Top Banner
Mô hình hóa, mô phng và ti ưu hóa các quá trình hóa hc Modeling, simulation and optimization for chemical process Instructor: Hoang Ngoc Ha Email: [email protected] Bmôn QT&TB Curriculum/syllabi Seminar group
50

Baigiang Mohinhhoa

Mar 15, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Baigiang Mohinhhoa

Mô hình hóa, mô phỏng và tối ưu hóacác quá trình hóa học

Modeling, simulation and optimization for chemical process

Instructor: Hoang Ngoc HaEmail: [email protected]

Bộ môn QT&TBCurriculum/syllabiSeminar group

Page 2: Baigiang Mohinhhoa

Outline

• General introduction– Structure and operation of chemical

engineering systems– What is a chemical process?– Motivation examples

• Part I: Process modeling• Part II: Computer simulation• Part III: Optimization of chemical

processes

Page 3: Baigiang Mohinhhoa

General introduction

• Structure of chemical engineering system

(Copyright © by Prof. Paul Sides at CMU, USA)

Page 4: Baigiang Mohinhhoa

General introduction• Conservation laws:

– Give some balance equations such as mass balance (or the molar number by species), energy balance and momentum equation of the system under consideration

• Equilibrium thermodynamics– The extensive variables/intensive variables– The laws of thermodynamics

• Reaction engineering– Reaction mechanism– The rate of a chemical reaction

• Transport processes– How materials and energy move from one position to another (heat

conductivity, diffusion and convection…)• Biological processes

– Transform material from one form to another (enzyme process) or remove pollutants (environmental engineering)

Page 5: Baigiang Mohinhhoa

General introduction• References (complements) :

1. Sandler S. I. (1999). Chemical and Engineering Thermodynamics. Wiley and Sons, 3rd edition.

2. H.B. Callen. Thermodynamics and an introduction to thermostatics. JohnWiley & Sons Inc, 2nd ed. New York, 1985.

3. De Groot S. R. and P. Mazur (1962) Non-equilibrium thermodynamics. Dover Pub. Inc., Amsterdam.

4. Vũ Bá Minh. (tập 4) Kỹ thuật phản ứng. NXB ĐHQG Tp. HồChí Minh, 2004

5. Nguyễn Bin, (tập 5) Các quá trình hóa học. NXB Khoa họcvà Kỹ thuật, 2008

Page 6: Baigiang Mohinhhoa

General introduction• Conservation laws:

– Give some balance equations such as mass balance (or the molar number by species), energy balance and momentum equation of the system under consideration

• Equilibrium thermodynamics– The extensive variables/intensive variables– The laws of thermodynamics

• Reaction engineering– Reaction mechanism– The rate of a chemical reaction

• Transport processes– How materials and energy move from one position to another (heat

conductivity, diffusion and convection…)• Biological processes

– Transform material from one form to another (enzyme process) or remove pollutants (environmental engineering)

Page 7: Baigiang Mohinhhoa

General introduction

Operation of a chemical engineering plant

Copyright © by T. Marlin

(Σ)

Dynamical behavior

Page 8: Baigiang Mohinhhoa

General introduction

Oil and gas production plant

Page 9: Baigiang Mohinhhoa

General introduction

The system may be

Isolated: There is no transfer ofmass or energy with theenvironment

∑Closed: There may be transfer ofmechanical energy and heat

Open: There is mass transfer withthe environment ∑

Page 10: Baigiang Mohinhhoa

General introduction

Gas

BA,JQ

.

BA BA υυ →

Question: determinate physical volume of the following systems?

Page 11: Baigiang Mohinhhoa

General introduction

What is a chemical process?Process: A set of actions performed intentionally in order to reach some result (Longmans Dictionary of Contemporary English)Processes that involve energy conversion, reaction, separation and transport are called chemical processes (Prof. Erik Ydstie at CMU, USA)Definition: Chemical processes are a special subclass of processes since their behavior is constrained by a range of laws and principles which may not apply in other circumstances (mechanical/electrical systems…)Properties:

Highly nonlinearComplex networkMay be distributed

Page 12: Baigiang Mohinhhoa

General introduction

Chemical processes

Thermal conductivity process

Transport (reaction) process

Page 13: Baigiang Mohinhhoa

General introduction

Why we need informations about dynamicalbehavior?

Research and developmentProcess designProcess controlPlant operation…

Process modeling,computer

simulation and optimization

(Σ)Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDEs) or Differential and Algebraic Equations (DAEs)

Page 14: Baigiang Mohinhhoa

Motivation examples

Example 1: Gravity-flow tank

The higher the flow rate F , the higher h will be

h

F0

F F

F0 = F0(t), h = h(t) and F = F (t)

F0, h and F : steadystate values

Overshoot

How to understand dynamical behavior to design the system avoiding « Overshoot »?

Page 15: Baigiang Mohinhhoa

Motivation examples

Example 2: Heat exchanger

Thermocouple

Temperature transmitter

Temperature controller

Final control element

Page 16: Baigiang Mohinhhoa

Motivation examples

Example 3: Typical chemical plant and control systemTwo liquids feeds are pumped into

a reactor

They react to form products

Reactor effluent is pumped througha preheater into a distillation

To specify the various piecesof equipment:

•Fluid mechanics

•Heat transfer

•Chemical kinetics

•Thermodynamics and masstransfer

Page 17: Baigiang Mohinhhoa

Motivation examples

Example 4: Optimization of a silicon process

The silicon reactor

Page 18: Baigiang Mohinhhoa

Motivation examples

Example 4: Optimization of a silicon process

Page 19: Baigiang Mohinhhoa

Outline

General introductionStructure and operation of chemical engineering systemsWhat is a chemical process?Motivation examples

Part I: Process modelingPart II: Computer simulationPart III: Optimization of chemical processes

Page 20: Baigiang Mohinhhoa

Process modeling

Introduction

Fundamental lawsContinuity equations

Energy equation

Equations of motion

Page 21: Baigiang Mohinhhoa

Introduction

Uses of mathematical modelsCan be useful in all phases of chemical engineering, from research and development to plant operations, and even in business and economic studies

Research and development: Determinating chemical kinetic mechanisms and parameters from lab. or pilot-plant reaction dataExploring the effects of different operating conditionsAdding in scale-up calculations…

DesignExploring the sizing and arrangement of processing equipmentStudying the interactions of various parts…

Plant operationCheaper, safer and fasterTroubleshooting and processing problems…

Page 22: Baigiang Mohinhhoa

Introduction

Scope of courseA deterministic system is a system in which no randomness is involved in the evolution of states of the system

∑Random effects such as noise…

A stochastic system is non-deterministic system

Page 23: Baigiang Mohinhhoa

Introduction

Principles of formulationBasis

Fundamental physical and chemical laws such as laws of conservation of mass, energy and momentum

AssumptionsImpose limitations « reasonable » on the model

Mathematical consistency of modelNumber of variables equals the number of equations (degrees of freedom)Units of all terms in all equations are consistent

Page 24: Baigiang Mohinhhoa

Introduction

Solution of the model equationsInitial and/or boundary conditionsAvailable numerical solution techniques and toolsSolutions are physically acceptable…?

VerificationThe mathematical model is proving that the model describes the “real-world” situation

Real challenge

Page 25: Baigiang Mohinhhoa

Fundamental laws

Continuity equationsTotal continuity equations (total mass balance)

EXERCISE ?

Component continuity equations (component balance)

Page 26: Baigiang Mohinhhoa

Fundamental laws

Energy balance

EXERCISE ?

Page 27: Baigiang Mohinhhoa

Fundamental laws

Equations of motion

Pushing in the i direction (i=x,y,z)

−→F =

d

³M−→v

´dt

Where −→v = velocity, −→F = total force and M = mass

Fi =d

³Mvi

´dt

EXERCISE ?

Page 28: Baigiang Mohinhhoa

Fundamental laws

Consider a system with n componentsNumber of equations obtained from the fundamental laws

n balance equations by species1 total mass balance equation1 energy balance equation3 equations of motion (if the system is under movement)

⎭⎬⎫

Not independent

⇒ n+ 1 + (3) equations

Page 29: Baigiang Mohinhhoa

Constitutive equations

Reaction kinetics of(bio)chemical reaction…

Transport equations

k = k(T,C)

Page 30: Baigiang Mohinhhoa

Other equations

As we saw, we need equations that tell us how thephysical properties, primarily density and enthalpy, change with temperature, pressure, andcomposition to rewrite alternative mathematicalmodels

Equations of state

Page 31: Baigiang Mohinhhoa

Other equations (cont.)

In some cases, simplification can be made withoutsacrificing much overall accuracy

Or more complex, Cp is considered as a function oftemperature

H = CpT (liquid)

H = CpT + λv (vapor)

H =R TTref

Cp(T )dT

Page 32: Baigiang Mohinhhoa

Other equations (cont.)

A polynomial in T is used for Cp

We obtain

Cp(T ) = A1 +A2T

H =hA1T +A2

T 2

2

iTTref

= A1(T − T0) + A2

2 (T2 − T 20 )

Page 33: Baigiang Mohinhhoa

Other equations (cont.)

If the mixture is composed of components (which we know the pure-componententhalpies) then the total enthalpy can beaveraged

H =PN

j=1 xjhjMjPNj=1 xjMj

xj

Mj

hj

- mole fraction of jth component

- molecular weight of jth component

- pure-component enthalpy of jth component (energy per unit mass)

Page 34: Baigiang Mohinhhoa

Other equations (cont.)

Liquid densities can be assumed constant in many systemsVapor densities usually cannot be consideredinvariant in many systems and the PVT relationship is almost always required.

The simplest and most often used case is theperfect gas law

PV = nRT ⇒ ρv =nMV= PM

RT

Page 35: Baigiang Mohinhhoa

Examples of mathematical modeling ofchemical process

(Distributed) Transport reaction systemsDe Groot S. R. and P. Mazur (1962) Non-equilibrium thermodynamics. Dover Pub. Inc.,

Amsterdam.

Page 36: Baigiang Mohinhhoa

Examples of mathematical modeling ofchemical process

Distributed reaction systems (reactor tubular for example)

n chemical species

Inlet material and/or energetic flux

Outlet material and/or energetic flux

V,Ω

Pk νkSk = 0

(Σ)dV

Page 37: Baigiang Mohinhhoa

Examples of mathematical modeling ofchemical process

Mass conservation by species

dmk

dt= d

dt

RVρkdV =

RV

∂ρk∂tdVR

VνkMkrvdV

⇒ ∂ρk∂t= −div(Jk) + νkMkrv

= −RVdiv(Jk)dV Gauss theorem

Jk = vkρk

−RΩJk · dΩ

Total material flux

Page 38: Baigiang Mohinhhoa

Examples of mathematical modeling ofchemical process

ρ =P

k ρk v =P

k Jkρ

Jdk = ρk(vk − v)Jck = ρkv

⇒ Jk = Jdk + J

ck

∂(P

k ρk)

∂t= −div(Pk Jk)

∂ρ∂t= −div(vρ) v = ρ−1

∂v∂t+ v ·−→∇v = vdiv(v)DvDt

Page 39: Baigiang Mohinhhoa

Examples of mathematical modeling ofchemical process

J0q

= ρ (u+ pv)| z =h

v + JqJu = ρuv + pv+ Jq

∂ρu∂t= −divJu

= −RΩJu · dΩ

Pk hkJ

ck

Pk hkJ

dk

dUdt=RV

∂ρu∂tdV

Page 40: Baigiang Mohinhhoa

Examples of mathematical modeling ofchemical process

Seminar:

Nonisothermal CSTR

Batch reactor

pH systems

Distillation column

Page 41: Baigiang Mohinhhoa

Examples of mathematical modeling ofchemical process

Seminar:

Nonisothermal CSTR

Batch reactor

pH systems

Distillation column

Page 42: Baigiang Mohinhhoa

Phương trình dòngSự vận chuyển trong thiết bị phản ứng củahỗn hợp phản ứng, bao gồm:

Dòng vật liệu (khối lượng/nồng độ)Dòng nhiệt năng (năng lượng)Dòng động lượng (xung)

Có dòng đối lưu, dòng dẫn, dòng cấp vàdòng phát sinh

Dòng đối lưu hoặc dòng dẫn có thể tồn tại độc lập hoặc đồng thời nhưng chỉ trong một phaSự vân chuyển xảy ra qua lớp biên của hai pha là dòngcấp

(lượng/thể tích) Được đặc trưng bởi mật độ dòngΓ⇒

Page 43: Baigiang Mohinhhoa

Phương trình dòng

Các quá trình vận chuyển trong thiết bịDòng đối lưu

Sự thay đổi vị trí trong không gian của mật độ dòng được gọi là đối lưu (dòng vận chuyển vĩ mô)Mật độ dòng đối lưu được biểu thị

Dòng dẫn (khuếch tán)Chuyển động phân tử trong lòng pha khí hoặc pha lỏnglà chuyển động vi mô tạo thành dòng dẫn

−→j c = Γ

−→v (lượng/thời gian/diện tích)

(lượng/thời gian/diện tích)−→j d = −D

−−→gradC

Page 44: Baigiang Mohinhhoa

Phương trình dòng

Các quá trình vận chuyển trong thiết bị (tt)Dòng cấp

Sự vận chuyển của đại lượng đặc trưng từ pha nàysang pha khác gọi là sự cấpCác quá trình xảy ra giữa các pha thường được mô tảbằng các đại lượng quảng tính

(lượng/thời gian/diện tích)

- hệ số cấp, ² - bề mặt riêng (xét trên một đơn vị thể tích)f

−→j = ²f∆Γ

∆Γ- động lực

Page 45: Baigiang Mohinhhoa

Phương trình dòng

Dòng phát sinhDòng phát sinh vật chất do phản ứng hóa học

G =−−→gradP

Gj =Pm

i=1 νjiri

Gi = (−∆Hi)riDòng phát sinh cuả nhiệt năng do phản ứng hóa học

Dòng phát sinh của động lượng do chênh lệch áp suấtĐược hình thành do sự thay đổi của áp suất trong hệ, tứclà có tác dụng của xung lực

Các quá trình vận chuyển trong thiết bị (tt)

Page 46: Baigiang Mohinhhoa

Phương trình dòng

Xét trường hợp hệ tổng quát (đồng thể haydị thể) có phản ứng hóa học

n chemical species

Inlet material and/or energetic flux

Outlet material and/or energetic flux

dVPj νijSj = 0

Page 47: Baigiang Mohinhhoa

Phương trình dòng

Phương trình cân bằng tổng quát có dạng củaphương trình vi phần riêng phần đượcDamköhler thiết lập (1936)

−→j c

−→j d

Dòng cấpDòng

phát sinh

∂Γ∂t = −div(−→v Γ) + div(δ

−−→gradΓ)− ²f∆Γ+G

Γ = ρ Cj ρCpT ρ−→v

Page 48: Baigiang Mohinhhoa

Phương trình dòng

Viết lại các phương trình cân bằng

∂Γ∂t = −div(−→v Γ) + div(δ

−−→gradΓ)− ²f∆Γ+G

∂ρ∂t = −div(−→v ρ) + div(D?−−→gradρ)− β?f∆ρ+G

∂ρ−→v∂t = −div(−→v ρ−→v ) + div(ν−−→gradρ−→v )

−γf∆(ρ−→v ) +G

∂ρCpT∂t = −div(−→v ρCpT ) + div(αT

−−→gradρCpT )

−α?f∆ρCpT +G

∂Cj∂t = −div(−→v Cj) + div(D

−−→gradCj)

−βjf∆Cj +Gj

Page 49: Baigiang Mohinhhoa

Phương trình dòng

Example: xem chương 5, tập 5 (sách Cácquá trình, thiết bị TRONG CÔNG NGHỆHÓA CHẤT VÀ THỰC PHẨM, Nguyễn Bin)

Mô hình toán cho hệ khuấy lý tưởngChuỗi thiết bị khuấy lý tưởngThiết bị khuấy gián đoạnThiết bị đẩy lý tưởngCác bài toán thực tế

∂Γ∂t = −div(−→v Γ) + div(δ

−−→gradΓ)− ²f∆Γ+G

Page 50: Baigiang Mohinhhoa

Outline

General introductionStructure and operation of chemical engineering systemsWhat is a chemical process?Motivation examples

Part I: Process modelingPart II: Computer simulationPart III: Optimization of chemical processes

Ref.: Burden R. L. and Faires J. D. Numerical analysis.