Top Banner
BAEP (Brainstem Auditory Evoked Potentials) BY: SYED IRSHAD MURTAZA TECHNOLOGIST NEUROPHYSIOLOGY DEPT AKUH KARACHI DATE: 04-11-2013
40

Baep (bera) by im

May 26, 2015

Download

Health & Medicine

ALL ABOUT BAEP, (brainstem auditory evoked potentials)
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Baep (bera) by im

BAEP(Brainstem Auditory Evoked

Potentials)

BY: SYED IRSHAD MURTAZA

TECHNOLOGIST

NEUROPHYSIOLOGY DEPT

AKUH KARACHI

DATE: 04-11-2013

Page 2: Baep (bera) by im

BAEPsBAEPs are responses of the auditory nerve, brainstem, and, perhaps, higher subcortical structures to acoustic stimulation. Most of its components appear to arise from multiple sources, preventing a simple one-to-one correspondence between potential generators and individual BAEP waves.

Page 3: Baep (bera) by im

BERA, CONT’DThe term brainstem auditory evoked potentials,” is

somewhat inappropriate in that (1) the first component of the “brainstem auditory evoked potentials” does not arise in the brainstem but in the auditory nerve; and(2) the latest components may or may not originate, at least in part, above the brainstem.

• Although the pathways is mainly along the brainstem and some of the potentials are assumed to be generated from it, so called BAEP.

Page 4: Baep (bera) by im

The Auditory system

• In order to know about the potentials of BAEPs one must aware about the anatomy and physiology of auditory system which is mainly about the following two components.• The Peripheral Auditory System (The

EAR)• The Central Auditory System (The Brain)

Page 5: Baep (bera) by im

1. The Peripheral Auditory System (The EAR).

The components are,Outer Ear: The folds of cartilage surrounding the ear canal

are called the pinna, which amplifies the sounds .Middle Ear: The sound wave information travels across

the air-filled middle ear cavity via a series of delicate bones:

• Malleus (Hammer), Incus (Anvil) and Stapes (Stirrup) which are mainly responsible to convert the lower-pressure eardrum sound vibrations into higher-pressure sound vibrations at another, smaller membrane called the oval (or elliptical) window.

Page 6: Baep (bera) by im

Anatomy of Peripheral auditory system (EAR)

Page 7: Baep (bera) by im

Inner Ear• The inner ear consists of the cochlea and several non-auditory structures,

including Organ of Corti, which is located at the scala media (cochlear duct ) and transforms mechanical waves to electric signals in neurons.

• Hair cell :• Hair cells are columnar cells, each with a bundle of 100-200 specialized cilia at

the top, for which they are named. There are two types of hair cells. Inner hair cells are the mechanoreceptors for hearing: they transduce the vibration of sound into electrical activity in nerve fibers, which is transmitted to the brain. Outer hair cells are a motor structure. Sound energy causes changes in the shape of these cells, which serves to amplify sound vibrations in a frequency specific manner.

• Neurons (Hair cell neural connection)

• Afferent neurons innervate cochlear inner hair cells, at synapses where the neurotransmitter glutamate communicates signals from the hair cells to the dendrites of the primary auditory neurons.

Page 8: Baep (bera) by im
Page 9: Baep (bera) by im
Page 10: Baep (bera) by im

Types of AEPs• Short latency AEP• Middle latency AEP• Long latency AEP• The short latency AEP include peak of up to 10 msec

and amplitude of about 0.2uv, they are generated in brainstem.

• The middle latency AEP have several variable peaks with latency of 10-50 msec and with amplitude of about 1 uv, they probably reflect early cortical excitation.

• The long latency AEPs beginning after 50sec and having peak of 1-10uv, represent later cortical excitation.

Page 11: Baep (bera) by im
Page 12: Baep (bera) by im

The Central Auditory System (The Brain)• The sound information, re-encoded, travels down the

vestibulo-cochlear nerve, through intermediate stations such as the cochlear nuclei and superior olivary complex of the brainstem and the inferior colliculus of the midbrain, being further processed at each waypoint. The information eventually reaches the thalamus, and from there it is relayed to the cortex. In the human brain, the primary auditory cortex is located in the temporal lobe. Associated anatomical structures include

• Cochlear nucleus• Trapezoid body• Superior olivary complex

• :

Page 13: Baep (bera) by im

• The cochlear nucleus is the first site of the neuronal processing of the newly converted “digital” data from the inner ear. This region is anatomically and physiologically split into two regions, the dorsal cochlear nucleus (DCN), and ventral cochlear nucleus (VCN).

• Trapezoid body•  The Trapezoid body is a bundle of decussating fibers in the

ventral pons that carry information used for binaural computations in the brainstem.

• Superior olivary complex•  The superior olivary complex is located in the pons, and

receives projections predominantly from the ventral cochlear nucleus, although the posterior cochlear nucleus projects there as well, via the ventral acoustic stria.

Cochlear nucleus

Page 14: Baep (bera) by im
Page 15: Baep (bera) by im

Lateral lemniscus • The lateral lemniscus is a tract of axons in the brainstem

that carries information about sound from the cochlear nucleus to various brainstem nuclei and ultimately the contralateral inferior colliculus of the midbrain.

• Inferior colliculi

• The Inferior colliculi (IC) are located just below the visual processing centers known as the superior colliculi. The central nucleus of the IC is a nearly obligatory relay in the ascending auditory system, & most likely acts to integrate information (specifically regarding sound source localization from the superior olivary complex & dorsal cochlear nucleus) before sending it to the thalamus and cortex.

Page 16: Baep (bera) by im

Medial geniculate nucleus•  The medial geniculate nucleus is part of the thalamic relay

system• Primary auditory cortex• The primary auditory cortex is the first region of cerebral

cortex to receive auditory input.• Perception of sound is associated with the left posterior

superior temporal gyrus (STG). The superior temporal gyrus contains several important structures of the brain, including Brodmann areas 41 and 42, marking the location of the primary auditory cortex, the cortical region responsible for the sensation of basic characteristics of sound such as pitch and rhythm

Page 17: Baep (bera) by im

GENERATORS OF WAVEFORMS FROM 1-VII

Waves Site of Neural Generator (peripheral portion of cranial nerve VIII)

I Cochlear nerve (distal end)

II Cochlear nerve ( proximal end)

III Superior Olivary Complex/Nucleus

IV Lateral Leminiscus

V Inferior Colliculus

VI & VII Presumed to be generated by the medial geniculate body and the thalamocortical pathways respectively

ByIM

Page 18: Baep (bera) by im
Page 19: Baep (bera) by im

STANDARDS AND GUIDELINES FOR/OF BAEP ACCORDING TO ACNS:

• The ACNS guidelines for the standard parameters settings and techniques for the Brain stem Auditory-Evoked Potentials (BAEPS) are as followings.

• I. Stimulus • It is recommended that “broad-band” clicks, the acoustic energy of

which is spread over a wide range of audio frequencies, be used for the neurologic applications of auditory evoked potentials. These clicks should be generated by driving with a 100usec rectangular pulse (single monophasic square wave), a standard audiometric earspeaker having a relative flat frequency spectrum.

• Many other types of acoustic stimuli are used for eliciting BAEPs, such as tone bursts, tone pips, filtered clicks, single-cycle clicks, etc.

Page 20: Baep (bera) by im

II. Stimulus PolarityThe polarity of the first and most prominent wave of the acoustic waveform of

the click determines whether a negative or positive pressure is applied in front of the ear speaker diaphragm. Those clicks in which the first and major acoustic wave applies negative pressure in front of the ear-speaker diaphragm are referred to as rarefaction clicks.

• Those clicks in which the first and most prominent acoustic wave applies a positive pressure in front of the ear-speaker diaphragm are referred to as condensation clicks.

• In certain pathologic conditions associated with severe, steep high-frequency hearing loss, BAEPs elicited by rarefaction clicks may differ in latency and, to a degree, in morphology from BAEPs evoked by condensation clicks. In these circumstances, using clicks of alternating polarity results in poorer resolution of the response than using either rarefaction or condensation clicks alone. This problem is obviated by using rarefaction only, condensation only, or separate rarefaction and condensation clicks.

Page 21: Baep (bera) by im

III. Stimulus Rate • Stimulus rates employed vary widely from 5 to 200/s. depending on

test applications. Waves I,II, VI, and VII are particularly reduced in amplitude at rates higher than 10/s. Thus, stimulus rates of 8-10/s are especially suited to resolve these peaks.

• IV. Stimulus Intensity • It is recommended that click intensity be acoustically calibrated in

“decibels peak-equivalent sound pressure level” (dB pe SPL). Stimulus intensities employed generally range between 40 and 120 dB pe SPL.( sound pressure level). Intensity of stimulus should always be well defined to ensure :

Maximum release of neurotransmitters from the hair cells, so the nerve fires promptly.

• - Less intensity will result in increase in Wave I latency.

Page 22: Baep (bera) by im

V. Monaural Versus Binaural Stimulation • Click should be delivered monaurally, i.e., to one

ear at a time. • Contralateral Masking • It isAlthough not necessary in every situation, it is

recommended that contralateral masking be included in the routine test protocol to avoid its inadvertent omission when it is required.

• recommended that the contralateral (nonstimulated) ear be masked by white noise at 60 dB SPL to eliminate “crossover” responses, i.e., bone-conducted responses originating in this ear.

Page 23: Baep (bera) by im

VI. Recording.System Bandpass • The recommended system bandpass for BAEP recording is

10-30 to 2,500-3,000 Hz with a filter rolloff not exceeding 12 dB/octave for the low frequencies and 24 dB/octave for the high frequencies. Whenever this test is performed in the presence of irreducible EMG and mechanical artifacts, the low-frequency cutoff may be raised to 100-200 Hz.

• VII. Stimulus Artifact • The use of properly electrostatically and

electromagnetically shielded stimulus delivery systems is suggested to attenuate or eliminate the stimulus artifact, especially when using rarefaction-only or condensation-only clicks.

Page 24: Baep (bera) by im

VIII. Analysis Time• An analysis time of 10-15 ms from stimulus onset is

suggested. An analysis time of no less than 15 ms is sometimes required to demonstrate extremely delayed responses in certain pathologic conditions. Analysis times of 15 ms are also essential for neonatal and intraoperative recordings.

• IX. Filters Setting • Low frequency filter setting is 10-30Hz but may be

increased to 100Hz.BAEP consist of multiple high frequency components reaching a frequency close to 1000Hz.Thus the high frequency filter should not be less then 2000Hz.

Page 25: Baep (bera) by im

X. Number of Trials to be Averaged

• It is suggested that about 1,000-4,000 individual trials be averaged until good waveform resolution has been achieved. Two or more responses must be obtained and superimposed to demonstrate replicability or lack of replicability of their components.

• XI. Electrode Placement • It is recommended that recording electrodes be placed as follows: (1) on the scalp at the vertex (Cz position of the 10-20 International

System of EEG electrode placement) and • (2) over the left and right earlobes (auricular) A1 and A2 positions of

the 10-20 System) or the left and right mastoid processes (M1 and M2).

• The ground electrode may be placed anywhere on the body. For convenience, it is recommended that it be placed on the head, for instance, on the scalp in a midline frontal location (position Fz of the 10-20 System). Electrode impedances must be < 5 KOhms.

Page 26: Baep (bera) by im

XII. Montage• A montage consisting of the following derivations is suggested for BAEP

recording: • Channel 1: Vertex-ipsilateral earlobe or mastoid (Cz-Ai or Mi) • Channel 2: Vertex-contralateral earlobe or mastoid (Cz-Ac or Mc)• XIII. State of Consciousness • BAEPs can be obtained during either wakefulness or sleep. Sedation

may occasionally be indicated with very young or tense patients, but now requires special provisions in most facilities. In recording patients who are comatose or are undergoing surgery, consideration must be given to the fact that hypothermia may produce BAEP alterations indistinguishable from those caused by structural lesions of the auditory pathways

• XIV. Analysis of Results • Records are analyzed primarily for the presence of waves I, III, and V.•

Page 27: Baep (bera) by im

Technical modifications to improve waveforms identification.• 1. If Stimulus artifact is too large and obscures wave I.• Decrease the impedance of recording and ground electrodes• Adjust the location of input cables and stimulus cables separate them• Decrease the stimulus intensity• Replace the ear phone• Change the polarity • 2. If Wave I is not identified:• Increase stimulus intensity• Change click polarity• Decrease stimulus rate• Use ear canal electrodes• 3. If Wave V is difficult to distinguish from wave IV• Decrease stimulus intensity• Use contra lateral ear reference recording• 4.Wave V is difficult to differentiate from wave IV or VI:• Decrease stimulus intensity. When stimulus intensity is progressively decreased , wave V

is the last wave to remain.

Page 28: Baep (bera) by im
Page 29: Baep (bera) by im

Technical modifications• Not all normal recording contain all BAEP peaks.• Wave V present most often.• Wave I and III can usually also be identified.Wave II is often absent and wave IV may merge more of less completely with wave V.• Wave I may be enhanced by increasing the stimulus intensity and decreasing the

stimulus rate.• Recording a BAEP to condensation clicks in addition to to the BAEP rarefaction

clicks may help to distinguish wave I from mechanical and electrical stimulus artifact.

• Wave II, although often absent in normal subjects, may be of clinical significance if it is show prolong absolute latency of IPL I-II.

• Wave III may be normally splits into two peaks, its latency is then measured to the first peak or to the middle between the two peaks. splitting may disappear if the condensation clicks are used instead of rarefaction clicks and vice versa.

• Wave IV normally fuse with wave V.• Wave V is the most realible peak. It may be identified by its low threashold, its

persistance during repetative stimulation up to 100/sec and by large negativity that commonly follow it.

Page 30: Baep (bera) by im

Application of BEAPS in Specific Disorders

BEAPs are widely used for evaluation of• Acoustic neuromas• Degenerative diseases• Brain tumor and stroke• Multiple sclerosis• Reversibility of comas• Hearing assessment in children

Page 31: Baep (bera) by im

Why Wave V is used for Interpretation

• Wave V is used as the indicator in HTT because it has

1. lowest threshold for stimulation2.highest amplitude of BAEP waves3.Actual & consistent later wave in all subjects

which indicates the integrity of the pathway (peripheral to central).

Page 32: Baep (bera) by im

Analysis of Results • Measurements must include the following: • (1) wave I peak latency; • (2) wave III peak latency; • (3) wave V peak latency; • (4) I-III interpeak interval; • (5) III-V interpeak interval; • (6) I-V interpeak interval; • (7) wave I amplitude; • (8) wave V amplitude; and • (9) wave IV-V/I amplitude ratio.

Page 33: Baep (bera) by im

Criteria for Clinically Significant Abnormality

• Abnormal BAEP measures do not necessarily imply altered retrocochlear function. At present, criteria for retrocochlear dysfunction include the following.

• 1. Absence of all BAEP waves I through V. unexplained by extreme hearing loss determined by formal audiometric testing.

• 2. Absence of all waves following waves I, II, or III. • 3. Abnormal prolongation of I-III, III-V. and I-V

interpeak intervals. I-III or III-V intervals can sometimes be abnormally prolonged even in the face of a normal I-V interval

Page 34: Baep (bera) by im

Minimal Test Protocol

• It is recommended that, for neurologic applications, minimal BAEP testing should consist of responses to rarefaction, condensation, or summated separate rarefaction and condensation clicks delivered monaurally at intensities of 90—120 dB pe SPL, preferably 115 or 120 dB pe SPL and at rates preferably below 25/s. The contralateral ear should be masked by white noise at 60 dB SPL.

Page 35: Baep (bera) by im

Recording at High Stimulus Rates • Recording BAEPs at stimulus rates of 50—70/s

facilitates the rapid identification of wave V in screening studies of neonates and infants as well as adults.

• 4. Abnormal diminution of the IV-V/I amplitude ratio, especially when accompanied by other abnormalities.

• 5. Abnormally increased differences between the two ears (interaural differences) as regards the I-III, III-V, and I-V interpeak intervals, when not explained by unilateral or asymmetric middle and/or ear dysfunction determined by appropriate audiometric tests.

Page 36: Baep (bera) by im

Common Abnormal Finding

• Normal absolute latency of wave I but delayed absolute latencies of corresponding waveform

• Prolonged interpeak latencies • Prolonged absolute latency of wave I with

prolonged corresponding absolute latencies of the remaining waveform but normal interpeak latencies

Page 37: Baep (bera) by im

Abnormal BEAP Tracing

Page 38: Baep (bera) by im

Abnormal BEAP Tracing

Page 39: Baep (bera) by im

BEAP responses in Acoustic Neuroma

Page 40: Baep (bera) by im

• Reference: • 2008 American Clinical Neurophysiology Society• Coats and Martin 1977• Chiappa K, Gladstone KJ, Young RR. Brainstem

auditory evoked responses• Chatrian GE, Wirch AL, Lettich K, Turella G,

Snyder J.M. Click-Evoked Human Electrocochleogram