kh tch trn on| | 0,1v()10f x dx 0 >}. Chng minh rng tn ti on| | | | a, b 0,1 cm trong on () f x 0 > . Gii Chia u on| | 0,1bi n im chia( )0 nix 0 , xi 1, 2,..., nn= = = . Chn| |i i 1 ix , x e , ta lp c tng tch phn( ) ( )nn ii 11f , fno ==. V f(x) kh tch trn on| | 0,1nn( ) ( ) ()1nn in ni 101lim f , lim f f x dxno + +== =}. Gi s trn mi on con| | | | a, b 0,1 c , hm f(x) c cha nhng im x lm cho() f x 0 s . Khi ta d dng suy ra c( )if 0 s . Do : ( ) ()1nn0lim f , f x dx 0 o += s}. iu ny mu thun vi gi thit. Vy ta c c iu phi chng minh cho bi ton ny. 4.7. Cho hm f(x) xc nh trn| | a.b . a) Nu() f xl hm kh tch trn on| | a, bth hm f(x) c kh tch trn on hay khng? b) Nu()2012f xl hm kh tch trn on| | a, bth hm f(x) c kh tch trn on hay khng? Gii Cha hn l() f xkh tch trn| | a, b ! Xt v d sau y: Cho()1 ,xf x1, x \e= eR . Hm ny khng kh tch trn mi on | | a, b . Th nhng() ()2012f x , f xkh tch trn on| | a, b . BI TP V S KH TCH CA HM S MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 101 Ta c: a)()b ba af x dx 1dx b a = = } } b)()b b2012a af x dx 1dx b a = = } }. 4.8. Cho() | |2p p p 1; x ,, p = 0, n 1f x; x 0,1n n n1 ; x = 1+| ||e | |

= e\ . . vneN. Chng minh rng() f xkh tch trn| | 0,1v tnh()10f x dx}. Gii Hm() f xb chn v gin on ti cc im( )kkxk 1, 2,..., nn= = . Do f(x) kh tch trn| | 0,1 . Ta c:() ()( )( )p 12 1 n n 1 n 1 n 122 3 2p 0 p p 0 p 0nn 1 2n 1 p 1 1 1f x dx f x dx . p .n n n 6 n+ = = = | |= = = = |\ . } } 4.9.Cho f l mt hm lin tc trn| | ; a bv( ) 0baf x dx =}. Chng minh rng tn ti( ) ( ) ( ) ; :cac a b f x dx f c e =}. Gii Xt hm:( ) ( )xxag x e f t dt=} g lin tc trn| | ; a b , kh vi trn( ) ; a b( ) ( ) 0 g a g b = = .Theo nh l Rolle tn ti( ) ( ) ; : 0 c a b g c ' e = . M( ) ( ) ( )xxag x e f x f t dt | |' = |\ .}, v th( ) ( ) ( )c ca af c f t dt f x dx = =} }. 4.10.Gi s f, g | | ( ); C a b e . Chng minh rng tn ti( ) ; c a b esao cho( ) ( ) ( ) ( )b ba ag c f x dx f c f x dx =} }. BI TP XOAY QUANH CCNH L GI TR TRUNG BNHMATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 102 Gii Xt( ) ( ) ( ) ( ) , Gx xa aF x f t dt x g t dt = =} } Suy ra:( ) ( ) F x f x ' =,( ) ( ) G x g x ' =p dng nh l Cauhy ta c: - ce( ) ; a b : ( ) ( )( ) ( )( )( )F b F a F cG b G a G c' =' - ce( ) ; a b : ( )( )( )( )babaf t dtf cg cg t dt=}} - ce( ) ; a b :( ) ( ) ( ) ( )b ba ag c f x dx f c f x dx =} }. 4.11.Gi s f, g | | ( ); C a b e . Chng minh rng tn ti( ) ; c a b esao cho( ) ( ) ( ) ( )c ba cg c f x dx f c f x dx =} }. Gii Xt hm:( ) ( ) ( )x ba xF x f t dt g t dt =} } Flin tc trn| | ; a b , kh vi trn( ) ; a bv( ) ( ) F a F b = . V th theo nh l Rolle ta c:( ) ( ) ; : 0 c a b F c ' - e =M( ) ( ) ( ) ( ) ( )b xx aF x f x g t dt g x f t dt ' = } } Do :( ) ; : c a b - e ( ) ( ) ( ) ( )c ba cg c f x dx f c f x dx =} }. 4.12.Cho| | ( )20;1 f C e . Chng minh rng tn ti( ) 0;1 cesao cho: ( ) ( ) ( ) ( )101 10 02 6f x dx f f f c ' '' = + +}. Gii Ta c:( ) ( )( ) ( ) ( ) ( ) ( )1 1 1100 0 01 1 1 f x dx f x d x x f x x f x dx ' = = } } } ( )( )( )( )( )12 21001 102 2x xf f x f x dx ' '' = +}. p dng nh l gi tr trung bnh ca tch phn: MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 103 tn ti( )( )( ) ( ) ( ) ( )21 120 01 1 10;1 : 12 2 6xc f x dx f c x dx f c'' '' '' e = =} }. Do tn ti( ) 0;1 cesao cho:( ) ( ) ( ) ( )101 10 02 6f x dx f f f c ' '' = + +}. 4.13.Cho f lin tc trn| | ; a b. t( )1bac f x dxb a= }. Chng minh rng: ( ) ( )2 2 b ba af x c dx f x t dx t s e} }R. Gii Xt( ) ( ) ( ) ( )22 22b b ba a ag t x t dt b a t f x dx t f x dx| |= = + |\ .} } }. g(t) l tam thc bc hai theo t, g(t) t cc tiu ti( )01bat f x dx cb a= = }. Vy( ) ( )2 2 b ba af x c dx f x t dx t s e} }R. 4.14.Chng minh rng nu f kh tch Riemanntrn| | ; a bth ( ) ( ) ( ) ( )2 22sin cosb b ba a af x xdx f x xdx b a f x dx| | | |+ s ||\ . \ .} } }. Gii p dng bt ng thc Schwarz, ta c: ( ) ( )( ) ( ) ( ) ( )2 22 2 2 2 2sin cossin cosb ba ab b b b ba a a a af x xdx f x xdxf x dx xdx f x dx xdx b a f x dx| | | |+ s ||\ . \ .s + = } }} } } } } 4.15.Chng minh rng nu f dng v kh tch Riemann trn| | ; a bth ( ) ( )( )2b ba adxb a f x dxf x s} }.BI TP V BT NG THC TCH PHN MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 104 Hn na nu( ) 0 m f x M < s sth( )( )( ) ( )224b ba am M dxf x dx b af x mM+s } }. Gii + p dng bt ng thc Cauchy Schwarz, ta c: ( ) ( )( )( )( )22 1.b b ba a adxb a f x dx f x dxf xf x| | | = s |\ .} } }. + V( ) 0 m f x M < s snn ( ) ( ) ( ) ( )( )0 , a x bf x m f x Mf x s s sTa c: ( ) ( ) ( ) ( )( )( ) ( )( )00b b b ba a a af x m f x Mdxdx f x dx m M dx mMf x f x s + + s} } } } ( )( )( )( )( )( )( ) ( ) .b b b ba a a adx dxf x dx mM m M b a mM m M b a f x dxf x f x + s + s + } } } }Do :( )( )( )( ) ( ) ( )2b b b ba a a adxmM f x dx m M b a f x dx f x dxf x| |s + |\ .} } } } Xt hm s:( )2y g t t kt = = + .Hm s t cc i ti 2kt =vi gi tr cc i l 24k. Vi( )( ) ( ) , t = bak m M b a f x dx = + } ta c: ( )( ) ( ) ( )( ) ( )2 2 24b ba am M b am M b a f x dx f x dx+ | |+ s |\ .} }. Do : ( )( )b ba adxmM f x dxf x} }( ) ( )2 24m M b a + s ( )( )b ba adxf x dxf x} }( ) ( )2 24m M b amM+ s . 4.16.Cho| ) : 0; f + Rl mt hm lin tc kh vi. Chng minh rng: ( ) ( ) ( )| |( ) ( )21 1 13 20,10 0 00 maxxf x dx f f x dx f x f x dxe| |' s |\ .} } }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 105 Gii t | |( )0,1maxxM f xe' = . Khi ( ) | | ( ) | | x 0;1 x 0;1 f x M M f x M s e s s e . Nhn( ) 0 f x >vo tng v ca bt ng thc ny ta c : ( ) ( ) ( ) ( ) Mf x f x f x Mf x ' s s,| | 0;1 xeSuy ra:( ) ( ) ( ) ( )0 0 0x x xM f t dt f t f t dt M f t dt ' s s} } } ( ) ( ) ( ) ( )2 20 01 102 2x xM f t dt f x f M f t dt s s} }. n y ta tip tc nhn ( ) 0 f x >vo tng v ca bt ng thc ny c: ( ) ( ) ( ) ( ) ( ) ( ) ( )3 20 01 102 2x xMf x f t dt f x f f x Mf x f t dt s s} },| | 0;1 xe . Ly tch phn 2 v trn| | 0;1ca bt ng thc ny: ( )210M f x dx| | s |\ .}( ) ( ) ( ) ( )21 1 13 20 0 00 f x dx f f x dx M f x dx| | s |\ .} } } ( ) ( ) ( ) ( )21 1 12 20 0 00 f x dx f f x dx M f x dx| | s |\ .} } } hay( ) ( ) ( )| |( ) ( )1 1 13 20,10 0 00 maxxf x dx f f x dx f x f x dxe| |' s |\ .} } }. 4.17.Tm ( ) ( )12 20min 1fK x f x dxe= +} , y| | ( ) ( )100,1 : 1 f C f x dx = e = ` )}. Giip dng bt ng thc Schwarz ta c: ( ) ( ) ( ) ( )221 1 1 12 2 2220 0 0 011 1 1 .1 41dxf x dx x f x dx x f x dx Kxxt | || |= = + s + = ||+\ . +\ .} } } } Suy ra: ( ) ( )12 204min 1fK x f x dxte= + >}. 4.18.Cho| | ( ) ( ) ( )0 00;1 : sin cos 1 M f C f x xdx f x xdxt t = e = = ` )} }. Tm( )20minf Mf x dxte }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 106 Gii Cho( ) ( )02sin cos f x x xt= + . +R rng 0f M e . + i vi hm bt kf M e ,( ) ( )2000 f x f x dxt >( }. Suy ra:( ) ( ) ( ) ( ) ( )2 2 20 0 00 0 0 08 4 42 f x dx f x f x dx f x dx f x dxt t t tt t t> = = =} } } }. Vy cc tiu t c khi 0f f = . 4.19. Chng minh rng: 1201101x 1 xdx2012 2013 s}. Gii Ta c:( ) ( )1 11 1 12 22011 2011 2011 20110 0 0x . x 1 x dx x dx x 1 x dx| | | | s ||\ . \ .} } }== 1 11 12 22011 20120 01 1 1x dx x dx2012 2013 2012 20121 | | | | = = ||\ . \ .} }12012 2013. 4.20.Tmgitrlnnhtca ( )( )201110120110| | |\ .= }}f x dxSf x dxviflintc,dngtrn | | 0;1 . Gii p dng bt ng thc Holder ta c: ( ) ( ) ( )2010 1 12011 2 2 2 22011 2011 20112011 20112010 201120100 0 0 0.1 1 2| | | | | |s = |||\ . \ . \ .} } } }f x dx f x dx dx f x dx( ) ( )( )( )2011220112 22010 2011 0220110 002 2| | || |\ . s = s |\ .}} }}f x dxf x dx f x dx Sf x dx.Vy 2010max 2 = S . 4.21.Chngminhrngnu| | ( )f C a, b e ldngvlmtrn| | a, b th () ( )| | ()bx a,ba1f x dx b a maxf x2e> }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 107 Gii f lin tc trn| | 0;1nn| | ( )| | ()x a ,bc a, b : f c maxf xe- e = . Ta c:() () ()b c ba a cf x dx f x dx f x dx = +} } } =( ) ( ) ( ) ( )1 10 0c a f 1 x a xc dx b c f 1 x c xb dx + + +(( } } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 0c a 1 x f a xf c dx b c f 1 x f c xf b dx > + + + =(( } } =( ) ( ) ( )( ) ( ) ( )( ) ( )f a f c f b f c 1c a b c b a f c2 2 2+ + + > . Do chng ta c iu phi chng minh. 4.22.Cho| | ( ) () ()1 10 0f 0,1 : f x dx 3, xf x dx 2 = e9 = = ` )} }. Tm()12f0min f x dxe }. Cho v d v mt hm s tho mn nhng yu cu nh th. Gii p dng bt ng thc Cauchy-Schwarz, ta c: ( ) ()( ) () ( )21 1 12 220 0 02 3t f x x t dx f x dx x t dx| |+ = + s + |\ .} } } ()( )( ) () ( )21 12 22t0 03 2 3tf x dx t f x dx max t3t 3t 1 e+ > = >+ +} }R. Kho st hm( ) t , da vo bng bin thin ta d dng suy ta c ( )tmax t 12 e=R. Vy()12f0min f x dx 12e=}. Chng hn ta xt hm() f x 6x = . 4.23.Cho| ) | ) f ,g: 0, 0, + +l hai hm lin tc, khng m . Gi s () ( )( )x0f x 2011 f t g t dt x > 0. s + } Chng minh rng ()( )x0g t dtf x 2011ex > 0.}s Gii Ta s chng minh( )( )x02011 f t g t dt + s}( )x0g t dt2011e } MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 108 Tht vy! ( )( )x02011 f t g t dt + s}( )x0g t dt2011e }( )( ) ( )x x0 0ln 2011 f t g t dt ln2011 g t dt ( + s ( } }()()( )( )()x xu0 00f u g udu g u du2011 f t g t dt s+} }}. iu ny hon ton ng v n c suy ra t gi thit ca bi ton. 4.24. Gi s| ) ( )f C 0, e +v t( ) ( )1n0x f n x dx,n 0,1, 2,... = + =}. Hy tm ( )1n0lim f nx dx} bit nnlimx 2011= . Gii Ta c:( ) () ()1 n k 1n 1n x xk 00 0 k1 1lim f nx dx lim f x dx lim f x dxn n+ == =} } } ( )n 1n 1 kk 0n nk 0x1lim f x k dx lim 2011n n= == + = = ( V nnlimx 2011= ). 4.25. Choflin tc trnR. Tm( ) ( ) ( )01limbhaf x h f x dxh+ }. GiiTa c:( ) ( ) ( ) ( ) ( )b b h ba a h af x h f x dx f x dx f x dx+++ = } } }( ) ( ) ( ) ( )b b h a h ba h b a a hf x dx f x dx f x dx f x dx+ ++ += + } } } } , | | , 0,1 u u' e . BI TP V GII HN CA TCH PHN( ) ( ) ( ) ( )a b ha h bf x dx f x dx hf a h hf b h u u++' = + = + + +} }MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 109 ( ) ( ) ( ) ( ) ( )01limbhaf x h f x dx f b f ah + = }. 4.26. Tnh 2n35nnxdxlim nx 1| | |+\ .}. Gii Ta c nh gi sau: ( )2n 2n 2n3 3 345 4n n ndx xdx dxn n nx 1 x x 1< e ( . Khi ta c:( )22 2k tksin tk0 010 e dt e dt 1 0k2k et ttt| |s s = |\ .} }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 110 Vy 2ksin tk0lim e dt 0t=}. 4.29. Tnh 2010x20102011x 001lim sin tdtx+}. Gii p dng quy tc LHospital , ta c: 20102010x20102009 x2010 02011 2011 2010x 0 x 0 x 0 x 00sin tdt1 2010x sin x 2010 sin xlim sin tdt lim lim lim 1x x 2011x 2011 x+ + + + = = = =}} 4.30. Tnh x2011 2011 x01 2010lim dtln xt 2012| | |+\ .}.Gii p dng quy tc LHospital , ta c: xx2011 201102011 2011 2011 2011 x x x02010dt1 2010 2010xt 2012lim dt lim lim 2010.ln x ln xt 2012 x 2012+ + +| |+= = = |+ +\ .}} 4.31. Tnh 2nx2xnelim dx1 e+ + Gii Ta c:| |2nx 2nx 2nx2x 2x 2x2x 2xe e ee 1x 0,1 2e 1 e 22e 1 e 2 > e > + > s s+ 2nx 2nx 2nx 2n 2 2nx 2nx 1 1 1 12x 2x 2x0 0 0 0e e e 1 1 e e 1 1 edx dx dx . dx .2e 1 e 2 4 n 1 1 e 4 n s s s s+ + +} } } } n y ta s dng nh l kp v dng suy ra c 2nx2xnelim dx=01 e+ +. 4.32. Tnh n nn0lim2 cos xcos nxdxt}. Gii t nn0I cos xcos nxdxt=}. Ta c:( ) ( )n n nn00 01 1I cos xd sin nx cos xsin nx sin nxd cos xn nt tt= = } } ( ) ( )n 1 n 10 01sin nxsin xcos xdx cos n 1 x cos n 1 x cos xdx2t t = = +( } } MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 111 | |n 1n 11 1I cos x cosnxcos x sin nxsin x dx2 2= ( )n 1 n n n 1 n 2 0 2 n n1 1 1 1 1I I I I I I2 2 2 2 2 2t = = = = = . Suy ra n nn0lim2 cos xcos nxdxt} = t . 4.33. Tnh n2 n nxI dxx x1 x ...2! n!=+ + + +}( *n eN ). Gii t() ()( )2 n n 1n nx x xf x 1 x ... f x 1 x ...2! n! n 1 !' = + + + + = + + +. Ta c: () () ( )()()()()n n nn nn nn! f x f x f xI dx n! 1 dx n!x n!lnf x Cf x f x' | | '= = = + |\ .} } 2 nx xn!x n!ln 1 x ... C2! n!| |= + + + + + |\ . 4.34. Tnh x bb a xae eI dxx=}. Gii t 2 2ab ab abt dt dx dx dtx x t= = = . i cnx a t b, x = b t = a = = . Ta c: x b t t b bb a b a t a a t x2a b ae e e e ab e eI dx . dt dt I 2I 0 I 0abx t tt = = = = = =} } }. 4.35. Tnh tch phn ( )( ) ( )42ln 9 xI dxln 9 x ln x 3= + +}. MT S BI TP TNH TONCC DNG TCH PHN MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 112 Gii tx 6 t = , ta thu c:( )( ) ( )42ln t 3I dtln t 3 ln 9 t+=+ + }. Suy ra: 422I dx I 1 = =}. 4.36. Tnh tch phn 1 2xx121I 1 x e dxx+| |= + |\ .}. Gii Ta c: 1 2xx121I 1 x e dxx+| |= + |\ .}1 1xx1211 x e dxx+| |= + |\ .}1 2xx111 x e dxx+| |+ + |\ .} = J K + . t 21 t t 4t x xx 2 = + =+ tnh J, ta i bin 22t t 4 1 tx dx 1 dt2 2t 4| | = = |\ .. Thay vo v bin i n gin cho n khi c kt qu nh sau: 522 t221 tJ 1 t t 4 e dt2t 4| |= + + |\ .}. + tnh K, ta i bin 2t t 4x+ =v thc hin tnh ton nh tnh ton tm J, ta thu c kt qu 522 t221 tK 1 t t 4 e dt2t 4| |= + + + |\ .}. + T suy ra: 522 t22tI J K t 4 e dtt 4| |= + = + |\ .}. + n y th bi ton ht sc n gin, ta s dng tch phn tng phn v tnh ton, thu gn c kt qu cui cng 23I e e2= . 4.37. Tnh tch phn: ( ) ( )22 2 2011 20110I cos cos x sin sin x dxt (= + }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 113 Gii tx t2t= , ta thu c tch phn sau y: ( ) ( ) ( ) ( )2 22 2 2 2 2011 2011 2011 20110 0I cos sin t sin cos t dt cos sin x sin cos x dxt t ((= + = + } }. Suy ra: 202I 2 dx I2tt= =}. 4.38. Cho m, n l cc s nguyn dng v a < b, hy tnh ( )( )! !m nbab x x adxm n }. Vn dng cng thc va tnh tnh ( )1201nx dx }. Gii Dng cng thc tch phn tng phn ta c: ( )( ) ( ) ( )( )1! ! ! 1 !m n m nb ba ab x x a b x x adx dm n m n+| | =| |+\ .} } ( )( )( )( )( )( )( )( )( )( )( )1 1 1 1 1! 1 ! 1 ! 1 ! 1 ! 1 !bm n m n m nb ba aab x x a b x x a b x x adx dxm n m n m n+ + + = + =+ + +} }. Dng cng thc tch phn tng phn nhiu ln ta c: ( )( ) ( )( )( )( )( )( )1 1! ! ! 1 ! 1 !bm n n m n m n mb ba aab x x a x a x a b adx dxm n n m n m n m+ ++ ++ = = =+ + + + +} }. p dng vo bi ton c th nh sau: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 12 1220 11 1 2 2.4.6...21 1 1 !2 2 2 1 ! 1.3.5. 2 1nn n n nx dx x x dx nn n+ = = =+ +} }. 4.38. Tn ti hay khng hm kh vi lin tcftha mn iu kin ( ) ( ) ( ) 2 , f f sin x f x x x x ' < > eR? MT S BI TP LIN H GIA O HM V TCH PHN MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 114 Gii Khng tn ti. Ta c:( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 00 2 2 sin 2 1 cosx x xf x f f t dt f t f t dt tdt x'' = = > = ( } } } Suy ra:( ) ( ) ( )2 20 2 1 cos 4 f f t t > + > . 4.39. Cho s thc a | | 0;1 e . Xc nh tt c cc hm lin tc khng m trn| | 0;1sao cho cc iu kin sau y c tha mn: a)( )101 f x dx =} b)( )10xf x dx a =}c)( )12 20x f x dx a =}. Gii p dng bt ng thc Bunhiacovski ta c: ( ) ( ) ( ) ( ) ( )2 21 1 1 120 0 0 0. . xf x dx x f x f x dx x f x dx f x dx| | | |= s ||\ . \ .} } } }. M theo gi thit:( ) ( ) ( )21 1 120 0 0. xf x dx x f x dx f x dx| | = |\ .} } }. Do f lin tc trn| | 0;1nn( ) ( ) | | 0,x 0;1 x f x f x = > eSuy ra:( ) | | 0x 0;1 f x = e . iu ny mu thun vi gi thit:( )101 f x dx =}. Vy khng tn ti hm f tho mn bi ton. 4.40. Cho f l hm lin tc trn| ) 0; +v tho mn( ) 0 3 1 xf x < < ( ) 0; x e + . Chng minh rng hm s( ) ( ) ( )330 03x xg x t f t dt tf t dt| |= |\ .} } l hm s ng bin trn( ) 0;+ . Gii Ta c:( ) ( ) ( ) ( ) ( ) ( )2 23 20 09 3x xg x x f x xf x tf t dt xf x x tf t dt (| | | |' = = ( ||\ . \ . } } Li c:( ) ( ) ( )2 22 20 0 0 00 3 1 3 3 0x x x xtf t dt dt x tf t dt x x tf t dt| | | |< < = < > ||\ . \ .} } } } Kt hp vi( ) ( ) 00; xf x x > e + , ta suy ra:( ) ( ) 0x 0; g x ' > e + . Vy( ) g xl hm s ng bin trn( ) 0;+ . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 115 4.41. Cho | ) : 0; f + R kh vi v tho mn( ) ( )( )2 211 1 , f f xx f x' = =+. Chng minh rng tn ti gii hn hu hn( ) limxf x+ v b thua 14t+ . Gii ( )( )| )2 210x 0; f xx f x' = > e ++

f(x) ngbin ( ) ( ) 1 1 x > 1 f x f > = . T ta c:( ) ( )2 11 111 1 arctan 11 4x xxf x f t dt dt ttt' = + < = + < ++} }. Vy tn ti gii hn hu hn( ) limxf x+ v b thua 14t+ . 4.42. Chofl mt hm lin tc trn| ) 0; +tho mn( ) ( )0limxxf x f t dt| |+ |\ .} c gii hn hu hn. Chng minh( ) lim 0xf x= . Gii t( ) ( ) ( ) ( )0xF x f t dt F x f x ' = =}. Khi gi s( ) ( ) ( ) ( ) ( )0lim limxx xf x f t dt F x F x L | |' + = + = |\ .} p dng quy tc Lpitan ta c: ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )lim lim lim lim limx x xx xx x x x xxe F x e F x F x e F xF x F x F x Le ee '' +' = = = = + ='Suy ra:( ) ( ) lim lim 0x xf x F x ' = = . 4.43. Hm fxc nh, kh vi trn( ) 0; , + eR. Chng minh rng hm ( ) ( ) f x f x ' +khng gim khi v ch khi( )xf x e'khng gim. Gii t( ) ( ) ( ) h x f x f x ' = +; ( ) ( )xg x f x e' = . Suy ra:( ) ( ) ( )x xe h x e f x '=; ( ) ( )xe g x f x ' = . Khi :( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )00xx x tg x e f x h x e f x h x e f t dt f '' = = = } MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 116 ( ) ( ) ( )00xth x e h t dt f = }. ( ) ( ) ( ) ( ) ( ) ( )00xxh x f x f x e g x f t dt f ' ' = + = + +} =( ) ( ) ( )00xx te g x e g t dt f + +}. ( ) Gi s( ) h xkhng gimKhi vib > a ta c: ( ) ( ) ( ) ( ) ( ) ( )bb a tag b g a e h b e h a e h t dt = }(1) Theo nh l trung bnh ca tch phn tn ti ( ) ( ) ( ) ( )( )1; :b bt t b aa ac a b e h t dt h c e dt h c e e e = = } } (2) Thay (2) vo (1) ta c: ( ) () ( ) ( ) ( ) ( )b a b ag b g a e h b e h a e h c e h c = +( ) ( ) ( ) ( ) ( ) ( )0b ae h b h c e h c h a = + >vib c a > > . Do g(x) khng gim. ( ) :Gi s g(x) khng gim Khi vi b > a ta c: ( ) ( ) ( ) ( ) ( ) ( )bb a tah b h a e g b e g a e g t dt = + } (3) Theo nh l trung bnh ca tch phn tn ti ( ) ( ) ( ) ( )( )1; :b bt t b aa ac a b e g t dt g c e dt g c e e e = = } } (4) Thay (4) vo (3) ta c:( ) ( ) ( ) ( ) ( ) ( )b a b ah b h a e g b e g a e g c e g c = +( ) ( ) ( ) ( ) ( ) ( )0b ae g b g c e g c g a = + > vib c a > > . Do h(x) khng gim. Vy bi ton chng minh xong. 4.44. Chng minh rng nu hm f(x) kh vi v hn ln trnR th hm ( ) ( ) 0 f x fx c nh ngha thm lin tc ti x = 0 cng kh vi v hn ln. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 117 Gii Vi0 x =ta c: ( ) ( ) ( ) ( )( ) ( )( )1 10 0 000xf x ff x f f t dt f ux xdu f ux dux' ' ' = = =} } } V( )10f ux du '} kh vi v hn ln vi mixeR. Vy ( ) ( ) 0 f x fx c nh ngha thm lin tc ti x = 0kh vi v hn ln. 4.45. Tm hm s( ) f xc o hmlin tc trnR sao cho ( ) ( ) ( ) ( )2 2 202011xf x f t f t dt ' = + +}(1). Gii V hm s( ) f xc o hm lin tc trnR nn( )2f xc o hm lin tctrnR. Ly o hm 2 v ca (1), ta c: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22 22 0 f x f x f x f x f x f x f x f x ' ' ' ' = + = =( )xf x Ce = (2).T (1) suy ra:( ) ( )20 2011 0 2011 f f = = . Cho0 x =, t( ) ( ) 2 0 2011 f C = = . Vy( ) 2011xf x e = . 4.46. Cho a, b >0 . Chng minh: ax0lnbxe e adxx b+ =}. Gii Ta c: ax0 0 0ln ln ln lnb b bbxxt xta a ae e dt adx e dtdx e dxdt t b ax t b+ + + = = = = = =} } } } } } 4.47. Cho hm sfkhng m v lin tc trn| ) 0, +v()0f x dx+< +}. Chng minh rng:()nn01lim xf x dx 0n=}. MT S BI TP V TCH PHN SUY RNG MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 118 Gii t() ( )() ()( )x0F x f x 0F x f t dxF 0 0' = > = =} () () F x 0 F x ' > l hm tng. Bng phng php tch phn tng phn, ta c: () () ( ) () ()n n n0 0 01 1 1xf x dx xd F x F n F x dxn n n= = } } }. Ta bit:() ()nn0limF n f x dx= < +}. By gi, ta s chng minh() ()nn n01lim F x dx limF nn =}. Ta c nh gi sau y: ( ) () ( )nn 1 ni 0 i 101 1 1F i F x dx F in n n= =s s } ( Chng minh ht sc n gin) p dng nh l Kp, ta chng minh c() ()nn n01lim F x dx limF nn =}. Vy()nn01lim xf x dx 0n=}. 4.48. Gi s f , g l cc hm s dng trn| ) a, +v()ag x dx+} phn k. Chng minh rng mt trong cc tch phn sau y phn k. Gii p dng bt ng thc Cauchy, ta c:( )( )1f t 2f t+ > . T suy ra:( )( )( )( )( ) ( )( )( )( )( )x x xa a ag t g tf t g t 2g t f t g t dt dt 2 g t dtf t f t+ > + >} } } Chox + ta c iu cn phi chng minh. 4.49. Tnh 1 txx 0t e dtlim1lnx++ }. Gii Tch phn 1 tat e dt+ } hi t via 0 >c nh bt k , cn x 01lim lnx+| | = + |\ .. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 119 Do 1 tax 0t e dtlim 01lnx++ =}. p dng quy tc LHospital, ta c: a1 t 1 t1 xxx x1x 0 x 0 x 0 x 0t e dt t e dtx elim lim lim lime 11 1xln lnx x+ + + ++ = = = =} }. 4.50. Chng minh rng: cc nh x: lnxf x e x ; 1:xeg xxkh tch trn( | 0,1v 1 10 01lnxxee xdx dxx =} }. Gii Cc nh x f, g lin tc, khng m v( )0ln 0xxx f x e x x+= , ( )011xxeg xx+= suy ra n kh tch trn( | 0,1 . Vi( | 0,1 c e , thc hin tch phn tng phn: 1 1 1 1101ln ln lnx xx xe e dxe xdx e x dx e dxx x xcc c c cc = = + } } } } ( )111 lnxee dxxccc= +}. Suy ra: ( )1 1 1 10 00 01 1ln lim ln lim 1 lnx xx xe ee xdx e dx e dx dxx xcc cc cc+ + | | = = + = |\ .} } } }. 4.51. Tm 22lim1n ndxx x+}. Gii Vi *neN, xt nh x| ) : 2,n + R xc nh bi: ( )211nnxx x = lin tc, khng m v( ) ( )11 x +n nxx+ ~, do nkh tch trn| ) 2, + . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 120 Vi2 n > , nh x 13nxxkh tch trn| ) 2, +v: | )n 21 12,, 03x 1nxxx e + s s Suy ra: ( )122 210 03 3 1 21n n nndx dxx nx x+ + s s = } }. Vy 22lim1n ndxx x+} = 0. 4.52. Tm 2 2limx sxxe e ds++}. Gii Hm s| ) : 0, f + R xc nh bi:( )2sf s e=lin tc khng m V( )20ss f s+, do f kh tch trn| ) 0, + . 0 x > , ta c: 2 2 2 2 22 20 010 02x s x s xt t xtxt s xx xe e ds e ds e dt e dtx+ + + + += < = = s = } } } }. Vy 2 2limx sxxe e ds++} = 0. 4.53. Vi cc gi tr no ca n, tch phn 01n ndxIx+=+} hi t? TmlimnnI ? Gii +R rng0 n s , tch phn nIphn k. + Vi n > 0 , ta c:( )1 1 n +1n nx x +~ . T y, ta thy rng nIhi t vi1 n > . + TmlimnnI ? Ta c: 10 11 1n n ndx dxIx x+= ++ +} } 1 1 110 0 lim 01 1 1n n n nndx dx dxx x n x+ + +< < = =+ +} } }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 121 Li c: 1 10 011 1nn ndx xdxx x= + +} } 1 10 010 01 1nnn nxdx x dxx n< < = + +} }10lim 01nnnxdxx =+}. 10lim 11nndxx=+}. Vy 1lim 11nndxx+=+}. 4.54. Chng minh rng vi mi0 s > , ta u c: 220s xxsee dx dxx+ '| |< | |\ .} }. Gii Vi mix s > , ta c: 22 sx xsx x e e < >(1) V 2x , x esxx e l hai hm s lin tc, dng trn| ) 0, +nn hai tch phn 2xse dx+} , sxse dx+} u tn ti.T (1) suy ra: 2 220s s xx sxs se ee dx e dx dxs x+ + '| |< = = | |\ .} } }. 4.55. Gi s l mt hm s lin tc trn| ) 0, +v tch phn ( )( )axI a dxx+= } hi t0 a >v hai s dng b, c sao cho b < c. a) Chng minh rng tch phn ( ) ( )0abx cxdxx } hi t v tnh gi tr ca n. b) Chng minh rng tch phn ( ) ( )abx cxdxx +}hi t v gi tr ca n bng ( )( )0lnbacas bdsc s| |+ |\ .}. T suy ra s hi t v gi tr ca tch phn ( ) ( )0bx cxdxx +}. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 122 Gii tt bx = ,d a >ta c: ( ) ( )d bda babx sdx dsx s =} }. Do : ( ) ( )( )a babx sdx ds I bax s + += =} }. Tng t nh trn, ta cng chng minh c : ( )( )acxdx I cax+=}. Vy ( ) ( )( ) ( )( )0a cdbabx cx sdx I ba I ca dsx s = =} } ( pcm). b) t , u=cx u bx = . Vi mi( ) 0, a eeta c : ( ) ( ) ( ) ( ) ( ) ( )a ba ca ba cb c ca bbx cx f s s f s sdx ds ds ds dsx s s s see e e e = = +} } } } }. p dng nh l gi tr trung bnh ca tch phn tn ti( ) , b c e e esao cho ( )() ( )( ) 00ln 0 ln lncbs c c cdss b b beee | |= = |\ .}. Do ( ) ( )( )( )00lna bacabx cx f s bdx dsx c s | |= + |\ .} }. Suy ra : ( ) ( )( ) 00lnbx cx cdxx b +| |= |\ .}. C-MT S BI TP NGH 4.56. Cho f l mt hm s c o hm cp hai trn| | 0,1vf ''b chn v kh tch Riemann. Chng minh rng:()( ) ( )1n2ni 10f 1 f 0 1 2i 1limn f x dx fn 2n 24=' ' | || | = ||\ . \ .}. 4.57. Cho f l mt hm lin tc trn| | 0,1 . Tnh ()21n01nn x0x f x dxlimx e dx}}

MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 123 4.58.Cho f l mt hm lin tc trn| | 0,1 . Tnh () ( )12nn0lim n f x sin 2 x dx t| | |\ .} 4.59. Cho f l mt hm lin tc trn| | 0,1 . Tnh()( )212n01nx 2n0f x sin (2 x)dxlime sin 2 x dxtt}} 4.60. Gi s f v g l hai hm s dng, lin tc trn| | ; a b . Chng minh rng tn ti( ) ; c a b esao cho ( )( )( )( )1c ba cf c g cf x dx g x dx =} }. 4.61. Cho| | ( )10;1 f C e . Chng minh rng tn ti( ) 0;1 cesao cho: ( ) ( ) ( )10102f x dx f f c ' = +}. 4.62. Gi s| | ( ); f C a b e , a > 0 v( ) 0baf x dx =}.Chng minh tn ti ( ) ; c a b esao cho( ) ( )caf x dx cf c =}. 4.63. Chng minh rng phng trnh: 2 4022 xt0t t te 1 ... dt 20111! 2! 4022! | |+ + + + = |\ .} lun c nghim trong trong khong( ) 2011;4022 . 4.64. Chng minh 12012 20110x xdxln x 2013e .2012}=4.65. C tn ti hay khng mt hm s f kh vi lin tc trn| | 0, 2v tho mn ( ) ( ) () | | f 0 f 2 1 ,f x 1x 0, 2 ' = = s e ,()20f x dx 1 s} ? 4.66. Cho hm s() f xlin tc trn| | a, bv c() ( ) f x 0x a, b '' > e . Chng minh rng() ( ) ( ) ( ) ( )baa b 2cf x dx b a f c f c c a, b2+ (' > + e ( } 4.67. Gi s hm s f(x) cng o hm() f x 'lin tc trn| | 0,1 . Chng minh rng:() () ()1 1 10 0 0f x dx f x dx ; f x dx ' s ` )} } }. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 124 4.68. Cho | | ( ) ( ) ( ) ( ){ }2f C 0,1 : f 0 f 1 0 , f 0 a ' = e = = = .Tm() ( )12f0min f x dxe''}. 4.69. Gi s| | ( )10;1 f C ev( ) 0 0 f ' = . Vi( | 0;1 xe , cho( ) x utho mn ( ) ( ) ( )0xf t dt f x x u =}. Tm ( )0limxxxu+. 4.70. Cho hm s f(x) kh vi hai ln trn| ) 0, + . Bit rng() () f x 0,f x 0 ' > >v () ()() ( )| )2f x f x2x 0,f x''s e +'. Chng minh ()() ( )2xf xlim 0f x+'= . 4.71. Chng minh rng: 011 2x 2013 201401x e dx2013 1007tt t22> +}. 4.72. ChoneN. Chng minh rng: 2 2x02e sinnxdx e .ntts} 4.73. Gi s rng:m n 14 + =vim,neN v( ) ( )1nm0I m, n x 1 x dx = }. Hy tm gi tr ln nht, gi tr nh nht ca( ) I m, n . 4.74. Cho f l hm s lin tc trn| | 0,1tho mn: ()1k00 , k = 1, 2 , ..., 2010x f x dx1 , k = 2011= }. Chng minh rng tn ti| | c 0,1 esao cho:( )2012f c 1006.2 > . 4.75. Cho | || | ( )k k a ,bf C; x a, b; > 0 k = 1 , 2 ,..., 2011 e e . Chng minh rng tn ti| | c a, b esao cho:()kx2011kk 0cf x dx 0 ==}. 4.76.Cho( )2 411, xnxx n== e+R. Hy tnh( )0F t dt+}. 4.77. Tm m tch phn sau hi t: ( )11 I x m x x x dx+= + }. 4.78. Cho| ) : 0, f + R l hm kh vi v tha mn hai iu kin: a)( ) ( ) ( ) ( )3 2 2, x > 0 f x f x f x ' = b)( ) , x 0xf x es > .Hy biu din ( )0 , nnnu x f x dx+= e}N qua 0uv chng minh dy 3lim .!nnxun| | < + |\ .. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 125 CHNG 5 A THC VI MT S YU T GII TCH A. TM TTL THUYT I. GII HN V LIN TC Cho| | f x eR ,()n n 1o 1 n 1 nf x a x a x ... a x a= + + + +1. Gii hn a)()0x0khi a 0limf xkhi a 0++ >= 0 , n = 2k , khay a < 0 , n = 2k+1 , klimf xkhi a > 0 , n = 2k+1 , khay a eR hoc() f x 0 ' s x eR th f(x) = 0 c duy nht nghim. (ii) Nu phngtrnh () f x 0 ' =c hai nghim phn bit th th hm s c hai cc tr. +Vi yC.yCT > 0 th phng trnh f(x) = 0 ch c 1 nghim +Vi yC.yCT = 0 th phng trnh f(x) = 0c 2 nghim( 1 nghim n, 1 nghim kp) +Vi yC.yCT < 0 th phng trnh f(x) = 0 c nghim phn bit MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 126 e) Cc nh l gi tr trung bnh, khai trin Taylor, Quy tc LHospital u c th s dng c i vi a thc (bn c xem li vn ny trong l thuyt v O HM). III. NGUYN HM Cho| | f x eR ,()n n 1o 1 n 1 nf x a x a x ... a x a= + + + +c nguyn hm l:() ()n 1 n 0 1na aF x f x dx x x ... a x Cn 1 n+= = + + + ++} ( C l hng s tu ). B. BI TP P DNG 5.1. Liu c tn ti hay khng hai a thc f(x) v g(x) tha: ()()f x 1 1 11 ...g x 2 3 n= + + + + , *n eN . Gii D thy: n1 1 1lim 1 ...2 3 n| |+ + + + = + |\ .. Gi s tn ti hai a thc f(x) v g(x) tho yu cu bi ton th ()()xf xlimg x= +. Suy ra:degf degg > . Khi ()()0x0f xlim axg xb

=

(*) (00a , bln lt l h s ca n x bc cao nht ca f(x) , g(x) ) Chng minh n1 1 1 1lim 1 ... 0n 2 3 n| |+ + + + = |\ . (**)hon ton khng kh khn. (*) v (**) mu thun nhau.Vy khng tn ti hai a thc f(x) v g(x) tho mn yu cu ca bi ton. 5.2. Vi f(x) l a thc bc n v cc sa b > > > . Chng minh rng tt c cc nghim thc ca a thc f(x) u thuc khong(a, b). Gii p dng khai trin Taylor, ta c: () ( )( )( )( )( )( )( )( )n2 nf a f a f af x f a x a x a ... x a1! 2! n!' ''= + + + + MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 127 =( )( )( )( )( )( )( )( )( )n2 nf a f a 1 f af a a x a x ... a x1! 2! n!' '' + + + + Nux a sth() f x 0 < . Suy ra() f xkhng c nghimx a s . () ( )( )( )( )( )()( )( )n2 nf b f b f bf x f b x b x b ... x b1! 2! n!' ''= + + + + Nux b >th() f x 0 > . Suy ra() f xkhng c nghimx b > . Vy ta c iu phi chng minh. 5.3. Cho 0 1 2 2011a ,a , a ,..., a eR v tho mn iu kin sau y: 2 20111 2 2011 2 20110 0 1a a a a 2 a 2a ... a a ... 02 3 2012 3 2012+ + + + = + + + + = . Chng minh phng trnh: 20101 2 2011a 2a x ... 2011a x 0 + + + =c t nht mt nghim thuc khong( ) 0, 2 . Gii Xt a thc:()2 3 20120 1 2 20111 1 1f x a x a x a x ... a x2 3 2012= + + + +R rng f(x) lin tc trnR. Da vo gi thit bi ton ta d dng chng minh c:( ) ( ) ( ) f 0 f 1 f 2 0 = = = . p dng nh l Rolle tn ti( ) ( ) a 0,1, b 1, 2 e esao cho( ) ( ) f a f b 0 ' ' = = . Li p dng nh l rolle : tn ti( ) ( ) c a, b 0, 2 e csao cho( ) f c 0 '' = . M()20101 2 2011f x a 2a x ... 2011a x '' = + + + . Vy ta c iu phi chng minh. 5.4. Cho a thc f(x) c 3 nghima b c < | | x 0,1 e . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 129 Suy ra:( ) f 0 8 ' = . Vy gi tr nh nht ca m bng 8. 5.7. Tnh ( )| | ( )limxP xP x ( , y( ) P xl a thc vi h s dng. Gii V P l a thc vi h s dng , vi x > 1 ta c: ( )( )( )| | ( )( )( )11P x P x P xP x P x P x ( s s. V ( )( )( )( )1lim lim 11x xP x P xP x P x = = nn ( )| | ( )lim 1xP xP x ( = . 5.8. Cho a thc()6 5 4 3 2Q x 2x 4x 3x 5x 3x 4x 2 = + + + + + + . t () () ()2 30 0 0x x xI dx , J= dx, K= dxQ x Q x Q x+ + += } } }. Chng minh rng:I K J = > . Gii + a thc Q(x) c vit li nh sau: () ( ) ( ) ( )6 5 4 2 3Q x 2 x 1 4 x x 3 x x 5x = + + + + + + . + R rng cc tch phn trn hi t. + t 1xt= , ta c: 206 5 4 2 31 1. dtt tI1 1 1 1 1 12 1 4 3 5t t t t t t+=| | | | | |+ + + + + + |||\ . \ . \ .} + Ta thu gn biu thc di du tch phn I s thu cI K = . + Li c:( )()( )()23 20 0x x 1 x 2x x2 I J I K 2J dx dx 0 I JQ x Q x+ + + = + = = > >} }. VyI K J = > . 5.9. Cho()4 3 2f x x 2010x 2011x 2012x 2013 = + + + +v bit rng() f x 0 >vi mix eR. Chng minh rng: () () () () ()( )()4g x f x f x f x f x f x 0x ' '' ''' = + + + + > eR. Gii V g(x) l a thc bc 4 nn()xlimg x= +. Do tn ti ( ) ()0 0xx : g x ming xee =RR . T y suy ra:( )0g x 0 ' = . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 130 V() () () g x g x f x ' = nn( ) ( ) ( )0 0 0g x 0 g x f x 0 ' = = > . M() ( )0g x g x >nn() g x 0x > eR. 5.10.Cho P(x) l mt a thc c bc n > 3 v 1 2 3 1...n nx x x x x< < < < ,x eR. Gii + Nu n = 1 th khng nh trn lun ng. + Nu2 n > , gi 1,...,n l cc nghim ca a thc P(x).Khi vi , k = 1,...,nkx =th khng nh trn hin nhin ng. By gi, gi s , k =1,...,nkx =ta c : ( )( )()( ) ( )( )1 1P x1 2 ;nk k l ni k lP xP x x P x x x = s < s' ''= = . Do : ( )( )( )( )( )( )( )( )2 21 11 21 1nk k l nk k lP x P xn n n nP x P x x x x = s < s| | ' '' | | = || \ . \ . =( )( )( ) ( )( )21 1 11 1 21 2nk k l n k l nk k l k ln nx x x x x = s < s s < s (| || | ( + || | (\ .\ . = ( )( )( )( ) ( )( )21 1 11 1 22 1nk k l n k l nk l k lknn nx x x xx = s < s s < s| |+ | | \ . = ( )( )( )221 1 11 2 1 10nk k l n k l nk l k lknx x x xx = s < s s < s| | = > | \ . . Vy( )( )( )( )( )( ) ( ) ( ) ( )221 0 1 .P x P xn n n P x nP x P xP x P x| | ' ''' '' > > |\ . 5.17. Cho P(x) l a thc bc n vi h s thc c n nghim thc phn bit khc 0. Chng minh rng cc nghim ca a thc( ) ( ) ( )23 x P x xP x P x '' ' + +l thc v phn bit. Gii MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 134 t( ) ( ) Q x xP x = . V cc nghim ca P(x) l thc phn bit khc 0 nn cc nghim cu Q(x) cng l thc phn bit. Theo nh l Rolle suy ra cc nghim ca( ) Q x 'lthc phn bit. t( ) ( ) R x xQ x ' =, suy ra cc nghim ca R(x) l nghim thc phn bit. Do cc nghim ca a thc( ) ( ) ( ) ( )23 R x x P x xP x P x ' '' ' = + +l thc phn bit. 5.18. Cho P(x) l a thc vi h s thc c n nghim thc phn bit ln hn 1. Xt a thc ( ) ( ) ( ) ( ) ( ) ( )2 2 21 Q x x P x P x x P x P x ' '( = + + + . Chng minh rng a thc Q(x) c2 1 n nghim thc phn bit. Gii Ta c :( ) ( ) ( ) ( ) ( ) Q x P x xP x xP x P x ' ' = + +(( . Nhn xt : ( ) ( ) ( )( ) ( ) ( ) ( )2 22 2x xP x xP x e e P xxP x P x xP x'| | ' + = | |\ .' ' + = Gi cc nghim ca P(x) l : 1 21 ...nx x x < < < < . Theo nh l Rolle, ( ) ( ) P x xP x ' +c1 n nghim , k = 1,2,...,n-1kytha: 1 1 2 11 ...n nx y x y x< < < < < suy ra :( ) 0 P q =nhng li c : 1 k kx q x +< < . iu ny mu thun.5.19. Tm tt c cc a thc P(x) h s thc tha mn iu kin : ( ) ( )2011 xP e P x =vi mixeR. Gii T gi thit suy ra : ( )( )20110xP e P x x = > . t 201110 n1 , u, n 1nuu e= = > . MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 135 Khi ( )nul dy tng v( ) ( )1nn nP u P u = eN. Suy ra( ) P x C = . 5.20. Cho a thc lng gic( ) ( )k0oskx+b sinnkkP x a c kx== tha mn iu kin ( ) 1x P xs eR. Chng minh rng :( ) P x n x ' s eR. Gii ChoaeR bt k. D thy :( )( ) ( )1sin2nkkP a x P a xQ x c kx=+ = = Suy ra :( )( ) ( )2P a x P a xQ x' ' + ' =v( ) ( ) 0 Q P a ' ' = . Ta chng minh( ) 0 Q n ' s . Tht vy( )( ) ( )1.2P a x P a xQ x+ + s sNhn xt : ( )sinxQ xn s{ } ..., 2 , ,0, , 2 ,... x t t t t = ( nhn xt ny ti dnh cho bn c t kim tra). Hn na( ) 0 0 Q =v ( ) ( ) 0.0 sinxQ x Q xnxs. Khi0 x ta thu c( ) 0 Q n ' shay( ) P a n s . V a c ly bt k nn ta suy ra :( )x P x n s eR. C-MT S BI TP NGH 5.21. Cho P l mt a thc bc n tha mn:( )100, k = 1,2,...,nkx P x dx =}. Chng minh rng:( ) ( ) ( )21 1220 01 P x dx n P x dx| |= + |\ .} }. 5.22. Tm mt a thc bc nh nht, t gi tr cc tiu l 2 ti im 13 x =v t gi tr cc i l 6 ti im 21 x = . 5.23. Cho a thc( ) ( )( )2 3 21 ... 1 ...2! 3! ! 2 !k nk x x x xP x xk n= + + + + +( ) neNc gi tr khng m vi mi x. 5.24. Cho a thc( ) P xvideg P n =v( ) 0P x x > eR. Chng minh rng : MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 136 ( )( )00nkkP x=>. 5.25. Cho a thc:( )1 21 2 1...n n nn nP x x a x a x a x a = + + + + +tha mn iu kin:( ) ( ) ( )( ) ( )1 21x n n P x x x x x P x '' = eR v c cc nghim thc trn | |1 2, x xth cc nghim y c th xp thnh cp i xng nhau qua 1 202x xx+= . 5.26. Gi s Q(x) l a thc vi h s thc v c bc ln hn v bng 1. Chng minh rng ch c mt s hu hn cc gi tr ca m sao cho ( ) ( )0 0sin x cos 0m mQ x dx Q x xdx = =} }. 5.27. Gi s Q(x) l a thc khng c nghim thc. Chng minh rng a thc( )( )( )( )( )( )( )( )( )4 6 2... ....2! 4! 6! 2 !nQ x Q x Q x Q xQ xn''+ + + + + +cng khng c nghim thc. 5.28. Cho a thc 10 1 1 0( ) ... , a 0n nn nP x a x a x a x a= + + + + =c n nghim thc phn bit. Chng minh rng : a)( ) ( ) 2011 2012 0 P x P x ' =c n nghim thc phn bit. b)21 0 212na a an> . 5.29. Cho a thc P(x) bc n c n nghim thc phn bit. Chng minh tp hp nghim ca bt phng trnh : ( ) ( )( )20110P x P xP x' >l mt s khong c tng di bng 2011n. 5.30. Cho a thc P(x) bc n > 1 c n nghim thc phn bit , k = 1,2,...,nk . Chng minh rng : ( ) ( ) ( )1 21 1 1... 0nP P P + + + =' ' '. MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 137 CHNG 6BI TP NNG CAOV NHNG GI V PHNG PHP GII 6.1. Cho hm s: f R R tha mn iu kin:( ) ( ) 19 19 f x f x + s +v ( ) ( ) 94 94 f x f x + > +vi mi x. Chng minh rng:( ) ( ) 1 f x f x + =vi mi xeR. Gi Bc 1: Chng minh bng quy np vi mineN ( ) ( ) 19 19 f x n f x n + s + , ( ) ( ) 94 94 f x n f x n + > +( ) ( ) 19 19 f x n f x n > ,( ) ( ) 94 94 f x n f x n s . Bc 2: Chng minh( ) ( ) ( ) 1 1 1 f x f x f x + s + s + . 6.2. Cho f lin tc trn on| | ; a b , kh vi trong khong( ) ; a bv ( ) ( ) 0 f a f b = = . Chng minh rng tn ti( ) ; c a b esao cho:( ) ( )2011f c f c ' = . Gi p dng nh l Rolle cho hm s:( )( )( )2010xaf t dtg x e f x}= . 6.3.C hay khng mt hm s: f R R tha mn: ( ) sin sin 2 f x y x y + + + < vi x, y eR ? Gi Bc 1: Chn cc gi tr thch hp ca x, y thay vo iu kin bi ton thu c:( ) 2 2 ft + < ; ( ) 2 2 ft < . Bc 2: S dng bt ng thc tam gic dn n mt iu mu thun vi gi thit. Khi ta kt lun c khng tn ti hm s no tha mn yu cu bi ton. 6.4.Tm hm s( ) f xc o hmlin tc trnR sao cho ( ) ( ) ( ) ( )2 2 202011xf x f t f t dt ' = + +} Gi Ly o hm hai v. 6.5. Cho: f R R sao cho( ) ( ) a b f a f b a b < = . Chng minh rng nu( ) ( ) ( )0 0 f f f =th( ) 0 0 f = . Gi Bc 1: Vit li iu kin i vi hm f(x) :( ) ( ) f a f b a b s MATHVN.COMwww.MATHVN.com BI TP GII TCH DNH CHO OLYMPIC TON VN PH QUC- GV. TRNG I HC QUNG NAM 138 Bc 2: t( ) ( ) 0 ,y = f x f x = . Khi () 0. f y =p dng bt ng thc trn lin tip ta thu c0 x y = = . Suy ra( ) 0 0 f = . 6.6. Cho f xc nh trn| | 0;1tho mn:( ) ( ) 0 1 0 f f = =v ( ) () | | x, y 0,12x yf f x f y+| |s + e |\ .. Chng minh rng: phng trnh( ) 0 f x =c v s nghim tr