Top Banner
EDB9300UE 00403496 Operating Instructions Global Drive 9300 servo
191
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ba93sugb.pdf

EDB9300UE00403496

Operating Instructions

Global Drive9300 servo

Page 2: ba93sugb.pdf

These Operating Instructions are valid for the 93XX controllers of the versions:

33.932X- ES 2x. 2x (9321 - 9328)

33.9329- ES 2x. 2x (9329)

33.933X- ES 2x. 2x (9330 - 9332)

33.932X- ES 2x. 2x (9321 - 9329)

33.933X- ES 2x. 2x (9330 - 9332)

33.932X- CS 2x. 2x -V003 Cold Plate (9321 - 9328)

33.932X- CS 2x. 2x -V003 Cold Plate (9321 - 9328)

Controller type

Design:E = Enclosure IP20IB = Module

Hardware version and index

Software version and index

Variant

Explanation

Corresponds to the German edition of 22/06/1998Edition of: 25/09/1998

Page 3: ba93sugb.pdf

U V WU V W

PE

Mains connectionand DC connection

Detachable operating modulealternativelyField buses

Interbus-S

System bus (CAN)

Control terminals

Digital frequency input

Encoder input

Resolver input

Digital frequency output

Motor connection

RDY IMP Imax Mmax Fail1

27

62

34

763

A4

ST2

59S

T1A

3A

2A

1

E3

E5

39E

4E

2E

128

GN

DLO

HI

MCTRL - N - ACT

X4

X5

X6

X8

X9

PE

L1 L2 L3 -UG

X10

T1 T2

1

5

5

1

5

1

1

5

Screen connection

1250 rpm

X7

Screen plate motor cables

Screen plate control connections

Screen plate mains connection

+UG

PTC connection

X3

X1

K35.0002

Page 4: ba93sugb.pdf

Contents

i9300BA0998

1 Preface and general information 1-1. . . . . . . . . . . . . . . . . . . . . . . . . .1.1 How to use these Operating Instructions ... 1-1. . . . . . . . . . . . . . . . . . . . . . .

1.1.1 Terminology used 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1.2 What is new? 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Scope of supply 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Legal regulations 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Safety information 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 General safety information 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Layout of the safety information 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Residual hazards 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Technical data 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 Features 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 General data/Operating conditions 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Ratings 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.1 Types 9321 to 9325 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.2 Types 9321 to 9324 with 200% overcurrent 3-4. . . . . . . . . . . . . .3.3.3 Types 9326 to 9332 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.4 Fuses and cable cross-sections 3-6. . . . . . . . . . . . . . . . . . . . . . . .3.3.5 Mains filters 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4 Dimensions 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 5: ba93sugb.pdf

Contents

ii 9300BA0998

4 Installation 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1 Mechanical installation 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1.1 Important notes 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1.2 Standard assembly with fixing rails or fixing brackets 4-2. . . . . . .4.1.3 Assembly with thermally separated power stage (”punching”) 4-34.1.4 Assembly of variants 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Electrical installation 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.1 Protection of persons 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.2 Protection of the controller 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.3 Motor protection 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.4 Mains types/Mains conditions 4-11. . . . . . . . . . . . . . . . . . . . . . . . . .4.2.5 Interactions with compensation equipment 4-11. . . . . . . . . . . . . .4.2.6 Specification of the cables used 4-11. . . . . . . . . . . . . . . . . . . . . . . .4.2.7 Power connections 4-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.7.1 Mains connection 4-12. . . . . . . . . . . . . . . . . . . . . . . . .4.2.7.2 Motor connection 4-14. . . . . . . . . . . . . . . . . . . . . . . . .4.2.7.3 Connection of a brake unit 4-16. . . . . . . . . . . . . . . . . .4.2.7.4 DC bus connection of several drives 4-17. . . . . . . . .

4.2.8 Control connections 4-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.8.1 Control cables 4-19. . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.8.2 Assignment of the control terminals 4-19. . . . . . . . . .4.2.8.3 Connecting diagrams 4-21. . . . . . . . . . . . . . . . . . . . . .

4.2.9 Motor temperature monitoring 4-27. . . . . . . . . . . . . . . . . . . . . . . . .4.2.9.1 User-specific characteristic for a PTC thermistor 4-29

4.2.10 Feedback systems 4-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Installation of a CE-typical drive system 4-33. . . . . . . . . . . . . . . . . . . . . . . . . .

5 Commissioning 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1 Initial switch-on 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 Switch-on sequence 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Input of the motor data 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Controller enable 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 Input of the direction of rotation 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Quick stop 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Change of the internal control structure 5-9. . . . . . . . . . . . . . . . . . . . . . . . . .

5.7 Changing of the terminal assignment 5-10. . . . . . . . . . . . . . . . . . . . . . . . . . . .5.7.1 Freely assignable digital inputs 5-10. . . . . . . . . . . . . . . . . . . . . . . . .5.7.2 Freely assignable digital outputs 5-12. . . . . . . . . . . . . . . . . . . . . . . .5.7.3 Freely assignable analog inputs 5-13. . . . . . . . . . . . . . . . . . . . . . . .5.7.4 Freely assignable monitor outputs 5-13. . . . . . . . . . . . . . . . . . . . . .

6 During operation 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1 Status indications of the operating module 6-1. . . . . . . . . . . . . . . . . . . . . . . .

6.2 Information on operation 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.2.1 Switching on the motor side 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . .6.2.2 Controller protection by current derating 6-2. . . . . . . . . . . . . . . . .

Page 6: ba93sugb.pdf

Contents

iii9300BA0998

7 Parameterization 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.1 Ways of parameterization 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.1 Structure of the parameter set 7-2. . . . . . . . . . . . . . . . . . . . . . . . .7.1.2 List of the selection menus 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2 Parameterization using the operating module 7-7. . . . . . . . . . . . . . . . . . . . .7.2.1 The operating module 7-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.2.2 Change parameters 7-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.2.3 Save parameter set 7-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.2.4 Load parameter set 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.2.5 Parameter set transfer 7-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.2.6 Password protection 7-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3 Display functions 7-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Configuration 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.1 Predefined configurations 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.1.1 Working with predefined configurations 8-1. . . . . . . . . . . . . . . . . .

8.2 Operating modes 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.2.1 Parameterization 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.2.2 Control 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.3 Working with function blocks 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.1 Signal types 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.2 Elements of a function block 8-5. . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.3 Connect function blocks 8-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.4 Entries into the processing table 8-11. . . . . . . . . . . . . . . . . . . . . . . .

8.4 Description of function blocks 8-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.5 Monitoring 8-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.5.1 Reactions 8-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.5.2 Monitoring functions 8-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.5.3 Fault display via digital output 8-22. . . . . . . . . . . . . . . . . . . . . . . . . .

9 Troubleshooting and fault elimination 9-1. . . . . . . . . . . . . . . . . . . . .9.1 Troubleshooting 9-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.2 Fault analysis with the history buffer 9-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .9.2.1 Structure of the history buffer 9-2. . . . . . . . . . . . . . . . . . . . . . . . . .9.2.2 Working with the history buffer 9-3. . . . . . . . . . . . . . . . . . . . . . . . .

9.3 Fault indications 9-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.4 Rest of fault indications 9-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Maintenance 10-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 7: ba93sugb.pdf

Contents

iv 9300BA0998

11 Appendix 11-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.1 Accessories 11-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2 Application examples 11-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.2.1 Speed control 11-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.2.2 Torque control with speed limitation 11-5. . . . . . . . . . . . . . . . . . . . .11.2.3 Digital frequency - master 11-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.2.4 Digital frequency bus - slave 11-10. . . . . . . . . . . . . . . . . . . . . . . . . . .11.2.5 Digital frequency cascade - slave 11-12. . . . . . . . . . . . . . . . . . . . . . .

11.3 Code table 11-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.4 Selection lists 11-60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.5 Glossary 11-65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Index 11-66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 8: ba93sugb.pdf

Preface and general information

1-19300BA0998

1 Preface and general information

1.1 How to use these Operating Instructions ...

- The present Operating Instructions will assist you in connecting andcommissioning the 93XX servo inverter. They contain safety informationwhich must be observed.

- All persons working on and with the controller must have the OperatingInstructions available and must observe the information and notes relevantfor their work.

- The Operating Instructions must always be in a complete and perfectlyreadable state.

1.1.1 Terminology used

Term In the following text used for93XX Any type of servo inverter (types 9321 ... 9332)Controller 93XX servo inverterDrive system Drive systems with 93XX servo inverters and other Lenze drive components

1.1.2 What is new?

Material no. Edition Important Contents403496 25/09/1998 supersedes

395638- Chapter 1 - 4 revised- Acceleration drive mode- Oscilloscope function

1.2 Scope of supply

Scope of supply Important- 1 servo inverter type 93XX- 1 book of operating instructions- 1 accessory kit (bits and pieces for

mechanical and electrical installation)

After reception of the delivery, check immediately whether the scopeof supply matches with the accompanying papers. Lenze does notaccept any liability for deficiencies claimed subsequently.Claim- visible transport damage immediately to the forwarder.- visible deficiencies/incompleteness immediately to your Lenze

representative.

Page 9: ba93sugb.pdf

Preface and general information

1-2 9300BA0998

1.3 Legal regulations

Identification Nameplate CE-identification ManufacturerLenze controllers are unambiguouslydesignated by the contents of thenameplate.

Conforms to the EC Low VoltageDirective

Lenze GmbH & Co KGPostfach 101352D-31763 Hameln

Applicationas directed

93XX servo inverter- Operate the controller only under the conditions prescribed in these operating instructions.- are components

- for open- and closed-loop control of variable speed drives with standard AC asynchronous motors orasynchronous servo motors.

- for installation in a machine- used for assembly together with other components to form a machine.

- are electric units for the installation into control cabinets or similar enclosed operating housing.- comply with the requirements of the Low-Voltage Directive.- are not machines for the purpose of the Machinery Directive.- are not to be used as domestic appliances, but only for industrial purposes.Drive systems with 93XX servo inverters- comply with the EMC Directive if they are installed according to the guidelines of CE-typical drive systems.- can be used

- for operation at public and non-public mains- for operation in industrial premises and residential areas.

- The user is responsible for the compliance of his application with the EC directives.Any other use shall be deemed as inappropriate!

Liability - The information, data, and notes in these instructions met the state of the art at the time of printing. Claims onmodificationss referring to controllers which have already been supplied cannot be derived from the information,illustrations, and descriptions.

- The specifications, processes, and circuitry described in these instructions are for guidance only and must beadapted to your own specific application. Lenze does not take responsibility for the suitability of the process andcircuit proposals.

- The specifications in these instructions describe the product features without guaranteeing them.- Lenze does not accept any liability for damage and operating interference caused by:

- Disregarding the operating instructions- unauthorized modifications to the controller- operating errors- improper working on and with the controller

Warranty - Warranty conditions: see Sales and Delivery Conditions of Lenze GmbH & Co KG.- Warranty claims must be made to Lenze immediately after detecting the deficiency or fault.- The warranty is void in all cases where liability claims cannot be made.

Wastedi l

Material recycle disposedisposal Metal - -

Plastic - -Assembled PCBs - -

Page 10: ba93sugb.pdf

Safety information

2-19300BA0998

2 Safety information

2.1 General safety information

Safety and application notes for controllers

(according to: Low-Voltage Directive 73/23/EEC)

General The product-specific safety and applicationnotes in these Operating Instructions must also beobserved!During operation, drive controllers may have, according to theirtype of protection, live, bare, in some cases also movable orrotating parts as well as hot surfaces.Non-authorized removal of the required cover, inappropriate use,incorrect installation or operation, creates the risk of severe injuryto persons or damage to material assets.Further information can be obtained from the documentation.All operations concerning transport, installation, andcommissioning as well as maintenance must be carried out byqualified, skilled personnel (IEC 364 and CENELEC HD 384 orDIN VDE 0100 and IEC report 664 or DIN VDE 0110 and nationalregulations for the prevention of accidents must be observed).According to this basic safety information qualified skilledpersonnel are persons who are familiar with the erection,assembly, commissioning, and operation of the product and whohave the qualifications necessary for their occupation.2. Application as directedDrive controllers are components which are designed forinstallation in electrical systems or machinery.When installing in machines, commissioning of the drivecontrollers (i.e. the starting of operation as directed) is prohibiteduntil it is proven that the machine corresponds to the regulationsof the EC Directive 89/392/EEC (Machinery Directive); EN 60204must be observed.Commissioning (i.e. starting of operation as directed) is onlyallowed when there is compliance with the EMC Directive(89/336/EEC).The drive controllers meet the requirements of the Low VoltageDirective 73/23/EEC. The standards of the EN 50178/ DIN VDE0160, EN 60439-1/DIN VDE 0660 part 500 and EN60146/DINVDE 0558 are applicable to drive controllers.The technical data and information on the connection conditionsmust be obtained from the nameplate and the documentation andmust be observed in all cases.3. Transport, storageNotes on transport, storage and appropriate handling must beobserved.Climatic conditions must be observed according to prEN 50178.

4. ErectionThe devices must be erected and cooled according to theregulations of the corresponding documentation.The drive controllers must be protected from inappropriate loads.Particularly during transport and handling, components must notbe bent and/or isolating distances must not be changed. Touchingof electronic components and contacts must be avoided.Drive controllers contain electrostatically sensitive componentswhich can easily be damaged by inappropriate handling. Electricalcomponents must not be damaged or destroyed mechanically(health risks are possible!).5. Electrical connectionWhen working on live drive controllers, the valid nationalregulations for the prevention of accidents (e.g. VBG 4) must beobserved.The electrical installation must be carried out according to theappropriate regulations (e.g. cable cross-sections, fuses, PEconnection). More detailed information is included in thedocumentation.Notes concerning the installation in compliance with EMC - suchas screening, grounding, arrangement of filters and laying ofcables - are included in the documentation of the drivecontrollers. These notes must also be observed in all cases fordrive controllers with the CE mark. The compliance with therequired limit values demanded by the EMC legislation is theresponsibility of the manufacturer of the system or machine.6. OperationSystems where drive controllers are installed must be equipped,if necessary, with additional monitoring and protective devicesaccording to the valid safety regulations, e.g. law on technicaltools, regulations for the prevention of accidents, etc.Modifications of the drive controllers by the operating softwareare allowed.After disconnecting the drive controllers from the supply voltage,live parts of the controller and power connections must not betouched immediately, because of possibly charged capacitors. Forthis, observe the corresponding labels on the drive controllers.During operation, all covers and doors must be closed.7. Maintenance and servicingThe manufacturer’s documentation must be observed.This safety information must be kept!

The product-specific safety and application notes in these Operating Instructions must also be observed!

Page 11: ba93sugb.pdf

Safety information

2-2 9300BA0998

2.2 Layout of the safety information

- All safety information has a uniform layout:

- The icon characterizes the type of danger.

- The signal word characterizes the severity of danger.- The note text describes the danger and gives information how to prevent

dangerous situations.

Signal wordNote

Icons used Signal wordsWarning ofdamage topersons

Warning ofhazardouselectrical voltage

Danger! Warns of impeding dangeU .Consequences if disregarded:Death or severe injuries

Warning of ageneral danger

Warning! Warns of potential, very hazardous situation.Possible consequences if disregarded:Death or severe injuries

Caution! Warns of a potential, hazardous situation.Possible consequences if disregarded:Light or minor injuries.

Warning ofdamage tomaterial

Stop! Warns of a potential damage to material.Possible consequences if disregarded:Damage of the controller/drive system or its environment .

Other notes Tip! This note designates general, useful notes.If you observe it, handling of the controller/drive system ismade easier.

2.3 Residual hazards

Protection of persons After mains voltage disconnection the power terminals U, V, W and + UG, -UG carry hazardous voltages atleast 3 minutes after mains disconnection.- Before working on the controller, check that no voltage is applied to the power terminals.

Controller protection Cyclic connection and disconnection of the controller supply voltage at L1, L2, L3 or + UG, + UG mayoverload the internal input current load:- Allow at least 3 minutes between disconnection and reconnection.

Overspeeds Drive systems can reach dangerous overspeeds (e.g. setting high field frequencies for motors andmachines which are not suitable):- The controllers do not offer any protection against these operating conditions. Use additional

components for this.

Page 12: ba93sugb.pdf

Technical Data

3-19300BA0998

3 Technical data

3.1 Features

- Single axis in narrow design- thus space-saving installation

- Power range: 370 W to 75 kW- uniform control module and thus uniform connection for the control cables

over the complete power range

- Heat sink can be separated- the cooling can be achieved outside the control cabinet

(punching or ”Cold Plate”)

- Power connections from the top (supply) or from the bottom (motor)- simple connection for multi-axis applications

- Direct connection of resolver and encoder feedback- simple connection via prefabricated cables (accessories)- connecting cables can be plugged

- Integrated phase controller for driftfree standstill

- Field-oriented control for asynchronous and synchronous motors

- Vector modulation

- Digital synchronization system via digital frequency- setpoint transmission without offset - und gain errors- Synchronization in speed and rotor position- Homing function

- Application configuration for control functions and input/output signals- comprehensive function block library- high flexibility in the adaptation of the internal control structure to the

application

- Integrated automation interface- simple extensions of the controller functions

- System bus for the connection of servo inverters and for the extension ofinput and output terminals

- Approval of standard devices UL 508, File No. 132659 (listed)

- Approval 9371 BB (BAE) UL 508, File No. 132659 (listed)

Page 13: ba93sugb.pdf

Technical Data

3-2 9300BA0998

3.2 General data/Operating conditions

Field ValuesVibration resistance Germanischer Lloyd, general conditions (in preparation)Permissible humidity Humidity class F without condensation

(medium relative humidity 85 %)

Permissible temperature ranges during transport of the controller: -25 C¤ + 70 Cduring storage of the controller: -25 C¤ + 55 Cduring operation of the controller: 0 C¤ + 40 C without derating

+ 40 C¤ + 55 C with derating

Permissible installation height h h 1000 m a.m.s.l. without derating1000 m a.m.s.l. h 4000 m a.m.s.l. with derating

Degree of pollution VDE 0110 part 2 pollution degree 2Noise emission Requirements acc. to EN 50081-2, EN 50082-1, IEC 22G-WG4 (Cv) 21

Limit value class A acc. to EN 55011 (inddustrial area) with mains filter ALimit value class B acc. to EN 55022 (residential area) with mains filter B and installation tocontrol cabinet

Noise immunity Limit values maintained using mains filter.Requirements acc. to EN 50082-2, IEC 22G-WG4 (Cv) 21 .Requirements Standard SeveritiesESD EN61000-4-2 3, i.e. 8 kV for air discharge

and 6 kV for contact dischargeRF interference(enclosure) EN61000-4-3 3, i.e. 10 V/m; 27 to 1000 MHzBurst EN61000-4-4 3/4, i.e. 2 kV/5 kHzSurge (onmains cable) IEC 1000-4-5 3, i.e. 1,2/50 ³s

1 kV phase-phase, 2 kV phase-PE

Insulation strength Overvoltage category III acc. to VDE 0110Packing acc. to DIN 4180

- 9321 to 9333: Delivery packingType of protection IP20

IP41 on the heat-sink side for thermal separation (punching)NEMA 1:Protection against contact

Approvals CE: Low Voltage DirectiveEMC Directive in preparation

UL508: Industrial Control EquipmentUL508C:Power Conversion Equipment

Page 14: ba93sugb.pdf

Technical Data

3-39300BA0998

3.3 Ratings

3.3.1 Types 9321 to 9325

Type EVS9321-ES EVS9322-ES EVS9323-ES EVS9324-ES EVS9325-ESOrder no. EVS9321-ES EVS9322-ES EVS9323-ES EVS9324-ES EVS9325-ES

Type EVS9321-CSV003

EVS9322-CSV003

EVS9323-CSV003

ESV9324-CSV003

ESV9325-CSV003

Order no. EVS9321-CSV003

EVS9322-CSV003

EVS9323-CSV003

EVS9324-CSV003

EVS9325-CSV003

Mains voltage U r [V] 320 Vá0%$ Ur $ 528 Vá0% ; 45 Hz¤ 65 Hzá0%Alternative DC supply U G [V] 460 Vá0%$ UG$ 740 Vá0%Mains current with mains filterMains current without mainsfilter

Ir [A] 1.52.1

2.53.5

3.95.5

7.0-

12.016.8

Ratings for operation at a mains: 3 AC / 400V / 50Hz/60HzMotor power (4-pole ASM) Pr [kW] 0.37 0.75 1.5 3.0 5.5( )

Pr [hp] 0.5 1.0 2.0 4.0 7.5Output power U, V, W (8kHz*) S r8 [kVA] 1.0 1.7 2.7 4.8 9.0Output power + UG, -UG

2) PDC [kW] 2.0 0.75 2.2 0.75 0Output current (8 kHz*) Ir8 [A] 1.5 2.5 3.9 7.0 13.0Output current (16 kHz*) Ir16 [A] 1.1 1.8 2.9 5.2 9.7max output current (8 kHz*)1) Imax8 [A] 2.3 3.8 5.9 10.5 19.5max output current (16 kHz*)1) Imax16 [A] 1.7 2.7 4.4 7.8 14.6max. standstill current (8 kHz*) I08 [A] 2.3 3.8 5.9 10.5 19.5max. standstill current (16 kHz*) I016 [A] 1.7 2.7 4.4 7.8 14.6

Ratings for operation at a mains: 3 AC / 480V / 50Hz/60HzMotor power (4-pole ASM) Pr [kW] 0.37 0.75 1.5 3.0 5.5( )

Pr [hp] 0.5 1.0 2.0 4.0 7.5Output power U, V, W (8kHz*) S r8 [kVA] 1.2 2.1 3.2 5.8 10.8Output power + UG, -UG

2) PDC [kW] 2.0 0.75 2.2 0.75 0Output current (8 kHz*) Ir8 [A] 1.5 2.5 3.9 7.0 13.0Output current (16 kHz*) Ir16 [A] 1.1 1.8 2.9 5.2 9.7max output current (8 kHz*)1) Imax8 [A] 2.3 3.8 5.9 10.5 19.5max output current (16 kHz*)1) Imax16 [A] 1.7 2.7 4.4 7.8 14.6max. standstill current (8 kHz*) I08 [A] 2.3 3.8 5.9 10.5 19.5max. standstill current (16 kHz*) I016 [A] 1.7 2.7 4.4 7.8 14.6Motor voltage U M [V] 0 - 3 UMains

Power loss (operation with Irx) Pv [W] 100 110 140 200 260Power derating [%/K]

[%/m]40 C < Ta < 55 C: 2%/K (no UL approval)

1000 m a.m.s.l. h$ 4000 m a.m.s.l.: 5%/1000mWeight m [kg] 3.5 3.5 5.0 5.0 7.5

1) The currents apply to a periodical load cycle with 1 minute overcurrent with the current mentioned here and 2minutes base load with 75% Irx

2) When operated under rated load the controller can supply this power in addition.* Chopping frequency of the inverter (C0018)

Page 15: ba93sugb.pdf

Technical Data

3-4 9300BA0998

3.3.2 Types 9321 to 9324 with 200% overcurrent

Type 9321 9322 9323 9324

Ratings for operation at a mains: 3 AC / 400V / 50Hz/60HzMotor power (4-pole ASM) Pr [kW] 0.37 0.75 1.5 3.0( )

Pr [hp] 0.5 1.0 2.0 4.0Output power U, V, W (8 kHz) S r8 [kVA] 1.0 1.7 2.7 4.8Output current (8 kHz) 2) Ir8 [A] 1.5 2.5 3.9 7.0Output current (16 kHz) 2) Ir16 [A] 1.1 1.8 2.9 5.2max output current (8 kHz)1) Imax8 [A] 3.0 5.0 7.8 14.0max output current (16 kHz)1) Imax16 [A] 2.2 3.6 5.8 10.4max. standstill current (8 kHz) I08 [A] 3.0 5.0 7.8 14.0max. standstill current (16 kHz) I016 [A] 2.2 3.6 5.8 10.4

Ratings for operation at a mains: 3 AC / 480V / 50Hz/60HzMotor power (4-pole ASM) Pr [kW] 0.37 0.75 1.5 3.0( )

Pr [hp] 0.5 1.0 2.0 4.0Output power U, V, W (8 kHz) S r8 [kVA] 1.2 2.1 3.2 5.8Output current (8 kHz) 2) Ir8 [A] 1.5 2.5 3.9 7.0Output current (16 kHz) 2) Ir16 [A] 1.1 1.8 2.9 5.2max output current (8 kHz)1) Imax8 [A] 3.0 5.0 7.8 14.0max output current (16 kHz)1) Imax16 [A] 2.2 3.6 5.8 10.4max. standstill current (8 kHz) I08 [A] 3.0 5.0 7.8 14.0max. standstill current (16 kHz) I016 [A] 2.2 3.6 5.8 10.4

1) The currents apply to a periodical load cycle with 10 second overcurrent with the current mentioned here and 50seconds base load mit 44 % Irx

Majority inindivid. cases

Setting incode C0022

thermalcontinuous

current

Maximum currentphase

Recovery phase

Continuous power Imax% 150 % IrX 100 % IrX 150 % IrX for 60 s 75 % IrX for 120 s

Peak power Imax > 150 % IrX 70 % IrX 200 % IrX for 10 s 44 % IrX for 50 s

2) This output current INx applies for a maximum current to be set under C022 which has not exceeded 150% ofthe rated controller current (nameplate)

If the maximum current is higher than this value, the continuous current reduces automatically to 70% of theoriginal value

For overcurrent diagram see chapter 8.5.2

For all other data see chapter 3.3.1

Tip!You can change to Imax> 150 % IrX only when the controller is inhibited.

Page 16: ba93sugb.pdf

Technical Data

3-59300BA0998

3.3.3 Types 9326 to 9332

Type EVS9326-ES

EVS9327-ES

EVS9328-ES

EVS9329-ES

EVS9330-ES

EVS9331-ES

EVS9332-ES

Order no. EVS9326-ES

EVS9327-ES

EVS9328-ES

EVS9329-ES

EVS9330-ES

EVS9331-ES

EVS9332-ES

Type EVS9326-CSV003

EVS9227-CSV003

EVS9328-CSV003

Order no. EVS9326-CSV003

EVS9327-CSV003

EVS9328-CSV003

Mains voltage U r [V] 320 Vá0%$ Ur $ 528 Vá0% ; 45 Hz¤ 65 Hzá0%Alternative DC supply U G [V] 460 Vá0%$ UG$ 740 Vá0%Mains current with mains filterMains current without mainsfilter

Ir [A] 20.5-

27.043.5

44.0-

53.0-

78.0-

100.0-

135.0-

Ratings for operation at a mains: 3 AC / 400V / 50Hz/60HzMotor power (4-pole ASM) Pr [kW] 11.0 15.0 22.0 30.0 45.0 55.0 75.0( )

Pr [hp] 15.0 20.5 30.0 40.0 60.0 73.5 100.0Output power UVW (8 kHz*) S r8 [kVA] 16.3 22.2 32.6 40.9 61.6 76.2 100.5Output power + UG, -UG

2) PDC [kW] 0 10.0 4.0 0 5.0 0 0Output current (8 kHz*)1) Ir8 [A] 23.5 32.0 47.0 59.0 89.0 110.0 145.0Output current (16 kHz*)1) Ir16 [A] 15.3 20.8 30.6 38.0 58.0 70.0 90.0max output current (8 kHz*) Imax8 [A] 35.3 48.0 70.5 88.5 133.5 165.0 217.5max output current (16 kHz*) Imax16 [A] 23.0 31.2 45.9 57.0 87.0 105.0 135.0max standstill current (8 kHz*) I08 [A] 23.5 32.0 47.0 52.0 80.0 110.0 126.0max standstill current (16 kHz*) I016 [A] 15,3 20.8 30.6 33.0 45.0 70.0 72.0

Ratings for operation at a mains: 3 AC / 480V / 50Hz/60HzMotor power (4-pole ASM) Pr [kW] 11.0 18.5 30.0 37.0 45.0 55.0 90.0( )

Pr [hp] 15.0 25.0 40.0 49.5 60.0 73.5 120.0Output power UVW (8 kHz*) S r8 [kVA] 18.5 25.0 37.0 46.6 69.8 87.3 104.0Output power + UG, -UG

2) PDC [kW] 0 12.0 4.8 0 6.0 0 6.0Output current (8 kHz*) Ir8 [A] 22.3 30.4 44.7 56.0 84.0 105.0 125.0Output current (16 kHz*) Ir16 [A] 14.5 19.2 28.2 35.0 55.0 65.0 80.0max output current (8 kHz*)1) Imax8 [A] 33.5 45.6 67.1 84.0 126.0 157.5 187.5max output current (16 kHz*)1) Imax16 [A] 21.8 28.8 42.3 52.5 82.5 97.5 120.0max. standstill current (8 kHz*) I08 [A] 22.3 30.4 44.7 49.0 72.0 105.0 111.0max Stillstandsstrom (16 kHz*) I016 [A] 14.5 19.2 28.2 25.0 36.0 58.0 58.0Motor voltage U M [V] 0 - 3 UMains

Power loss Pv [W] 360 430 640 810 1100 1470 1960Power derating [%/K]

[%/m]at 40 C < Ta < 55 C: 2,5%/K (no UL approval)

1000 m a.m.s.l. h$ 4000 m a.m.s.l.: 5%/1000mWeight m [kg] 7.5 12.5 12.5 12.5 36.5 59.0 59.0

1) The currents apply to a periodical load cycle with 1 minute overcurrent with the current mentioned here and 2minutes base load with 75% Irx .

2) When operated under rated load the controller can supply this power in addition.* Chopping frequency of the inverter (C0018)

Page 17: ba93sugb.pdf

Technical Data

3-6 9300BA0998

3.3.4 Fuses and cable cross-sections

Type Mains input L1, L2, L3, PE/motor connection U, V, W Input + UG, -UGyp

Operation without mains filter Operation with mains filter

Fuse E.l.c.b. Cablecross-section2)

Fuse E.l.c.b. Cablecross-section2)

Fuse Cablecross-section2)

VDE UL VDE mm2 AWG VDE UL VDE mm2 AWG mm2 AWG9321 M 6A 5A B 6A 1 17 M 6A 5A B 6A 1 17 6.3A 1 179322 M 6A 5A B 6A 1 17 M 6A 5A B 6A 1 17 6.3A 1 179323 M 10A 10A B 10A 1.5 15 M 10A 10A B 10A 1.5 15 8A 1.5 159324 - - - - - M 10A 10A B 10A 1.5 15 12A 1.5 159325 M 32A 25A B 32A 6 9 M 20A 20A B 20A 4 11 20A 4 119326 - - - - - M 32A 25A B 32A 6 9 40A 6 99327 M 63A 63A - 16 6 35A 35A - 10 7 50A 10 79328 - - - - - 50A 50A - 16 5 80A 16 59329 - - - - - 80A 80A - 25 3 100A 25 39330 - - - - - 100A 100A - 50 0 2 * 80A 1) 2 *

162 * 5

9331 - - - - - 125A 125 A - 70 2/0 2 * 100A1)

2 *25

2 * 3

9332 - - - - - 160A 175 A - 95 3/0 3 * 80A 1) 3 *16

3 * 5

1) The DC bus fuses are connected in parallel2) The valid local regulations have to be considered

For the operation of the controllers in a UL-approved plant:

- Use only UL-approved fuses and fuse holders:- 500 V to 600 V in the mains input (AC)- 700 V in the DC bus circuit- Activation characteristic ”H” or ”K5”

- Use only UL-approved cables

Tip!UL approved fuses and fuse holders can be obtained from e.g. Bussmann orFerraz.

Connection of the motor cables

- For functional reasons, the motor cables need not to be protected by fuses.

- Refer to the data listed in the table ”Operation with mains filter”.

Page 18: ba93sugb.pdf

Technical Data

3-79300BA0998

3.3.5 Mains filters

Type Ratings (uk £ 6%) Lenze order numberyp

Mains current Inductance for RFI degree A for RFI degree B9321 1.5 A 24 mH EZN3A2400H002 EZN3B2400H0029322 2.5 A 15 mH EZN3A1500H003 EZN3B1500H0039323 4 A 9 mH EZN3A0900H004 EZN3B0900H0049324 7 A 5 mH EZN3A0500H007 EZN3B0500H0079325 13 A 3 mH EZN3A0300H013 EZN3B0300H0139326 24 A 1.5 mH EZN3A0150H024 EZN3B0150H0249327 30 A 1.1 mH EZN3A0110H030 EZN3B0110H0309328 42 A 0.8 mH EZN3A0080H042 EZN3B0080H0429329 54 A 0.6 mH EZN3A0060H054 EZN3B0060H0549330 80 A 0.42 mH EZN3A0042H080 EZN3B0042H0809331 100 A 0.34 mH EZN3A0034H100 EZN3B0034H1009332 135 A 0.25 mH EZN3A0025H135 EZN3B0025H135

The mains filters for RFIdegree B contain additionalRFIsuppression components.

3.4 Dimensions

Thedimensionsof thecontrollerdepend onthemechanicalinstallation(seechapter4.1)

Page 19: ba93sugb.pdf

Technical Data

3-8 9300BA0998

Page 20: ba93sugb.pdf

Installation

4-19300BA0998

4 Installation

4.1 Mechanical installation

4.1.1 Important notes

- Use the controllers only as built-in devices!

- If the cooling air contains pollutants (dust, fluff, grease, aggressive gases):

- take suitable preventive measures , e.g. separate air duct, installation offilters, regular cleaning, etc.

- Observe free space!

- You can install several controllers next to each other without free space in acontrol cabinet.

- Ensure unimpeded ventilation of cooling air and outlet of exhaust air!

- Allow a free space of 100 mm at the top and at the bottom.

- Do not exceed the permissible ambient temperature during operation (seechapter 3.2)

- With continuous oscillations or vibrations:

- Check whether shock absorbers are necessary.

Possible mounting positions

- Vertically on the control cabinet back panel with mains connections at thetop:- with enclosed fixing rails or fixing brackets (see chapter 4.1.2)- thermally separated with external heat sink

Punching see chapter 4.1.3”Cold Plate” see chapter 4.1.4

Page 21: ba93sugb.pdf

Installation

4-2 9300BA0998

4.1.2 Standard assembly with fixing rails or fixing brackets

A B C

;

FIG 4-1 Dimensions for assembly with fixing rails/fixing brackets

Type Fig. a b b1 c c1 d d1 e* e1 g k m9321, 9322 A 78 384 350 39 - 365 - 250 230 6,5 30 -9323, 9324 A 97 384 350 48,5 - 365 - 250 230 6,5 30 -9325, 9326 B 135 384 350 21,5 92 365 - 250 230 6,5 30 -9327, 9328,9329

C 250 402 350 22 206 370 24 250 230 6,5 24 11

9330 C 340 672 591 28,5 283 624 38 285 265 11 28 189331,9332 C 450 748,5 680 30,5 389 702 38 285 265 11 28 18

* When using a plug-on fieldbus module:Observe the free space required for the connection cables

All dimensions in mm

Controllers 9321 to 9326

- Assembly preparation:- Take out fixing rail(s) (accessory kit in the box) and mount on the controller

housing

Controllers 9327 to 9332

- Remove cover:- Loosen screws (X)- Swing cover to the top and detach.- Take accessory kit out of the interior of the controller

- Assembly preparation:- Take out fixing bracket and screws (accessory kit) and mount on the

controller housing

Page 22: ba93sugb.pdf

Installation

4-39300BA0998

4.1.3 Assembly with thermally separated power stage(”punching”)

You can mount the heat sink of the controllers 9321 to 9326 outside the controlcabinet to reduce the heat in the control cabinet.For this, you need an assemblyframe with seal (can be ordered from Lenze).

- Distribution of the power loss:- approx. 65% via the separated heatsink (heatsink + blower)- approx. 35% inside the controller

- The enclosure of the separated heatsink (heatsink + blower) is IP41.

- The rated data of the controller is still valid.

Preparation for assembly:

1. Lay the halves of the assembly frame into the slot provided on thecontroller.

2. Push the frame halves together until the ends catch.

3. Slip the seal over the heat sink and lay into the slot provided.

Page 23: ba93sugb.pdf

Installation

4-4 9300BA0998

c

bd

e

g

Lenze

ca

1

d1

d1

f

b1

FIG 4-2 Dimensions for assembly with thermally separated power stage

Type a b b1 c c1 d d1 e* f g9321, 9322 112.5 385.5 350 60 95.5 365.5 105.5 250 92 6.59323, 9324 131.5 385.5 350 79 114.5 365.5 105.5 250 92 6.59325, 9226 135 385.5 350 117 137.5 365.5 105.5 250 92 6.5

* When using a plug-on fieldbus module:Observe the free space required for the connection cables

Assembly cut-out

Type 9321, 9322 9323, 9324 9325, 9326Height 350 (á3)Width 82 (á3) 101 (á3) 139 (á3)

All dimensions in mm

Page 24: ba93sugb.pdf

Installation

4-59300BA0998

4.1.4 Assembly of variants

Variant EVS932XCSV003 (”Cold Plate”)

For installation in the control cabinet with other heat sinks as ”Cold PlateTechnique”.

a

bd

g

Lenze

b1

ce

c

a

bd

g

Lenze

b1

c2

a

bd

g

Lenze

b1

c

FIG 4-3 Dimensions 9321 ... 9326 when assembled as Cold Plate

Type a b b1 c c1 d e* g9321V0039322V003

78 381 350 48 - 367 168 6,5

9323V0039324V003

97 381 350 67 - 367 168 6.5

9325V0039326V003

135 381 350 105 38 367 168 6,5

* When using a plug-on fieldbus module:Observe the free space required for the connection cables

All dimensios in mm

Page 25: ba93sugb.pdf

Installation

4-6 9300BA0998

a

a1

g

c

c1

e

b1 d b

L*)

FIG 4-4 Dimensions 9327 and 9328 when assembled as Cold Plate

Type a a1 b b1 c c1 d e* g9327V0039328V003

234 250 381 350 110 220 367 171 6.5

* When using a plug-on fieldbus module:Observe the free space required for the connection cables

All dimensios in mm

Page 26: ba93sugb.pdf

Installation

4-79300BA0998

- Observe the following points to comply with the technical data:- Ensure sufficient ventilation of the heat sink.- The free space behind the control cabinet back panel must be at least 500

mm.

- If you install several controllers in the control cabinet:- Do not install the controllers on top of each other.

- The cooling path must not exceed the thermal resistances in the table:

Controller Cooling path

Type Power to be dissipated Pv [W] R thmaxheat sink [K/W]9321V003 80 0.509322V003 80 0.509323V003 100 0.409324V003 155 0.259325V003 210 0.199326V003 360 0.109327V003 410 0.099328V003 610 0.06

- The temperature of the cold plate must not exceed +85 C.

- Penetration depth t of the screws into the base plate of the controller:

PP$ W$ PP

- For the bore pattern and surface quality of the heat sink please consult thefactory.

- Apply heat conductive compound to the cold plate of the controller.

Page 27: ba93sugb.pdf

Installation

4-8 9300BA0998

4.2 Electrical installation

For information on the installation according to EMC see chapter 4.3.

4.2.1 Protection of persons

Danger!All power terminals carry voltage up to 3 minutes after mains disconnection.

Symbol on the RCCB Meaning

AC sensitive RCCB, type AC

pulsating-current sensitive RCCB, type A

universal-current sensitive RCCB, type B

Protection of persons andanimals

DIN VDE 0100 with residual-current-operated circuit brakes (RCCB):- The controllers have an internal mains rectifier. In case of a short-circuit to frame, a DC fault

current can prevent the activation of the AC-sensitive or pulse-current sensitive RCCB and thusprevent the protective function for all electrical equipment operated on this RCCB. We thereforerecommend:- ”pulse-current sensitive RCCB” in systems with 820X controllers (L1/N).- ”universal current RCCB” in systems with 821X/822X/824X controllers (L1/L2/L3).

Rated fault current Observe the rated fault current for the selection of the RCCB.The RCCB may cause false tripping because of- capacitive leakage currents between cable screens (especially with long screened motor cables),- the mains connection of several controllers at the same time,- use of RFI filters.

Installation You can install RCCBs only between the supplying mains and the controller.

Note for the use ofuniversal-current sensitiveRCCBs

- Universal-current sensitive RCCBs have been defined in the European standard EN 50178 (as ofOctober 1997) for the first time. The EN 50178 was harmonized and has been effective sinceOctober 1997. It supersedes the national standard VDE 0160. Universal-current sensitive RCCBsare also described in the IEC 755.

- RCCBs with a rated fault current of- 30 mA are suitable only in systems with 820X controllers.- 300 mA are suitable only in systems with controllers 821X/822X/824X.

Mains isolation / Protectionagainst contact

The control inputs and outputs of all controllers are mains isolated. Please observe the descriptionof the protection against contact on the following page.

Replace defective fuses Replace defective fuses with the prescribed type only when no voltage is applied.- For single drives, the controller carries a hazardous voltage up to three minutes after mains

disconnection.- In a drive network, all controllers must be inhibited and disconnected from the mains.

Disconnect controller fromthe mains

Make a safety connection between the controller and mains only via a contactor at the input side!- Please note that in a drive network all controllers must be inhibited.

Page 28: ba93sugb.pdf

Installation

4-99300BA0998

Insulation

The controllers have an insulation (isolating distance)between the power terminalsand the control terminals as well as to the housing:

- Terminals X1 and X5 have a double basic insulation (double isolatingdistance, safe insulation according to VDE0160, EN50178). The protectionagainst contact is ensured without any further measures.

Danger!- Terminals X3, X4, X6, X7, X8, X9, X10 have a simple basic insulation (simple

isolating distance).

- Protection against contact in case of fault is ensured only by additionalmeasures.

- If an external voltage supply (24V DC) is used, the insulation level of thecontroller depends on the insulation level of the voltage source.

reinforced insulation

simple basic insulation

FIG 4-5 Basic insulation on the controller

Page 29: ba93sugb.pdf

Installation

4-10 9300BA0998

4.2.2 Protection of the controller

Stop!

The controllers contain electrostatically sensitive components.

- Prior to assembly and service operations, the personnel must be free ofelectrostatic charge:

- Discharging is possible by touching the PE fixing screw or anothergrounded metal part in the control cabinet.

- Length of the screws for the connection of the screen cable/screen plate forthe types 9327 to 9332:< 12 mm

- The controller is protected external fuses (see chapter 3.3.4)

- Cover unused control inputs and outputs with plugs or with protectivecovers (included in the scope of supply) for the Sub-D inputs.

- Frequent mains switching only overload the internal switch-on currentlimitation.For cyclic mains switching, the controller can be switched on everythree minutes as a maximum.

- Operate the controller types 9324, 9326 and 9328 only with a suitable mainsmains filter (see chapter 3.3.5).

- In case of condensation, connect the controller to the mains voltage onlyafter the visible humidity has evaporated.

4.2.3 Motor protection

- Complete motor protection according to VDE:

- By overcurrent relays or temperature monitoring

- Required for group drives(motors connected in parallel to a controller)

- We recommend to use a PTC or thermostat with PTC characteristic(Thermostats are standard in Lenze AC motors) for temperature monitoringof the motor.

- When using motors with insulation which is not suitable for inverteroperation:

- Please contact your motor supplier.Lenze AC motors are designed for inverter operation.

- With the corresponding parameter setting, the controllers generate fieldfrequencies up to 600 Hz:

- When operating inappropriate motors, dangerous overspeeds may occurand result in the destruction of the motor.

Page 30: ba93sugb.pdf

Installation

4-119300BA0998

4.2.4 Mains types/Mains conditions

Please observe the restrictions of each mains type!

Mains Operation of the controllers NotesWith grounded neutral(TT/TN mains)

No restrictions Observe controller ratings- observe the load of the shared

N-conductor.- r m s mains current see chapter 3 3- r.m.s. mains current see chapter 3.3

- possibly enlarge the cross-section of theN-conductor

With isolated neutral (ITmains)

Possible if the controller is protected inthe event of an earth fault in thesupplying mains- by suitable equipment detecting the

earth fault and- the controller is directly disconnected

from the mains

A safe operation is not ensured at theinverter output in the event of an earth fault

With grounded phase The operation is possible only with onevariant

Contact Lenze

DC supply via + UG/-UG The DC voltage must be symmetrical toPE

Controller will be distroyed when grounding+ UGconductor or -UG conductor

4.2.5 Interactions with compensation equipment

- Cotnrollers only consume a very small fundamental reactive power from theAC mains. A compensation is therefore not necessary.

- If you operate controllers on mains with compensation equipment you haveto use chokes for this equipment.- Please consult the supplier of compensation equipment.

4.2.6 Specification of the cables used

- The cables used must comply with the required approvals of the application(eg. UL).

- The prescribed minimum cross-sections of PE conductors must bemaintained in all cases. The cross-section of the PE conductor must be atleast as large as the cross-section of the power connections.

- The screening quality of a cable is determined by- a good screen connection- a low screen resistance

Only use screens with tin-plated or nickel-plated copper braids!Screens of steel braid are not suitable.

- the contact ratio of the screen braid:at least 70 % to 80 % with cover angle 90

Page 31: ba93sugb.pdf

Installation

4-12 9300BA0998

4.2.7 Power connections

Controller Preparation for the power connection9321 ... 9326 - Remove the covers of the power connections:

- Unlatch to the front by gentle pressure.- Pull upwards (mains connection) or downwards (motor connection).

9327 ... 9332 - Remove cover:- Loosen screws (X) (see FIG 4-1).- Swing cover to the top and detach.- Take accessory kit out of the interior of the controller.

4.2.7.1 Mains connection

Types 9321 to 9326 Types 9327 to 9332

PE

L1 L2 L3 -UG+UG

¨

©

s

PE

+UG -UGL1 L2 L3

Correct screen connection with screened cables(required parts in the accessory kit):- Bolt screen plate ¨ to fixing bracket © .- Fix screen using cable lugs. Do not use as a strain

relief!- To improve the screen connection: Connect screen

additionally at the stud next to the power connections.

Correct screen connection with screened cables:- Connect the screen with suitable clamp on the

conducting control cabinet mounting plate.- To improve the screen connection: Connect screen

additionally at the stud next to the power connections.

FIG 4-6 Proposal for a mains connection

Page 32: ba93sugb.pdf

Installation

4-139300BA0998

- Connect mains cables to the screw terminals L1, L2, L3.

- Connect cables for brake unit (935X), supply module (934X) or furthercontrollers in the DC bus connection to the screw terminals +UG, -UG at thetop of the controller.

- Max. permissible cable cross-sections and screw tightening torques:

Terminals

Typemax. permissible

cable cross-sectionsL1, L2, L3, + UG, -UG PE connection

9321 - 9326 4 mm2 1) 0.5 ... 0.6 Nm (4.4 ... 5.3 lbin) 3.4 Nm (30 lbin)9327 - 9329 25 mm2 2) 4 Nm (35 lbin)9330 - 9331 95 mm2 2) 7 Nm (62 lbin)9332 120 mm2 2) 12 Nm (106.2 lbin)

1) with plug connector: 6 mm 2

with wire crimp cap: 4 mm2

2) with ring cable lug: Cross-section is limited only by the cable duct in the housing

Fuses

Fuses and cable cross-sections The specifications in Chapter 3.3.4 are recommendations and refer to theuse- in control cabinets and machines- installation in the cable duct- max. ambient temperature + 40 C.

Selection of the cablecross-section

Consider the voltage drop under load (acc. to DIN 18015 part1:$ 3 %) forthe selection.

Protection of the cables and thecontroller on the AC side (L1, L2,L3):

- By standard commercial fuses.- Fuses in UL-conform plant must have a UL approval.- The rated voltages of the fuses must be dimensioned according to the

mains voltage at the site. The activation characteristic is defined by ”H” or”K5”.

Protection of the cables and thecontroller on the DC side (+ UG,-UG):

- By means of recommended DC fuses.- The fuses/fuse holders recommended by Lenze are all UL approved.

For DC group drives or supplyby means of a DC source

Please observe the notes in part F of the systems manual.

Connection of a brake unit If the brake unit is connected to the terminals + UG/-UG, the fuses andcross-sections listed in chapter 3.3.4 are not valid. These unit-specific datacan be obtained from the technical documentation of the brake unit.

Further information For the protection of the cables and the controller, plese refer to Chapter”Accessories”.

Other standards The compliance with other standards (e.g.: VDE 0113, VDE 0289, etc.) is inthe responsibility of the user.

Page 33: ba93sugb.pdf

Installation

4-14 9300BA0998

4.2.7.2 Motor connectionWerecommend theuseofscreened motorcablesonly, becauseof theEMCsafety.

Tip!The screening of the motor cable is only required to complywith existing standards(e.g. VDE 0160, EN 50178).

Types 9321 to 9326

U V W

PE

U V W

T1 T2

Correct screen connection with screened cables(required parts in the accessory kit):- Bolt screen plate¨ to fixing bracket© .- Fix the screen of the motor cable and thermal

contact. Do not use as a strain relief!- To improve the screen connection: Connect

screens additionally at the stud PE next to themotor connections.

Types 9327 to 9329

PE

T1

T2

U V W

Correct screen connection with screened cables:- Fix the screen of the motor cable and thermal

contact. Do not use as a strain relief!- To improve the screen connection: Connect

screens additionally at the stud PE next to themotor connections.

Page 34: ba93sugb.pdf

Installation

4-159300BA0998

Types 9330 and 9331

T1

T2

PE

U V W

M5 X 12

- Carry out strain relief using cable binders¨.- Correct screen connection with screened cables:

- Apply motor cable screen to the screeningplate using clamp and screws M5x12©.

- Connect thermal contact screen at the stud PEnext to the motor connections over a largesurface.

Type 9332

T1

T2

PE

U V W

M5 X 12

M4 X 12

- Carry out strain relief using clamps and screwsM4x12ª.- An additional strain relief/fixing is possible with

cable binders.¨.- Correct screen connection with screened cables:

- Apply motor cable screen to the screeningplate using clamp and screws M5x12©.

- Connect thermal contact screen at the stud PEnext to the motor connections over a largesurface.

FIG 4-7 Proposal for the motor connection

- Observe the max. permissible length of the motor cable:

Ur = 400 V (+ 10%) Ur = 480 V (+ 10%)

Type f chop = 8 kHz f chop = 16 kHz f chop = 8 kHz f chop = 16 kHz9321/9322 up to 50 m up to 45 m up to 50 m up to 25 m9323 - 9332 up to 50 m up to 50 m up to 50 m up to 50 m

Page 35: ba93sugb.pdf

Installation

4-16 9300BA0998

- Connect motor cables to the screw terminals U, V, W.

- Observe correct pole connection.- Max. permissible cable cross-sections and screw tightening torques:

Terminals

Typemax. permissible

cable cross-sectionsU, V, W PE

connectionScreen/

Strain reliefT1, T2

9321 - 9326 4 mm2 1) 0.5 ... 0.6 Nm(4.4 ... 5.3 lbin)

3.4 Nm(30 lbin) -

0.5 ... 0.6 Nm(4.4 ... 5.3 lbin)

9327 - 9329 25 mm2 2) 4 Nm (35 lbin) -9330 - 9331 95 mm2 2) 7 Nm (62 lbin) 3.4 Nm (30 lbin) 0.5 ... 0.6 Nm

9332 120 mm2 2) 12 Nm (106.2 lbin)M4: 1.7 Nm (15 lbin)M5: 3.4 Nm (30 lbin)

0.5 ... 0.6 Nm(4.4 ... 5.3 lbin)

1) with plug connector: 6 mm 2

with wire crimp cap: 4 mm2

2) with ring cable lug: Cross-section is limited only by the cable duct in the housing

Tip!Switching on the motor side of the controller is permitted only for emergenyswitch-off.

4.2.7.3 Connection of a brake unit

- When connecting a brake unit (brake module with internal brake resistor orbrake chopper with external brake resistor) observe the correspondingOperating Instructions in all cases.

Stop!

- Design the circuit so that, if the temperature monitoring of the brake unit isactivated,

- the controllers are inhibited (X5/28 = LOW).

- the mains is disconnected.

Example see Chapter 4.3 or FIG 4-8.

Page 36: ba93sugb.pdf

Installation

4-179300BA0998

4.2.7.4 DC bus connection of several drives

Decentralized supply with brake module

K1

K1

L3

N

PE

L1L2

U V W

M3~PE

L1 L2 L3

F1

932X - 933X

PE +UG -UG

PE

RBϑ

+UG -UG

9352

PERB2RB1

Z1

X1

Z3

RB

K1

U V W

M3~PE

L1 L2 L3

932X - 933X

PE +UG -UG

PE

Z2

F7 F8 F9 F10

ON

OFF

28 A4PE28 A4

K1

RFR

PE

X2K1

RFR

F2 F3 F4 F5 F6Z4

K35.0113

FIG 4-8 Decentralized supply for DC bus connection of several drives`Z1, Z2 Mains filter (for dimensioning see systems manual, part F)Z3 Brake chopperZ4 Brake resistor (for r.m.s. current monitoring see systems manual, part F)F1...F5 Fuse (see Chapter 3.3.4 and 4.2.7.1)K1 Main contactor

Stop!- Set the DC bus voltage thresholds of controller and brake unit to the same

values.- Controller using C0173- Brake unit using switches S1 and S2

- A bimetal relais is required for the monitoring of the mains supply.

Tip!Please observe the specifications in part F of the systems manual and theapplication report “DC bus connection” for the dimensioning and rating of thecomponents.

Page 37: ba93sugb.pdf

Installation

4-18 9300BA0998

Central supply with supply module

- When connecting the supply module, the corresponding operatinginstructions must be observed.

L3

N

PE

L1L2

L1 L2 L3

F1...F3

9341 - 9343

PE +UG -UG

Z1

K1

U V W

M3~PE

L1 L2 L3

932X - 933X

PE +UG -UG

PE U V W

M3~PE

L1 L2 L3

932X - 933X

PE +UG -UG

PE

F4 F5 F6 F7 F8 F9

Z2

K35.0114

FIG 4-9 Central supply for DC bus connection of several drives

Z1 Mains filter

Z2 Supply module

F1...F5 Fuses (see Chapter 3.3.4 and 4.2.7.1)

K1 Main contactor

Tip!If the power supply of the supply module is not sufficient, a parallel supply can beinstalled viathemains input ofacontroller (seesystemsmanual, part F). In thiscase,the controller can only be operated with the assigned mains filters (at least acc. tolimit value class A).

Page 38: ba93sugb.pdf

Installation

4-199300BA0998

4.2.8 Control connections

4.2.8.1 Control cables

- Connect control cables to the screw terminals

max. permissible cable cross-section Screw-tightening torques1.5 mm2 0.5 ... 0.6 Nm (4.4 ... 5.3 lbin)

- We recommend a one-side screening of all cables for analog signalsto avoid signal distortion.

- Connect the screens of the control cables- with the collective screen plate to the front metal surface (max.

screw length 12 mm).

4.2.8.2 Assignment of the control terminals

Protection against inverse polarity

- This protection prevents the wrong connection of the internal control inputs.Itis however possible to overcome the protection against polarity reversal byapplying great force.

Overview

12

76

2

34

76

3A

4S

T5

9S

TA

3 A2A

1

E3

E5

39

E4

E2

E1

28

GN

DL

OH

I

X5

X6

X4

FIG 4-10 Layout of the control connections on the front of the controller

Page 39: ba93sugb.pdf

Installation

4-20 9300BA0998

Terminal Use(Default setting is printed in bold)

level Data

Analoginputs

1, 2 Difference input master voltage(Main speed setpoint)

642

531

-10 V to + 10 V Resolution:5 mV (11 bit + sign)

Jumper X3Difference input master current 6

42

531

-20 mA to + 20 mA Resolution:20 ³A (10 bit + sign)

Jumper X33, 4 Difference input master voltage

(Additional speed setpoint)Jumper X3 has noteffect

-10 V to + 10 V Resolution:5 mV (11 bit + sign)

Analogoutputs

62 Monitor 1(Actual speed)

-10 V to + 10 V;max. 2 mA

Resolution:20 mV (9 bit + sign)out uts

63 Monitor 2(Torque setpoint)

-10 V to + 10 V;max. 2 mA

Resolution:20 mV (9 bit + sign)

7 Internal ground, GND - -Digitali

28 Controller enable (RFR) HIGH LOW: 0 ¤ + 4 Vginputs E1 freely assignable

(remove CW rotation / QSP)HIGH HIGH: + 13 ¤ + 30 V

I t t t 24 VE2 freely assignable(remove CCW rotation / QSP)

HIGH Input current at 24 V:8 mA per input

E3 freely assignable(enable JOG-setpoint 1)

HIGHReading and writing of the inputs:once per ms (average value)

E4 freely assignable(TRIP set)

HIGHonce per ms (average value)

E5 freely assignable(reset fault - TRIP-reset)

LOW@HIGH edge

Digitaloutputs

A1 freely assignable(TRIP)

LOW LOW: 0 ¤ + 4 VHIGH: + 13 ¤ + 30 V

A2 freely assignable(nact < nx)

LOWG 3 30

Output current:50 A t tA3 freely assignable

(RDY)HIGH max. 50 mA per output

(external resistance at least 480 at 24 V)

A4 freely assignable(Mmax)

HIGHat 24 V)

Updating of the outputs:39 Ground of the digital inputs and outputs -

Updating of the outputs:once per ms

59 Supply input of the control module:24 V external (I > 1A)

-once er ms

Tip!To change the jumper, remove plug-on module, if necessary.

Page 40: ba93sugb.pdf

Installation

4-219300BA0998

4.2.8.3 Connecting diagrams

Connection of analog signals

Analog signals are connected via the 2 4-pole terminal block X6.

Depending on the use of the analog inputs, the jumper of X3 must be setaccordingly.

Connection for external voltage supply

+

1 2 3 4 7 63

100k

100k

100k

X6

GND1 GND1

+

X6

3,3nF

100k

7

U

62

U242R

X3

93XX

= =

GND1

STOP!- The maximum permitted voltage difference between an external

voltage source and theGND1 (terminal X6/7) of the controller is10V (common mode).

- The maximum permitted voltage difference between GND1(terminal X6/7) and the PE of the controller is 50V.

+

1 2 3 4

100k

GND1

+

X6

3,3nF

100k

7

242R

= =

93XX

Limit the voltage difference- by overvoltage clamping components or- by direct connection of terminal(s) X6/2, X6/4 and X6/7 to

GND1 and PE (see diagram).

Connection for internal voltage supply

1 2 3 4 7 63

100k

100k

100k

X6

GND1 GND1

X6

3,3nF

100k

7

U

62

U242R

X3

10k

10k

93XX

GND1

Configuration of the internal voltage supply:- Set a freely assignable analog output (AOUTx) to HIGH level.- For example terminal X6/63: Assign C0436 with FIXED100%

(see chapter 5.7.4 ). 10V are thus applied across terminalX6/63.

Tip!For this application, you may use one of the predefinedconfigurations in C0005.The output is assigned automatically withFIXED100% (corresponds to 10 at output X6/63) by C0005 =XX1X (e. g. 1010 for speed control via terminals).

Page 41: ba93sugb.pdf

Installation

4-22 9300BA0998

Connection of digital signals

Analog signals are connected via the 2 4-pole terminal block X5.

The levels of the digital inputs and outputs are PLC compatible.

Only use relays with low-current contacts for the switching of the signal cables(recommendation: relays with gold-plated contacts).

Connection for external voltage supply

A 32 8 A 1 A 2 5 9

_

3 9

2 2 k 1 0 R

G N D 2

+

Q S P

J O G

R D Y| n s e t | < n x

M m a x

3k

3k

3k

3k

3k

3k

3k

50mA

50mA

50mA

50mA

A 4X 5

+_=

=

2 4 V

2 4 V

9 3 X X

G N D 2

R F RR

E 1 E 2 E 3 E 4 E 5

L

P r o c e s s o rb o a r d

T R I P -S e t / R e s e t

T R I P

The external voltage source supplies the digital inputs andoutputs.- If the external supply voltage is also to be used as an alternative

supply of the control electronics (backup operation in case ofmains failure):- For this, make the connection illustrated as a broken line.- The external voltage source must be able to drive a current

> 1A.This ensures that all actual values, even after mainsdisconnection, are still detected and processed.- Connection of the external voltage source:

- supply voltage at X5/59- external ground at X5/39

STOP!The maximum permitted voltage difference between GND2(terminal X5/39) and the PE of the controller is 50V.

E5 A1 A2

_

39

+=

93XXLimit the voltage difference- by overvoltage clamping components or- by a direct PE connection of terminal 39 (see figure).

Connection for internal voltage supply

A 32 8 E 1 E 2 E 3 E 4 E 5 A 1 A 2 5 93 9

2 2 k 1 0 R

R L

G N D 2

Q S P

R D Y| n s e t | < n x

F I X E D 1

3k

3k

3k

3k

3k

3k

3k

A 4

R F R

X 5

50mA

50mA

50mA

50mA

+_2 4 V

=

J O G

9 3 X X

M m a x

G N D 2

P r o c e s s o rb o a r d

T R I P -S e t / R e s e t

Configuration of the internal voltage supply- Set a freely assignable digital output (DIGOUTx) to HIGH level.- For example terminal X5/A1: Assign C0117/1 with FIXED1 (see

Chapter 5.7.2). 24V are thus applied across terminal X5/A1.

Tip!For this application, you may use one of the predefinedconfigurations in C0005.The output is assigned automatically withFIXED1 (corresponds to 24 V at terminal X5/A1) by C0005 =XX1X (e. g. 1010 for speed control via terminals).

Page 42: ba93sugb.pdf

Installation

4-239300BA0998

Digital frequency input (X9) / Digital frequency output (X10)

Tip!For the connection to the digital frequency input (X9) or digital frequency output(X10), use prefabricated Lenze cables. Otherwise, only use cables with twistedpairs and screened wires (A, A / B, 6.5 / Z, Z ) (see connection diagram).

'LJLWDO IUHTXHQF\ RXWSXW ; 'LJLWDO IUHTXHQF\ LQSXW ;Features:- Sub-D female connector, 9-pole- Output frequency: 0 - 500 kHz- Current load per channel: max. 20 mA- Two-track with inverse 5 V signals and zero track- X10 has a different basic setting depending on the selected

configuration (C0005)- Default setting:

Encoder simulation of the resolver signal- Capacity:

- A maximum of 3 slaves can be connected in parallelconnection.

- For series connection any number of slaves can beconnected.

- When PIN 8 (EN) shows a LOW level, the master is initialized(e.g. if the mains was disconnected). The slave can thusmonitor the master.

Features:- Sub-D male connector, 9-pole- Input frequency: 0 - 500 kHz- Current consumption per channel: max. 6 mA- Two-track with inverse 5 V signals and zero track- Possible input signals:

- Incremental encoder with two 5V complementary signalsshifted by 905(TTL encoder)

- Encoder simulation of the master- PIN 8 serves to monitor the cable or the connected controller:

- When this PIN shows a LOW level, the SD3 monitoringresponds.

- If the monitoring is not required, this input can be connectedto + 5V.

- The input is disconnected at C0540 = 0, 1, 2 or 3.

123456789

123456789

B

A

A

G N D

Z

Z

e n a b l e

B

B

A

A

G N D

Z

ZL a m pc o n t r o l

B

M a s t e r S l a v e

C a b l e l e n g t h m a x . 5 0 m

9 p o l e S u b - D c o n n e c t o r

X 1 0 X 9

9 p o l e S u b - D m a l e c o n n e c t o r

A

B

F o r C W r o t a t i o n

A

B

Z

Z

0 . 1 4 2 6

0 . 5 2 0

0 . 1 4 2 6

0 . 5 2 0

0 . 1 4 2 6

m m 2 A W G

Pin assignment X10 Pin assignment X91 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

6.5 A A + 5 V GND Z Z EN 6.5 6.5 A A + 5 V GND Z Z LC B

Page 43: ba93sugb.pdf

Installation

4-24 9300BA0998

State bus (X5/ST)

Thestatebus is acontroller-specific bus system for simplemonitoring in anetworkof drives:

- Controls all networked drives in a preselected state (see systems manual).

- Up to 20 controllers can be connected.

- Connection of the state bus cables to terminals X5/ST.

Stop!Do not apply an external voltage across terminals X5/ST.

K1

K1

L3

N

PE

L1L2

U V W

L1 L2 L3

F1

93XX - 93XX

PE +UG -UG

PE

Z1

K1

U V W

L1 L2 L3

93XX - 93XX

PE +UG -UG

PE

Z1

F1

F2 F3 F2 F3

ON

OFF

28 A4PE28 A4

K1

RFR

PE U V W

L1 L2 L3

93XX - 93XX

PE +UG -UG

PE

Z1

F1

F2 F3

28 A4PESTST 39STST 39 STST 39

K1

RFR

K1

RFR

K35.0122

FIG 4-11 Monitoring of a network of drives with the state busZ1 Mains filterF1...F5 Fuses (see Chapter 3.3.4 and 4.2.7.1)K1 Main contactor

Tip!For further information on the state bus as well as possible applications andcommissioning please consult the systems manual.

Page 44: ba93sugb.pdf

Installation

4-259300BA0998

System bus connection (X4)

K1

K1

L3

N

PE

L1L2

U V W

L1 L2 L3

F1

932X - 933X

PE +UG -UG

PE

Z1

K1

U V W

L1 L2 L3

932X - 933X

PE +UG -UG

PE

Z1

F1

ON

OFF

28 A4PE28 A4

K1

RFR

PE U V W

L1 L2 L3

932X - 933X

PE +UG -UG

PE

Z1

F1

28 A4PE

K1

RFR

K1

RFR

GNDHI LO GNDHI LO

RA2

GNDHI LO

RA1

F2 F3 F2 F3 F2 F3

K35.0123

FIG 4-12 Wiring of the system busRA1, RA2 Bus terminating resistors 120 WW (included in the accessory kit)

- Connection via pluggable screw terminals (double terminals can be used).

- Only connect terminals of the same designation.

- Features of the system cable:

Total cablelength

up to 300 m 300 m to 1000 m

Cable type LIYCY 2 x 2 x 0.5 mm2

twisted-pair with screeningPair 1: CAN-LOW (LO) and CAN-HIGH (HI)Pair 2: 2*GND

CYPIMF 2 x 2 x 0.5 mm2

twisted-pair with screeningPair 1: CAN-LOW (LO) and CAN-HIGH (HI)Pair 2: 2*GND

Cable resistance 40 /km 40 /kmCapacitance perunit length

130 nF/km 60 nF/km

- Connection of the bus termination resistors:- One resistor 120 W each on the first and last bus device.- On the 93XX controller the resistor can be screwed directly under the

terminals X4/HI and X4/LO.

Page 45: ba93sugb.pdf

Installation

4-26 9300BA0998

Features:

- CAN-based with bus protocol according to CANopen(CAL-based Communication Profile DS301)

- Bus expansion:- 25 m for max. 1 Mbit/s baud rate- up to 1 km with reduced baud rate

- Very reliable data transmission (Hamming distance = 6)

- Signal level according to ISO 11898

- Up to 63 bus devices are possible

- Access to all Lenze parameters

- Master functions are integrated into the controller- Data exchange possible between controllers without participation of a

master system (current ratio control, speed synchronization, etc.)

The following connections of the system bus connection are possible:

- Connection to a decentral terminal extension for digital and analog inputsand outputs

- Connection to a superimposed control (PLC, position control, operatingterminal)

- Connection between several controllers

Tip!For further information on the system bus as well as possible applications andcommissioning please consult the systems manual.

Automation interface (X1)

The automation interface (X1) is used for the connection of different plug-onmodules

- Operating module

- field bus modules- RS232, RS485, fibre optics, type 2102 (LECOM-A/B/LI),- InterBus-S, type 2111- PROFIBUS-DP, type 2131

Page 46: ba93sugb.pdf

Installation

4-279300BA0998

4.2.9 Motor temperature monitoring

Selection of thesensor type

- Thermal sensor KTY- “Linear” thermal sensor in the motor winding- standard in Lenze motors MDXKX and MDXQX

- PTC thermistor- PTC thermistor with defined tripping characteristic

- Thermal contact TKO- Thermostat/normally-closed contact

Othermonitoring types

KTY, PTC and TKO do not offer a complete protection. To improve the monitoring, Lenze recommends theuse of a bimetal relay.

Alternative monitoring Comparators (CMP1 ... CMP3) monitor and a time element (TRANS1 ... TRANS4) limits the motor currentfor small speeds or motor standstill.You can also achieve this function by connecting suitable function blocks (see systems manual).

Reactions Depending on the type of temperature monitoring, different reactions can be provoked (see chapter 8.5).

Stop!Do not connect an external voltage to the inputs.

Motor Lenze motors MDXKX and MDXQX Lenze motorswith thermal contact

Motors of other brandswith thermal sensor

Connection - Resolver input X7:- pin X7/8 = PTC+ , pin X7/9 = PTC-

or- encoder input X8:

- pin X8/8 = PTC+ , pin X8/5 = PTC-

Terminals T1/T2 next to the terminals U, V, W

Fault indication (MONIT-)OH3 (MONIT-)OH7 (MONIT-)OH8Possible

iThe corresponding monitoring and thus the following codes are preset under C0086

reactions- Trip (C0583 = 0)- OFF (C0583 = 3)

- Warning (C0584 = 2)- OFF (C0584 = 3)

- Trip (C0585 = 0)- Warning (C0585 = 2)- OFF (C0585 = 3)

Point of release fixed at 150o C can be set under C0121 fixed, (depending on the PTC/thermal contact):PTC: when RJ > 1600 W

Notes - Monitoring is active in the factory setting.- If resolver (X7) and encoder (X8) are operated

together:- Connect PTC only at one connector (X7 or

X8)- Do not connect PTC connection of the other

connector (do not short-circuit!)- For further information on the connection of

the thermal sensor please consult thedescription of the corresponding feedbacksystem.

- Deactivate monitoring via X7or X8 under C0583= 3 andC0584= 3

- The connection is doneaccording to DIN 44081 (seealso FIG 4-13).

- We recommend a Ziehl PTC(up to 150 C): K15301075or a thermostat.

- Enter characteristic (seechapter 4.2.9.1)

- Deactivate monitoring via X7or X8 with C0583= 3 andC0584= 3

Page 47: ba93sugb.pdf

Installation

4-28 9300BA0998

Types 9321 to 9326 Types 9327 and 9330 Internal connection

U V W

PE

U V W

X10

T1 T2

1

5

PE

T1

T2

U V W

MONIT-OH8T1

T2

7X6

24 V

93xxK350052

ϑ

3,3k

7,4k

2,7k

Types 9330 and 9331 Type 9332

T1

T2

PE

U V W

T1

T2

PE

U V W

FIG 4-13 Connection of a thermal sensor to the terminals T1 and T2 and internal connection

Tip!- In the prefabricated Lenze system cables for Lenze servo motors the cable

for the temperature feedback is already included. The cables are designedfor wiring according to EMC.

- If you use cables of your own:- Always lay cables separately from motor cables.

Page 48: ba93sugb.pdf

Installation

4-299300BA0998

4.2.9.1 User-specific characteristic for a PTC thermistorWhen using motors of other brands, you can establish a specific characteristic forthe PTC used.

R [Ω]

T [°C]T1

(C1191/1)

R2(C1192/2)

R1(C1192/1)

T2(C1191/2)

Adjustment- Set C1190 = 1- Enter two values each under C1191 and

C1192 (see example).- Define the values in a range in which the

highest accuracy is required.

4.2.10 Feedback systems

Different feedback systems can be connected to the controller:

- Resolver feedback (factory setting)

- Encoder feedback- Incremental encoder TTL- Sine-cosine encoder- Sine cosine encoder with serial communication (single turn)- Sine cosine encoder with serial communication (multi turn)

Resolver signalor encoder signal can be output at the digital frequency output X10for slaves.

- Connection as shown in the figures:- Use twisted pair cables and screened pair cables.- Connect the screen at both ends.- Use indicated cable cross-sections.

- The feedback system is activated under C0025.

Sensorless control SSC

Do not use sensorless control (SSC) for new applications (C0025 = 1).

Use a vector control EVF 9300 instead or contact Lenze.

Page 49: ba93sugb.pdf

Installation

4-30 9300BA0998

Resolver connection (X7)

- In all configurations predefined under C0005, a resolver can be used asfeedback system. An adjustment is not necessary.

Tip!Use the prefabricated Lenze system cable for the resolver connection.

Features:

- 2-pin resolver (U = 10 V, f = 4 kHz)

- Resolver and resolver cable are monitored for open circuit (fault indicationSd2)

+ R E F

- R E F

+ C O S

- C O S

+ S I N

- S I N

R e s o l v e r123456789

+ P T C

- P T C

P T C

X 7

9 p o l e S u b - D f e m a l e c o n n e c t o r

C a b l e l e n g t h m a x . 5 0 m

0 . 1 4 2 6

0 . 5 2 0

m m 2 A W G

FIG 4-14 Resolver connection

Assignment of the female connector (X7)Pin 1 2 3 4 5 6 7 8 9Signal + Ref -Ref GND + COS -COS + SIN -SIN + PTC -PTC

X7/8 and X7/9 see chapter 4.2.9.

Page 50: ba93sugb.pdf

Installation

4-319300BA0998

Encoder connection (X8)

An incremental encoder or a sine-cosine encoder can be connected to this input.

Tip!Use the prefabricated Lenze system cable for the encoder connection.

- Under C0421, you can set the encoder supply voltage VCC5_E from 5 V to 8V,- to set the encoder supply- to compensate the voltage drop on the encoder if necessaryDU £ 2 * cable length * resistance/m * Iencoder

Stop!Observe the connection voltage of the encoder system used.An excessive settingunder C0421 can destroy the encoder.

B

A

V C C 5 _ E

G N D

Z

Z

+ K T Y

- K T Y

123456789

A

B

S I N

R e f C O S

V c c

G N D

Z / - 4 8 5

Z / + 4 8 5

+ K T Y

- K T Y

C O S

R e f S I N

S I N

C O S

0 , 5 V

0 , 5 V

R e f C O S

R e f S I N

E n c o d e r

X 8

K T Y

9 p o l e S u b - D m a l e c o n n e c t o r

A

B

F o r C W r o t a t i o n

A

B

ZZ

C a b l e l e n g t h m a x . 5 0 m

0 . 1 4 2 6

1 . 0 1 7

0 . 1 4 2 6

m m 2 A W G

∅ = 2 , 5 V

= 2 , 5 V

FIG 4-15 Encoder connection

Page 51: ba93sugb.pdf

Installation

4-32 9300BA0998

Incremental encoder

Features:

- Incremental encoders with two 5 V complementary signals which are shiftedby 90 (TTL encoder) can be connected.- The zero track can be connected (as option).

- 9-pole Sub-D female connector

- Input frequency: 0 - 500 kHz

- Current consumption per channel: 6 mA

Assignment of the male connector (X8)Pin 1 2 3 4 5 6 7 8 9Signal 6.5 A A V CC5_E GND (-PTC) Z Z + PTC B

X8/8 see chapter 4.2.9.

Sine-cosine encoder

Features:

- The following encoders can be connected- Simple sine-cosine encoders with rated voltage 5 V to 8 V.- Sine-cosine encoders with a communication interface of type Stegmann

SCS/M70xxx (The initialization time of the controller is increased to approx.2 seconds).(Die Initialisierungszeit des Antriebsreglers verlängert sich dadurch auf ca. 2Sekunden).

- 9-pole Sub-D female connector

- Internal resistance Ri = 221 W

- Voltage sine and cosine track: 1 Vss p0.2 V

- Voltage RefSIN and RefCOS: +2.5 V

Tip!For encoder with tracks: sine, sine and cosine, cosine:Assign RefSIN with sine and RefCOS with cosine.

Assignment of the male connector (X8)Pin 1 2 3 4 5 6 7 8 9Signal SIN RefCOS COS V CC5_E GND (-PTC) Z or -RS485 Z or + RS485 + PTC RefSIN

X8/8 see chapter 4.2.9.

Page 52: ba93sugb.pdf

Installation

4-339300BA0998

4.3 Installation of a CE-typical drive system

Generalnotes

- . The electromagnetic compatibility of a machine depends on the type of installation and care taken Please observe:- Assembly- Filters- Screening- Grounding

- For diverging installations, the conformity to the CE EMC Directive requires a check of the machine or systemregarding the EMC limit values. This is for instance valid for- The use of unscreened cables- The use of group RFI filters instead of assigned RFI filters- Operation without mains filter

- The compliance of the machine application with the EMC Directive is in the responsibility of the user.- If you observe the following measures, you can assume that the machine will operate without any EMC problems

caused by the drive system, and that compliance with the EMC Directive and the EMC law is achieved.- If devices which do not comply with the CE requirement concerning noise immunity EN 50082-2 are operated

close to the controller, these devices may be disturbed electromagnetically by the controllers.Assembly - Connect controller, mains choke, and mains filter to the grounded mounting plate with a wire of large a

cross-section as possible:- Mounting plates with conductive surfaces (zinc-coated, stainless steel) allow permanent contact.- Painted plates are not suitable for the installation in accordance to the EMC.

- If you use several mounting plates:- Connect as much surface as possible of the mounting plates (e.g. with copper bands).

- Ensure the separation of motor cable and signal or mains cable.- Do not use the same terminal strip for mains input and motor output.- Cable guides as close as possible to the reference potential.Unguided cables have the same effect as aerials.

Filters - Use mains filters or RFI filters and mains chokes which are assigned to the controller:- RFI filters reduce impermissible high-frequency interference to a permissible value.- Mains chokes reduce low-frequency interferences which depend on the motor cable and its length.- Mains filters combine the functions of mains choke and RFI filter.

Page 53: ba93sugb.pdf

Installation

4-34 9300BA0998

Screening - Connect the screen of the motor cable to the controller- to the screen connection of the controller.- additionally to the mounting plate with a surface as large as possible.- Recommendation: For the connection, use ground clamps on bare metal mounting surfaces.

- If contactors, motor-protecting switches or terminals are located in the motor cable:- Connect the screens of the connected cables also to the mounting plate, with a surface as large as possible.

- Connect the screen in the motor terminal box or on the motor housing to PE:- Metal glands at the motor terminal box ensure a connection of the screen and the motor housing.

- If the mains cable between mains filter and controller is longer than 300mm:- Screen mains cables.- Connect the screen of the mains cable directly to the inverter and to the mains filter and connect it to the

mounting plate with as large a surface as possible.- Use of a brake chopper:

- Connect the screen of the brake resistor cable directly to the mounting plate, at the brake chopper and the brakeresistor with as large a surface as possible.

- Connect the screen of the cable between controller and brake chopper directly to the mounting plate, at theinverter and the brake chopper with a surface as large as possible.

- Screen the control cables:- Connect both screen ends of the digital control cables.- Connect one screen end of the analog control cables.- Always connect the screens to the screen connection at the controller over the shortest possible distance.

- Use of the controllers in residential areas:- To limit the radio interference, use an additional screen damping 10 dB. This is usually achieved by installation

in enclosed and grounded control cabinets made of metal.Grounding - Ground all metallically conductive components (controller, mains filter, motor filter, mains choke) using suitable

cables connected to a central point (PE bar).- Maintain the minimum cross-sections prescribed in the safety regulations:

- For EMC, not the cable cross-section is important, but the surface and the contact with a cross-section as largeas possible, i.e. large surface.

Page 54: ba93sugb.pdf

Installation

4-359300BA0998

K1

K1

L3N

PE

L1L2

U V W

M3~

PE PE

L1 L2 L3

K1

F1 ... F3

932X - 933X

+UG -UG +UG-UG

9351A328 E1E2 E3E4E5 A1 A2 5939 A4

+

1 2 3 4 7 63

+

7 62

Z1

-X1

Z2

K1

OFF

ON

RFR

RB

T1 T2

R

X7

F4 F5

K35.0124

PES

PESPES

PES

PES

PES

PES

PES

PES

PES

PE

PE PE

FIG 4-16 Example for an installation in accordance with the EMC regulations

F1...F5 Fuses (see chapter 3.3.4 and chapter 4.2.7.1)

K1 Mains contactor

Z1 Mains filter “A” or “B” see accessories

Z2 Brake module, see accessories

-X1 Terminal strip in control cabinet

PES HF screen termination by large-surface PE connection(see ”Screening” in this chapter)

Page 55: ba93sugb.pdf

Installation

4-36 9300BA0998

Page 56: ba93sugb.pdf

Commissioning

5-19300BA0998

5 Commissioning

5.1 Initial switch-on

Stop!Prior to initial switch-on of the controller, check the wiring for completeness,short-circuit, and earth fault:

- Power connection:- Supply via terminals L1, L2 and L3 (direct mains connection) or alternatively

via terminals +UG, -UG (DC bus connection, network of drives)

- Motor connection:- In-phase connection to the motor (direction of rotation)

- Feedback system (resolver, incremental encoder, ¤)

- Control terminals:- Controller enable: terminal X5/28 (reference potential: X5/39)- Direction of rotation terminal X5/E1 or X5/E2

(reference potential: X5/39)- with external setpoint selection: terminals X6/1, X6/2

(reference potential: X6/7)

- Cover of the power terminals:- Put on cover(s) and fix.

- Keep to the switch-on sequence!

Tip!- All specifications of the parameterization refer to the application example

”Speed control” in chapter 11.2.1.

- Use the convenient short set-up menus for the commissioning with theoperating module 9371 BB or the PC and the Global Drive Control orLEMOC2 in which the codes for the most important settings are summarized(see also chapter 7.1.2).

Page 57: ba93sugb.pdf

Commissioning

5-2 9300BA0998

5.1.1 Switch-on sequence

1. X5/28 (controller enable) must be open (LOW).

2. X5/E4 to HIGH signal (+13 V ... +30 V)

3. Switch on mains:

- The controller is ready for operation after approx.0.5 s(2 s for drives with sine-cosine encoder with serial interface).

4. Adapt controller to the operating conditions under C0173:

- If the controllers are not adapted, their lives are reduced.

C0173 = Mains voltage upper switch-off threshold Operation0 < 400 V

1 (factory setting) 400 Vith ith t b k it2

400 V < UMains 460V

770 Vwith or without brake unit

3 480 V without brake unit4 480 V 800 V with brake unit

5. Enter motor data:

- For drives with Lenze motor: select motor under C0086.

- For drives with other motors: see chapter 5.2.

6. Select feedback system:

- Drives with resolver: no changes required.

- Drives with other feedback systems:Select feedback system under C0025.Set encoders voltage under C0421.(Menu: ”Motor / Feedb.”, submenu: ”Feedback” ormenu: ”Motor/Feedback system”, submenu: ”Feedback systems”)

- For sensorless speed control (SSC): C0025 = 1. Do not use this control fornew applications (see chapter 4.2.10).

7. When the digital terminals X5 are supplied with internal voltage:

- Assign output X5/A1 with ”FIXED1”. Terminal X5/A1 supplies approx. 24 V(see also chapter 4.2.8.2 and 5.7.2)

Tip!For this application, you may use one of the predefined configurations in C0005.C0005 = XX1X(e.g. 1010 = speed control via terminals)automatically assigns theoutput X5/A1 to FIXED1.

8. Set the maximum speed under C0011.

9. Enter a direction of rotation (see chapter 5.4):- CW rotation: HIGH signal at X5/E1 (+13 V¤ +30 V)- CCW rotation: HIGH signal at X5/E2 (+13 V¤ +30 V)

Page 58: ba93sugb.pdf

Commissioning

5-39300BA0998

10. Apply setpoint:- Apply a voltage > 0 V (max. 10 V) at X6/1, X6/2.- Do not activate a JOG setpoint (X5/E3 LOW).

11. Check whether the drive is ready for operation:- When the green LED is flashing:

Controller is ready for operation, go on with 12.- When green LED is dark and red LED is flashing:

Interference occurred. Before proceeding with the commissioning, elininatethe fault (see chapter 9 ”Troubleshooting and fault elimination”).

12. Enable controller (see chapter 5.3):- The green LED is illuminated if a HIGH signal is applied at X5/28 (+13 V¤

+30 V) and no other source of controller inhibit is active.

13. For operation with a fieldbus module, additional settings are necessary(see operating instructions of the corresponding fieldbus module).

The motor will now rotate with the setpoint speed and the selected direction ofrotation.

Troubleshooting:

Fault Cause / remedyFeedback system - Motor rotates CCW when viewed to the

motor shaft- C0060 counts down after controller enable

Feedback system is not connected in-phase- Connect feedback system in-phase

Asynchronousmotor

Motor- Rotates with Imax and half slip frequency- Does not react on setpoint changes

Motor is not connected in-phase- Connect motor in-phase at the terminals U,

Synchronousmotor

- Motor does not follow the setpoint change- Imax follows the setpoint in idle running

- Connect motor in hase at the terminals U,V, W

- Motor rotates CCW when viewed to themotor shaft.

The rotor angle (offset of electrical andmechanical rotor angle) is not correct- Make a rotor position adjustment (C0095 =

1). For this, operate the motor without load.

Page 59: ba93sugb.pdf

Commissioning

5-4 9300BA0998

5.2 Input of the motor data

To achieveanoptimum speed-torquebehaviourof thedrive, it isnecessary to enterthe nameplate data of the connected motor.

- If a LENZE motor is used:- Select the motor type under C0086 (see code table).The controller sets all

other motor data automatically.- To achieve outstanding accuracy you can enter the eight-digit designation

of the motor nameplate ”Geber” (encoder”) under C0416 when usingmotors with resolvers (optional).

Tip!

Obtain the motor type from the nameplate. Example: “161”

The motor designation behind this number is shown in the display(”DSKS56-33-200”).

- If the motor type is not listed under C0086, select a Lenze motor with similardata under C0086 (see table). You have to change the following motor datamanually:- C0006: Operating mode of the motor control

- C0022: Adapt Imax to the maximum motor current- C0081: Rated motor power- C0087: Rated motor speed

- C0088: Rated motor current- C0089: Rated motor frequency

- C0090: Rated motor voltage- C0091: Motor-cos j

Only for very high requirements to the control features:- C0084: Stator resistance of the motor- C0085: Leakage inductance of the motor

Page 60: ba93sugb.pdf

Commissioning

5-59300BA0998

Tip!- All required inputs are contained in the menu ”motor/feedb.”

(”motor/feedback system”).

- If you select a motor type under C0086 and change one of the above listedmotor data subsequently, C0086 = o (COMMON) is set (i.e. no Lenze motoris used).

- Do not operate reluctance motors.

C0086 Lenze motortype C0081 C0087 C0088 C0089 C0090 Motor type Thermal

sensor

No. Display PN [kW] n N [rpm] IN [A] f N [Hz] U N [V]10 DSKA56-140 MDSKAXX056-22 0.80 3950 2.4 14011 DFKA71-120 MDFKAXX071-22 2.20 3410 6.0 12012 DSKA71-140 MDSKAXX071-22 1.70 4050 4.4 14013 DFKA80-60 MDFKAXX080-22 2.10 1635 4.8 6014 DSKA80-70 MDSKAXX080-22 1.40 2000 3.3 70

39015 DFKA80-120 MDFKAXX080-22 3.90 3455 9.1 120

390

16 DSKA80-140 MDSKAXX080-22 2.30 4100 5.8 14017 DFKA90-60 MDFKAXX090-22 3.80 1680 8.5 6018 DSKA90-80 MDSKAXX090-22 2.60 2300 5.5 8019 DFKA90-120 MDFKAXX090-22 6.90 3480 15.8 12020 DSKA90-140 MDSKAXX090-22 4.10 4110 10.2 140 35021 DFKA100-60 MDFKAXX100-22 6.40 1700 13.9 6022 DSKA100-80 MDSKAXX100-22 4.00 2340 8.2 80 39023 DFKA100-120 MDFKAXX100-22 13.20 3510 28.7 120 Asynchro-24 DSKA100-140 MDSKAXX100-22 5.20 4150 14.0 140 330

Asynchro-nous servo KTY

25 DFKA112-60 MDFKAXX112-22 11.00 1710 22.5 60nous servo

motorKTY

26 DSKA112-85 MDSKAXX112-22 6.40 2490 13.5 85 39027 DFKA112-120 MDFKAXX112-22 20.30 3520 42.5 12028 DSKA112-140 MDSKAXX112-22 7.40 4160 19.8 140 32030 DFQA100-50 MDFQAXX100-22 10.60 1420 26.5 5031 DFQA100-100 MDFQAXX100-22 20.30 2930 46.9 10032 DFQA112-28 MDFQAXX112-22 11.50 760 27.2 2833 DFQA112-58 MDFQAXX112-22 22.70 1670 49.1 5834 DFQA132-20 MDFQAXX132-32 17.00 550 45.2 20 36035 DFQA132-42 MDFQAXX132-32 40.30 1200 88.8 4240 DFQA112-50 MDFQAXX112-22 20.10 1425 43.7 5041 DFQA112-100 MDFQAXX112-22 38.40 2935 81.9 10042 DFQA132-36 MDFQAXX132-32 36.40 1030 77.4 3943 DFQA132-76 MDFQAXX132-32 60.10 2235 144.8 76 340

Page 61: ba93sugb.pdf

Commissioning

5-6 9300BA0998

C0086 Lenze motortype C0081 C0087 C0088 C0089 C0090 Motor type Thermal

sensor

No. Display PN [kW] n N [rpm] IN [A] f N [Hz] U N [V]50 DSVA56-140 DSVAXX056-22 0.80 3950 2.4 14051 DFVA71-120 DFVAXX071-22 2.20 3410 6.0 12052 DSVA71-140 DSVAXX071-22 1.70 4050 4.4 14053 DFVA80-60 DFVAXX080-22 2.10 1635 4.8 6054 DSVA80-70 DSVAXX080-22 1.40 2000 3.3 70

39055 DFVA80-120 DFVAXX080-22 3.90 3455 9.1 120

390

56 DSVA80-140 DSVAXX080-22 2.30 4100 5.8 14057 DFVA90-60 DFVAXX090-22 3.80 1680 8.5 6058 DSVA90-80 DSVAXX090-22 2.60 2300 5.5 80 Asynchro- TKO59 DFVA90-120 DFVAXX090-22 6.90 3480 15.8 120

Asynchro-nous servo

TKO(Thermal

60 DSVA90-140 DSVAXX090-22 4.10 4110 10.2 140 350nous servo

motor(Thermalcontact)

61 DFVA100-60 DFVAXX100-22 6.40 1700 13.9 6062 DSVA100-80 DSVAXX100-22 4.00 2340 8.2 80 39063 DFVA100-120 DFVAXX100-22 13.20 3510 28.7 12064 DSVA100-140 DSVAXX100-22 5.20 4150 14.0 140 33065 DFVA112-60 DFVAXX112-22 11.00 1710 22.5 6066 DSVA112-85 DSVAXX112-22 6.40 2490 13.5 85 39067 DFVA112-120 DFVAXX112-22 20.30 3520 42.5 12068 DSVA112-140 DSVAXX112-22 7.40 4160 19.8 140 320108 DSKS36-13-200 MDSKSXX036-13 0.25 4000 0.9 200 245109 DSKS36-23-200 MDSKSXX036-23 0.54 4000 1.1 200 345110 DSKS56-23-150 MDSKSXX056-23 0.60 3000 1.25 150 350111 DSKS56-33-150 MDSKSXX056-33 0.91 3000 2.0 150 340112 DSKS71-13-150 MDSKSXX071-13 1.57 3000 3.1 150 360113 DFKS71-13-150 MDFKSXX071-13 2.29 3000 4.35 150 385114 DSKS71-23-150 MDSKSXX071-23 2.33 3000 4.85 150 360115 DFKS71-23-150 MDFKSXX071-23 3.14 3000 6.25 150 375116 DSKS71-33-150 MDSKSXX071-33 3.11 3000 6.7 150 330 Synchronous

KTY117 DFKS71-33-150 MDFKSXX071-33 4.24 3000 9.1 150 345

Synchronousservo motor KTY

160 DSKS56-23-190 MDSKSXX056-23 1.1 3800 2.3 190 330161 DSKS56-33-200 MDSKSXX056-33 1.8 4000 3.6 200 325162 DSKS71-03-170 MDSKSXX071-03 2.0 3400 4.2 170 330163 DFKS71-03-165 MDFKSXX071-03 2.6 3300 5.6 165 330164 DSKS71-13-185 MDSKSXX071-13 3.2 3700 7.0 185 325165 DFKS71-13-180 MDFKSXX071-13 4.1 3600 9.2 180 325166 DSKS71-33-180 MDSKSXX071-33 4.6 3600 10.0 180 325167 DFKS71-33-175 MDFKSXX071-33 5.9 3500 13.1 175 325

Page 62: ba93sugb.pdf

Commissioning

5-79300BA0998

C0086ThermalsensorMotor typeC0090C0089C0088C0087C0081

Lenze motortype

No. U N [V]f N [Hz]IN [A]n N [rpm]PN [kW]Display210 DXRA071-12-50 DXRAXX071-12 0.25 1410 0.9211 DXRA071-22-50 DXRAXX071-22 0.37 1398 1.2212 DXRA080-12-50 DXRAXX080-12 0.55 1400 1.7213 DXRA080-22-50 DXRAXX080-22 0.75 1410 2.3214 DXRA090-12-50 DXRAXX090-12 1.10 1420 2.7215 DXRA090-32-50 DXRAXX090-32 1.50 1415 3.6216 DXRA100-22-50 DXRAXX100-22 2.20 1425 4.8217 DXRA100-32-50 DXRAXX100-32 3.00 1415 6.6218 DXRA112-12-50 DXRAXX112-12 4.00 1435 8.3 Asynchro-

i t TKO219 DXRA132-12-50 DXRAXX132-12 5.50 1450 11.050 400

ynous inverter

motorTKO

(Thermal220 DXRA132-22-50 DXRAXX132-22 7.50 1450 14.6

50 400 motor(in star con-

(Thermalcontact)

221 DXRA160-12-50 DXRAXX160-12 11.00 1460 21.0(in star con-

nection)contact)

222 DXRA160-22-50 DXRAXX160-22 15.00 1460 27.8nection)

223 DXRA180-12-50 DXRAXX180-12 18.50 1470 32.8224 DXRA180-22-50 DXRAXX180-22 22.00 1456 38.8225 30kW-ASM-50 30.00 1470 52.0226 37kW-ASM-50 37.00 1470 66.0227 45kW-ASM-50 45.00 1480 82.0228 55kW-ASM-50 55.00 1480 93.0229 75kW-ASM-50 75.00 1480 132.0250 DXRA071-12-87 DXRAXX071-12 0.43 2525 1.5251 DXRA071-22-87 DXRAXX071-22 0.64 2515 2.0252 DXRA080-12-87 DXRAXX080-12 0.95 2515 2.9253 DXRA080-22-87 DXRAXX080-22 1.3 2525 4.0254 DXRA090-12-87 DXRAXX090-12 1.95 2535 4.7255 DXRA090-32-87 DXRAXX090-32 2.7 2530 6.2256 DXRA100-22-87 DXRAXX100-22 3.9 2535 8.3257 DXRA100-32-87 DXRAXX100-32 5.35 2530 11.4258 DXRA112-12-87 DXRAXX112-12 7.10 2545 14.3 Asynchro-

i t TKO259 DXRA132-12-87 DXRAXX132-12 9.7 2555 19.187 400

ynous inverter

motorTKO

(Thermal260 DXRA132-22-87 DXRAXX132-22 13.2 2555 25.4

87 400 motor(in delta con-

(Thermalcontact)

261 DXRA160-12-87 DXRAXX160-12 19.3 2565 36.5(in delta con-

nection)contact)

262 DXRA160-22-87 DXRAXX160-22 26.4 2565 48.4nection)

263 DXRA180-12-87 DXRAXX180-12 32.4 2575 57.8264 DXRA180-22-87 DXRAXX180-22 38.7 2560 67.4265 30kW-ASM-87 52.00 2546 90.0266 37kW-ASM-87 64.00 2546 114.0267 45kW-ASM-87 78.00 2563 142.0268 55kW-ASM-87 95.00 2563 161.0269 75kW-ASM-87 130.00 2563 228.0

Page 63: ba93sugb.pdf

Commissioning

5-8 9300BA0998

5.3 Controller enable

- The controller is enabled only after all sources of controller inhibit have beenreset (series connection of all sources).- When the controller is enabled, the green LED on the controller is

illuminated.

- The active sources of the controller inhibit are displayed under C0183 (seealso menu: Diagnostic; Actual info.

The following table shows the conditions for the controller enable:

Source controller inhibit Controller inhibited Controller enabled Note

Terminal X5/28 0 V¤ + 4 V + 13 V¤ + 30 V -

Operating unit STOP key RUN key Inhibit with the STOP key ispossible only if the STOP key isassigned with ”CINH” underC0469.

Fault In case of TRIPIn case of Message

TRIP reset For check see chapter 9

System bus Transmission of the controlinformation INHIBIT via C0135

Transmission of the controlinformation ENABLE via C0135

See systems manual

Field bus module See Operating Instructions of the corresponding fieldbus module -

Tip!All sources act like a series connection of switches which are independent of eachother.

5.4 Input of the direction of rotation

Based on the factory setting, the motor direction of rotation depends on

- the sign of the speed setpoint (link of main and additional setpoint).

- the triggering of the digital inputs X5/E1 and X5/E2.

Page 64: ba93sugb.pdf

Commissioning

5-99300BA0998

5.5 Quick stop

Using the quick stop function (QSP), you can stop the drive for a time to be set,independently of the setpoint input.

In the factory setting, the quick stop function is active:

- If, during mains connection- X5/E1 = HIGH and X5/E2 = HIGH or- X5/E1 = LOW and X5/E2 = LOW

- If, during operation- X5/E1 = LOW and X5/E2 = LOW

QSP is recognized by the controller if a LOW signal is applied at X5/E1 andX5/E1 for more than approx. 2 ms.

Function:

- The speed decelerates to zero according to the set deceleration time underC0105 (factory setting = 0 s). The drive stop driftfree.

- The drive accelerates to its setpoint along the set ramps if one of the inputs istriggered with a HIGH level.- If the speed was not zero, the controller synchronizes to the actual speed.

5.6 Change of the internal control structure

The internal control structure is adapted to the application (e.g. speed control,torque control, phase control, ¤)via code C0005 (see chapter 11.3). For this, thecontroller must first be inhibited.

Stop!When the internal control structure is changed, another terminal assignment mayresult.

Page 65: ba93sugb.pdf

Commissioning

5-10 9300BA0998

5.7 Changing of the terminal assignment

(see also chapter 8.3 ”Working with function blocks”)

If you change the configuration under C0005, the assignment of all inputs andoutputs with their corresponding default assignment is overwritten.If necessary,you have to adapt the function assignment to your wiring.

Tip!Use the menu ”Terminal I/O” when the 9371BB operating module is used or themenu ”Terminal I/O” with Global Drive Control or LEMOC2.

Stop!If you reassign an input, the previously assigned signal source is not overwritten!Remove unwanted active links (see chapter 8.3.3).

5.7.1 Freely assignable digital inputs

Five freely assignable digital inputs are available (X5/E1 ¤ X5/E5). You candetermineapolarity for each input and thus define whether the input is HIGH activeor LOW active.

Change assignment:

Tip!Use the subment ”DIGIN” with the 9371BB operating module or the submenu”Digital inputs” with Global Drive Control or LEMOC2.

Page 66: ba93sugb.pdf

Commissioning

5-119300BA0998

Example:Menu ”Terminal I/O; DIGIN” (Terminals I/O;digital inputs)

The most important targets for digital inputs are listed below

Valid for the base configuration C0005 = 1000.

Code triggered by Note

CFG Subcode Signal name Signal (interface) Selection list 2C0885 000 R/L/Q-R DIGIN1 (Terminal

X5/E1)0051 HIGH = Main setpoint not inverted (CW

rotation)

C0886 000 R/L/Q-L DIGIN2 (TerminalX5/E2)

0052 HIGH = Main setpoint inverted (CCWrotation)

C0787 001 NSET-JOG*1 DIGIN3 (TerminalX5/E3)

0053 HIGH = Fixed speed of C0039/x haspriority over main setpointTh i l bi d d002 NSET-JOG*2 FIXED0 - 1000

yThe signals are binary coded.

003 NSET-JOG*4 FIXED0 - 1000004 NSET-JOG*8 FIXED0 - 1000

C0788 001 NSET-TI*1 FIXED0 - 1000 Additional acceleration and decelerationi f C0101/ d C0103/002 NSET-TI*2 FIXED0 - 1000 times of C0101/x and C0103/x

The signals are binary coded003 NSET-TI*4 FIXED0 - 1000 The signals are binary coded.

004 NSET-TI*8 FIXED0 - 1000C0880 001 DCTRL-PAR*1 FIXED0 - 1000 Parameter set selection:

The signals are binary coded (see002 DCTRL-PAR*2 FIXED0 - 1000

The signals are binary coded (seechapter 7.2.4)

C0881 000 DCTRL-PAR-LOAD FIXED0 - 1000 LOW-HIGH edge loads the parameterset selected with DCTRL-PAR*x

C0871 000 DCTRL-TRIP-SET DIGIN4 (TerminalX5/E4)

0054 LOW = controller sets TRIP (EEr)

C0876 - DCTRL-TRIP-RES DIGIN5 (TerminalX5/E5)

0055 LOW-HIGH edge = resets active trip

C0920 000 REF-ON FIXED0 - 1000 HIGH = start homingC0921 000 REF-MARK FIXED0 - 1000 LOW-HIGH edge = stop homing

1. Select the input of the function block for which you want to assignanother source, via the configuration code CFG in the code level.- Example:

C0787/2 (CFG/subcode) determines the source for the input”NSET-JOG*2” (signal name) in the function block ”Speed setpointconditioning” (NSET).

2. Change to the parameter level using PRG. Select the source (signal) fromthe displayed list. Determine the origin of the signal for the control of thisinput.- Example:

”NSET-JOG*2” is to be controlled by terminal X5/E5 (interface).- Select DIGIN5 (signal) and confirm with SHIFT + PRG.

3. Change to the code level by pressing PRG twice.

Page 67: ba93sugb.pdf

Commissioning

5-12 9300BA0998

4. Determine the polarity or the input terminals X5/E1 to X5/E5 (HIGH activeor LOW active) under C0114 and subcode.- Select the terminal in the code level via subcode.- Change to the parameter level using PRG and select the polarity.- Change to the code level by pressing PRG twice.

5. Repeat step 1 to 4 until all desired inputs are assigned.

6. Remove unwanted connections (see chapter 8.3.3). The previousconnection of terminal X5/5 is not removed automatically. If you want toremove the connection:- Select C0876 in the code level (previous target of terminal X5/E5)- Change to the parameter level using PRG.- Select FIXED0 (signal) and confirm with SHIFT+PRG.

5.7.2 Freely assignable digital outputs

Four freely assignable digital outputs are available (X5/A1 ¤ X5/A4). You candetermineapolarity for each input and thus define whether the input is HIGH activeor LOW active.

The most important codes are listed in the submenu: DIGOUT (digital outputs)

Change assignment:

1. Select the output which is to be assigned to another function underC0117 via the subcode.

2. Change to the parameter level using PRG.Select the signal which is to beoutput by the selected output terminal, from the displayed list. Change tothe code level using PRG.

3. Determine the polarity (HIGH active or LOW active) under C0118 via thesubcode of the output.

4. Repeat step 1 to 3 until all desired outputs are assigned.

Page 68: ba93sugb.pdf

Commissioning

5-139300BA0998

5.7.3 Freely assignable analog inputs

The most important codes are listed in the submenu: AIN1 X6.1/2 or AIN2 X6.3/4(analog input 1 (X6.1/2) or analog input 2 (X6.3/4))

Change assignment:

1. Select the input of the function block to which you want to assign anothersource, in the code level.- Example

Determine the source for the input ”main setpoint” (NSET-N) in the functionblock ”speed setpoint conditioning” (NSET) under C0780.

2. Change to the parameter level using PRG.Select the signal which is to besued as a source for the selected input, from the displayed list.

3. Repeat step 1 and 2 until all desired inputs are assigned.

4. Remove unwanted links (see chapter 8.3.3).

5.7.4 Freely assignable monitor outputs

Youcanoutput internalsignalsasvoltagesignalsviathemonitoroutputsX6/62 andX6/63.

You can adapt the outputs to a measuring instrument or a slave under C0108 andC0109.

The most important codes are listed in the submenu: AOUT1 X6.62 or AIN2 X6.63(analog output 1 (X6.62) or analog output 1 (X6.63))

Change assignment:

1. Select the output to which you want to assign another signal (source) inthe code level (e.g. C0431 for output X6/62).

2. Change to the parameter level using PRG.Select the signal which is to beoutput by the monitor output, from the displayed list.

3. Adjust an offset in the connected hardware under C0109, if necessary.

4. Adapt the signal gain of the connected hardware under C0108, ifnecessary.

5. Repeat step 1 to 4 to assign the second output.

Page 69: ba93sugb.pdf

Commissioning

5-14 9300BA0998

Page 70: ba93sugb.pdf

During operation

6-19300BA0998

6 During operation

6.1 Status indications of the operating module

Status indications of the operating module

Display on offRDY Ready for operation Initializing or faultIMP Power outputs inhibited Power outputs enabledFAIL Active fault

(TRIP, Message or Warning)No fault

IMAX Motor current setpoint C0022 Motor current setpoint C0022M MAX Speed controller within its limitation.

Drive is torque controlled.Drive is speed-controlled

6.2 Information on operation

When operating the controller, please observe the following notes:

Stop!- Cyclic connection and disconnection of the controller supply at L1, L2, L3 or

+UG, -UG can overload the internal input current load:- Allow at least 3 minutes between disconnection and reconnection.

- During mains switching (L1,L2,L3) it is not important whether furthercontrollers are supplied via the DC bus.

6.2.1 Switching on the motor side

- Switching on the motor side of the inverter is permissible for emergencyswitch-off.

- Please note:- Switching while a controller is enabled may cause the fault indication ”0Cx”

(short-circuit/earth fault in operating case x).- For long motor cables and operation of controllers with smaller output

power, leakage currents through interfering cable capacitances may causethe fault indication ”OCx”.

- When switching on the motor side, the systems must be rated for DCvoltages.U DCmax = 800 V.

Page 71: ba93sugb.pdf

During operation

6-2 9300BA0998

6.2.2 Controller protection by current derating

Valid for the types 9326 to 9332.

For field frequencies < 5 Hz the controller automatically limits the maximumpermissible output current.

- For operation with chopping frequency = 8 kHz (C0018=1, optimum power):

- The current is derated depending on the heatsink temperature (seeFIG 6-1).

- For operation with chopping frequency = 16 kHz (C0018=2, optimum noise):

- The current is always derated to Ir16 = I016 .

- For operation with automatic change-over of the chopping frequency(C0018=0):

- Below the threshold, the controller operates with 16 kHz (optimum noise).The function of the current derating follow the characteristic ”Imax 16 kHz”in FIG 6-1.

- If a higher torque is required from the machine for example for acceleration,the controller automatically switches to 8 kHz (optimum power).Thefunction of the current derating follows the characteristic ”Imax 8 kHz” inFIG 6-1.

1 . 5 * I 0 8

I M o t o r

| f d | [ H z ]0 5

ϑ K >

8 0 ° C

ϑ K = 60 ° C

ϑ K < 4 0 ° C

1 . 2 5 * I 0 8

I 0 X 1 . 5 * I N 8 = I m a x a t 8 k H z

1 . 5 * I N 1 6 = I m a x a t 1 6 k H z

I 0 1 6I N 1 6 = c h a n g e o v e r t o 8 k H z

a t C 0 0 1 8 = 0

I 0 8

FIG 6-1 Current derating function of the types 9326 to 9332JK Heatsink temperatureIrx: Rated current at U, V, W depending on the chopping frequencyf d : Field frequency at the output U, V, WI0x : max. standstill current for field frequency = 0 Hz

See also the ratings in chapter 3.3.

Page 72: ba93sugb.pdf

Parameterization

7-19300BA0998

7 Parameterization- The parameter setting of the controller is used to adapt the drive to your

applications.

- The complete parameter set is organized in codes which are consecutivelynumbered and always begin with ”C”(see code table, chapter 11.3).

- You can save the parameter set of an application.- Four parameter sets are available so that the controller can be adjusted

rapidly from one application to another.- When delivered, the parameter sets are factory-set.

7.1 Ways of parameterization

There are two ways to change parameters:

- Using the operating module

- Using a superimposed host (PC or PLC) via fieldbus modules and operatingprograms (see accessories chapter 11.1).

In these operating instructions, only the change of parameters using the operatingmodule is described.

Page 73: ba93sugb.pdf

Parameterization

7-2 9300BA0998

7.1.1 Structure of the parameter set

To simplify operation, the operating module 9371BB and the PC programsGLOBAL DRIVE CONTROL and LEMOC2 consist of menu levels which will guideyou rapidly to the desired codes:

- Main menu- contains submenus- contains the complete code list

- Submenus- contain the codes which are assigned to them

Codes consist of:

- Code level- Codes without subcodes contain one parameter- Codes with subcodes contain several parameters

- Parameter level/operating levelThere are four different parameter types:- Absolute values of a physical variable

(e. g. 400 V, 10 s)- Relative values of controller variables

(e. g. 50 % setpoint)- Codes for specific states

(e. g. 0 = controller inhibited, 1 = controller enabled)- Display values

These values can only be displayed and not changed.(e. g. actual motor current under C0054)

You can change absolute and relative values in discrete steps.

Page 74: ba93sugb.pdf

Parameterization

7-39300BA0998

7.1.2 List of the selection menus

Operating module 9371 BB Global Drive Control or LEMOC2

Main menu Submenu Main menu Submenu

USER menu USER menu

Code list Code list

Load / Store Parameter set management

Diagnostic DiagnosticsActual info Momentary operation

History History

Short setup Short setupSpeed mode Speed modeTorque mode Torque mode

DF master Digital frequency masterDF slave bus Digital frequency slave

busDF slave cas Digital frequency slave

cascadeUserMenue CFG Configuration User Menu

Main FB Main function blocksNSET NSET: Speed preparation

NSET-JOG NSET-JOG: JOG valuesNSET-RAMP1 NSET-RAMP1: Standard ramp generator

MCTRL MCTRL: Motor controlDFSET DFSET: Digital frequency processingDCTRL DCTRL: Device control

Terminal I/O Terminal I/OAIN1 X6.1/2 Analog input 1 X6.1/2AIN2 X6.3/4 Analog input 2 X6.3/4

AOUT1 X6 62 Analog output 1 X6/62AOUT2 X6 63 Analog output 2 X6/63

DIGIN Digital inputsDIGOUT Digital outputs

DFIN Digital frequency inputDFOUT Digital frequency output

State bus Statebus

Controller Controller settingSpeed speed

Current Current/TorquePhase Phase

Motor/Feedb. Motor/Feedback systemMotor adj Motor adjustmentFeedback Feedback systems

Monitoring Monitoring

Page 75: ba93sugb.pdf

Parameterization

7-4 9300BA0998

Operating module 9371 BB Global Drive Control or LEMOC2

Main menu SubmenuMain menuSubmenu

LECOM/AIF LECOM/AIF interfaceLECOM-A/B LECOM-A/BAIF interface AIF data interfaceStatus word Status word

System bus System busManagement CAN management

CAN-IN1 CAN-IN1 Input block 1CAN-OUT1 CAN-OUT1 Output block 1

CAN-IN2 CAN-IN2 Input block 2CAN-OUT2 CAN-OUT2 Output block 2

CAN-IN3 CAN-IN3 Input block 3CAN-OUT3 CAN-OUT3 Output block 3

Status word Status wordFDO FDO: Free digital outputs

Diagnostic DiagnosticsFB config FB configurationFunc. blocks Function blocks

ABS ABS: Absolute valueADD ADD Addition

AIF-OUT AIF-OUT Data interfaceAIN1 AIN1 Analog input1 (term. 1/2AIN2 AIN2 Analog input2 (term. 3/4

AND1 AND1 Logic ANDAND2 AND2 Logic ANDAND3 AND3 Logic ANDAND4 AND4 Logic ANDAND5 AND5 Logic ANDAND6 AND6 Logic ANDAND7 AND6 Logic AND

ANEG1 ANEG1 Analog NOTANEG2 ANEG2 Analog NOTAOUT1 AOUT1 Analog output term. 62AOUT2 AOUT2 Analog output term. 63ARIT1 ARIT1 ArithmeticsARIT2 ARIT2 Arithmetics

ARITPH1 ARITPH1 32 Bit ArithmeticsASW1 ASW1 Analog switchASW2 ASW2 Analog switchASW3 ASW3 Analog switchASW4 ASW4 Analog switch

BRK BRK Brake logicCAN-OUT1 CAN-OUT1 Output block 1CAN-OUT2 CAN-OUT2 Output block 2CAN-OUT3 CAN-OUT3 Output block 3

CONV2 CONV2 Converter

Page 76: ba93sugb.pdf

Parameterization

7-59300BA0998

Operating module 9371 BB Global Drive Control or LEMOC2

Main menu SubmenuMain menuSubmenu

CFG-FB CFG FB configurationCMP1 CMP1 Analog comparatorCMP2 CMP2 Analog comparatorCMP3 CMP3 Analog comparator

CONV1 CONV1 ConverterCONV3 CONV3 ConverterCONV4 CONV4 ConverterCONV5 CONV5 ConverterCONV6 CONV6 Converter

CONVPHA1 CONVPHA1 32-bit converterCONVPHPH1 CONVPHPH1 32-bit converter

CONVPP1 CONVPP1 32-bit / 16-bit converterDB DB Analog dead band

DCTRL DCTRL Device controlDFIN DFIN Digital frequency input

DFOUT DFOUT Digital frequency outputDFRFG DFRFG Digital frequency ramp

generatorDFSET DFSET Digital frequency processing

DIGDEL1 DIGDEL1 Digital delayDIGDEL2 DIGDEL2 Digital delay

DIGIN DIGIN Digital input E1 - E5DIGOUT DIGOUT Digital output A1 - A4

DT1 DT1 Differential elementFCNT1 FCNT1 Counter

FDO FDO Free digital outputsFEVAN1 FEVAN1 Free analog input variableFEVAN2 FEVAN2 Free analog input variableFIXSET FIXSET Fixed setpointsFLIP1 FLIP1 Flip-FlopFLIP2 FLIP2 Flip-Flop

LIM LIM LimiterGEARCOMP GEARCOMP Gearbox torsion

MCTRL MCTRL Motor controlMFAIL MFAIL Mains failure detectionMPOT MPOT Motor potentiometerNOT1 NOT1 Logic NOTNOT2 NOT2 Logic NOTNOT3 NOT3 Logic NOTNOT4 NOT4 Logic NOTNOT5 NOT5 Logic NOTNSET NSET Speed preparation

NSET-JOG NSET-JOG JOG valuesNSET-RAMP1 NSET-RAMP1 Standard ramp generator

OR1 OR1 Logic OROR2 OR2 Logic OROR3 OR3 Logic OROR4 OR4 Logic OROR5 OR5 Logic OR

Page 77: ba93sugb.pdf

Parameterization

7-6 9300BA0998

Operating module 9371 BB Global Drive Control or LEMOC2

Main menu SubmenuMain menuSubmenu

PCTRL PCTRL Process controllerPHADD1 PHADD1 32-bit adding elementPHCMP1 PHCMP1 Phase comparatorPHCMP2 PHCMP2 Phase comparatorPHCMP3 PHCMP3 Phase comparatorPHDIFF1 PHDIFF1 32-bit comparison between

setpoint and actual valuePHDIV1 PHDIV1 Phase divisionPHINT1 PHINT1 Phase integratorPHINT2 PHINT2 Phase integratorPHINT3 PHINT3 Phase integrator

PT1 PT1 Delay elementR/L/Q R/L/Q CW-CCW-QSP

REF REF HomingRFG RFG Ramp generator

SRFG1 SRFG1 S-shaped ramp generatorSTORE1 STORE1 Saving phase, E5STORE2 STORE2 Saving phase, E4SYNC1 SYNC1 Control program

synchronizationTRANS1 TRANS1 Signal evaluationTRANS2 TRANS2 Signal evaluationTRANS3 TRANS3 Signal evaluationTRANS4 TRANS4 Signal evaluation

FCODE Free codes

Identify IdentificationDrive Controller

Op Keypad LECOM

Page 78: ba93sugb.pdf

Parameterization

7-79300BA0998

7.2 Parameterization using the operating module

7.2.1 The operating module

(Order no.: EMZ9371BB)

Theoperating modulecan also beplugged on theX1 interfaceand removed duringoperation.When the operating module is plugged on the controller, the module is initialized.Theoperating module is ready to operateafter ”GLOBAL DRIVEREADY” has beendisplayed.

Front view

Global DRIVE

SH PRG

Para

1250 rpm

0051

MCTRL-NACT

RDY IMP Imax Mmax Fail

00

FIG 7-1 The operating module

LCD display

SH PRG

Para 0051RDY IMP Imax Mmax FailStatus indications

Way of parameteracceptance

Parameter

Text

active level;here: parameter level

Code number

Subcode number

Cursor

MCTRL-NACT

1250 rpm00

FIG 7-2 LCD display of the operating module

Page 79: ba93sugb.pdf

Parameterization

7-8 9300BA0998

Segments and status messages of the LCD display

Segment ExplanationCode number four-digit code numberSubcode number two-digit subcode numberParameter Parameter value with max. twelve digitsText Help text with max. 13 digits;

in the operating level: status information of C0183 or contents of C0004

SH PRG SH PRG : Parameter is accepted only with SHIFT + PRG (OFFLINE)SH PRG: Parameter is accepted only with SHIFT + PRG during controller inhibit (OFFLINE)

: Parameter is immdiately accepted by the controller (ONLINE)leer: Parameter cannot be changed

active level Menu = Menu level, Code = Code level, Para = Parameter level, no display = operating level

Status indications of the operating module

Display on offRDY Ready for operation Initializing or faultIMP Power outputs inhibited Power outputs enabledFAIL Active fault No faultIMAX Motor current setpoint C0022 Motor current setpoint C0022M MAX Speed controller 1 in its limitation

Drive is torque controlled.Drive is speed-controlled

Key functions

”SHIFT + ” means:

1. Press the SHIFT key with one finger and keep it pressed.

2. Press the second indicated key with another finger.

Keys Functiony

Menu level Code level Parameter level/operating levelPRG - Change between code, parameter and operating levelSHIFT + PRG - - Accept parameters (depending on

the parameter and menu)

? next higher menu item next higher code number increase displayed numberSHIFT + ? next higher menu item fast increase code number fast increase displayed number fast+ next lower menu item next lower code number decrease displayed numberSHIFT + + next lower menu item fast decrease code number fast decrease displayed number fast* next higher menu level go to the menu level Cursor to the left next lower menu level (submenus) or

code level- Cursor to the right

RUN cancel function of the STOP keySTOP Inhibit controller: Quick stop, controller inhibit or switched off C0469

Trip reset: when a trip has occurred and the STOP key is pressed (independently of C0469).Then, press RUN.

The LED in the key shows the status of the STOP key:- LED on: STOP key pressed- LED off: RUN key pressed

Page 80: ba93sugb.pdf

Parameterization

7-99300BA0998

Operating level

From the parameter level, you reach the operating level by pressing PRG.

- In the operating level, additional status information or the additional displayvalue specified under C0004 is displayed (presetting: actual speed C0051).- When selecting the USER menu, the first code level of the USER menu is

displayed in the first line.

- Additional information is displayed according to the following priority list:

Priority Display Meaning1 GLOBAL DRIVE INIT Initializing or communication error between operating module and controller2 XXX - TRIP active TRIP (contents of C0168/1)3 XXX - MESSAGE active message (contents of C0168/1)4 Special controller states:

Switch-on inhibit5 Source for controller inhibit (the value of C0004 is displayed at the same time):

STP1 Terminal X5/28STP3 Operating module or LECOM A/B/LISTP4 InterBus-S or ProfibusSTP5 System bus (CAN)STP6 C0040

6 Source of quick stop:QSP-term-Ext HIGH signal is applied at input MCTRL-QSP on the function block MCTRL

(in factory setting applied to terminals X5/E1 and X5/E2)

QSP-C0135 Operating module or LECOM A/B/LIQSP-AIF InterBus-S or ProfibusQSP-CAN System bus (CAN)

7 XXX - WARNING Active warning (contents of C0168/1)8 xxxx Value under C0004

User menu

In some applications, specific codes must be changed often.

You can therefore establish a menu menu with max. 32 codes which you usefrequently under C0517.

- The number before the comma is the code number.

- The number after the comma is the subcode.

- Code-subcode combinations are allowed only once.

Page 81: ba93sugb.pdf

Parameterization

7-10 9300BA0998

7.2.2 Change parameters

Tip!You have to save the changed parameter set if you do not want to loose themodifications after mains disconnection (see chapter 7.2.3).

Basic procedure

1. Change from the menus to the code level using the arrow keys?,+,* or .”Code” is displayed.

2. Select output AIN2/OUT (selection number 55) using ? or + select codeor subcode.

3. Change to the parameter level using PRG.”Para” is displayed.

4. Select output AIN2/OUT (selection number 55) using * or move thecursor (small, black bar) under the number to be changed.

5. Select output AIN2/OUT (selection number 55) using ? or + changenumber.

6. Repeat 4. and 5. to change other numbers, if ncessary.

7. Accept parameters. The way of accepting the changed parameterr isdisplayed in front of the parameter:

Display in front of the parameter Controller uses the new valueimmediately, during the change

SH+ PRG after pressing SH+ PRG. Acknowledgement: ok in the displaySH+ PRG Press STOP to inhibit the controller.

Press SHIFT + PRG.Acknowledgement: ok in the displayPress RUN to enable the controller.

8. Press PRG twice to go to the code level. ”Code” is displayed.

Page 82: ba93sugb.pdf

Parameterization

7-119300BA0998

7.2.3 Save parameter set

You have to save the modified parameters if you do not want to loose them aftermains disconnection.

- You can establish up to four parameter sets, e.g. if you process differentmaterials on a machine or if this is required by different operating states(setup mode, ”stand-by”).

- If you need only one parameter set, save the modifications permanentlyunder parameter set 1, since the controller automatically loads parameter set1 after mains connection.

How to proceed

1. Change from the menus to the code level using the arrow keys.”Code” is displayed.

2. Select output AIN2/OUT (selection number 55) using ? or + selectC0003.

3. Change to the parameter level using PRG.”Para” is displayed.

4. Set parameter to 1 using ? or + (also possible during operation).Note: If the parameter set is to be saved under another number, select 2,3, or 4 instead of 1.

5. Press SHIFT + PRG.”OK” is displayed for approx. 1 s.Now your settings are saved permanently under parameter set 1 (or 2, 3.4).

Page 83: ba93sugb.pdf

Parameterization

7-12 9300BA0998

7.2.4 Load parameter set

(possible only when the controller is inhibited)

Warning!- When a new parameter set is loaded, the controller is reinitialized and acts as

if it was connected to the mains:- System configurations and terminal assignments may be changed. Make

sure that your wiring and drive configuration match with the settings of theparameter set.

- Only use terminal X5/28 as a source for controller inhibit! Otherwise the drivemay start accidently when changing to another parameter set.

Tip!When the parameter set is loaded, the RDY message is not displayed, since thecontroller cannot be operated during this time.

During mains connection

The controller automatically loads parameter set 1.

Via keypad

1. X5/28 = LOW

2. Select C0002 using ? or +.

3. Change to the parameter level using PRG.

4. Select the desired parameter set using ? or +.

5. Press SHIFT + PRG.”OK” is displayed.When ”OK” is no longer displayed, the loading iscompleted.

6. Enable controller with X5/28 = HIGH.

Page 84: ba93sugb.pdf

Parameterization

7-139300BA0998

For terminal control

You can change to other parameter sets via e.g. the digital inputs X5/E1¤ X5/E5.

After mains connection, the controller first reads parameter set 1. Then, theterminals are evaluated and the desired parameter set is loaded. A LOW-HIGHedge at input DCTRL-PAR-LOAD (”Load parameter set”) is not necessary in thiscase:

- One or two ditital inputs must be assigned to ”Select parameter set” in everyparameter set.- Determine the source(s) for ”Select parameter set” under C0880. The

signal names are: DCTRL-PAR*1 and DCTRL-PAR*2.

- One digital input must be assigned to ”Load parameter set” in everyparameter set:- Determine the source for ”Load parameter set” under C0881.The signal

name is: DCTRL-PAR-LOAD.

- These inputs must have the same assignment in all parameter sets whichyou want to use.

- The controller reads the terminals assigned with ”Select parameter” as abinary code. The input DCTRL-PAR*1 is the first input, the inputDCTRL-PAR*2 is the second input (e.g. E1 = first input, E2 = second input).- The signal must be applied constantly at the terminals for at least 10 ms so

that the parameter set to be loaded is recognized correctly.- Terminal signals for the selection of the parameter sets:

1st input (DCTRL-PAR*1) 2nd input (DCTRL-PAR*2)Parameter set 1 LOW LOWParameter set 2 HIGH LOWParameter set 3 LOW HIGHParameter set 4 HIGH HIGH

- A LOW-HIGH edge at the input ”Load parameter set” DCTRL-PAR-LOADchanges to the new parameter set.

Procedure:

1. Trigger digital inputs, which are assigned to the function ”Selectparameter set”.

2. Inhibit controller with X5/28 = LOW.

3. Trigger LOW-HIGH edge at the input ”Load parameter set”.

4. When the loading is completed:- C0002 displays the number of the loaded parameter set.- RDY is illuminated.

5. Controller is enabled with X5/28 = HIGH.

Page 85: ba93sugb.pdf

Parameterization

7-14 9300BA0998

7.2.5 Parameter set transfer

(possible only when the controller is inhibited)

Warning!- When a new parameter set is loaded, the controller is reinitialized and acts as

if it was connected to the mains:- System configurations and terminal assignments may be changed.Make

sure that your wiring and drive configuration match with the settings of theparameter set.

- Only use terminal X5/28 as a source for controller inhibit! Otherwise the drivemay start accidently when changing to another parameter set.

You can transfer complete parameter sets from one controller (e.g. controller 1) toanother (e.g. controller 2) using the operating module.

All parameter sets are copied from one controller to the operating unit and saved.

Procedure:

1. Plug operating module on controller 1.

2. Inhibit controller with X5/28 = LOW.

3. Save the last modifications in the corresponding parameter set underC0003.

4. Change from the menus to the code level using the arrow keys.”Code” is displayed.

5. Select C0003 using ? or +.

6. Change to the parameter level using PRG.”Para” is displayed.

7. Select parameter 11.

8. Press SHIFT + PRG.RDY is no longer displayed. BUSY is displayed.All parameter sets are copied to the operating module. Copying iscompleted when BUSY is no longer displayed (after approx. one minute).

Stop!Removeoperating moduleonlyafterBUSYisno longerdisplayed. Otherwise, TRIP”PRX” is activated.

9. Enable controller with X5/28 = HIGH.

10. Plug operating module on controller 2.

11. Inhibit controller 2 with X5/28 = LOW.

12. Change from the menus to the code level using the arrow keys.”Code” is displayed.

Page 86: ba93sugb.pdf

Parameterization

7-159300BA0998

13. Select C0002 using ? or +.

14. Change to the parameter level using PRG.”Para” is displayed.

15. Select parameter 20 to copy and to save all parameter sets from theoperating module to controller 2.

16. Press SHIFT + PRG.RDY is no longer displayed. BUSY is displayed.All parameter sets are copied to and saved in controller 2. Copying andsaving are completed when BUSY is no longer displayed.

17. Enable controller with X5/28 = HIGH.

Tip!Youcanalsocopyindividualparametersets fromtheoperatingmoduletocontroller2:

- For this, use the parameters 11, 12, 14 or 14 instead of parameter 20 in step15., to copy the parameter sets 1, 2, 3 or 4 to controller 2.

- You have to save the copied parameter sets if you do not want to loose themodifications after mains disconnection (see chapter 7.2.3).

Page 87: ba93sugb.pdf

Parameterization

7-16 9300BA0998

7.2.6 Password protection

You can restrict the access to codes via the operating module using the passwordprotection in C0094.

- Reading C0094 using the operating module:- C0094 = 0: password protection is not activated.- C0094 = 9999: password protection is activated.

- Activate password protection:- Enter four-digit number in C0094.- Confirm using SH + PRG.

- Deactivate password protection:- Enter four-digit number again.- All other inputs are refused.

Effect

- Working with the operating module:- The codes of the USER menu can still be read and changed.- All other codes are no longer displayed.

- Working with the field bus:- It is possible to extend the protection under C0096/1 (AIF) and C0096/2

(CAN) when working with a fieldbus.Selection in C0096/X: 0 = no protection

1 = Read protection2 = Write protection3 = Read/write protection

7.3 Display functions

Actual value displays

You can read different actual values using the following codes:

Code MeaningC0051 Absolute actual speed [rpm]C0052 Absolute motor voltage [V]C0053 Absolute DC bus voltage [V]C0054 Absolute motor current [A]C0060 Rotor position [Inc/rev]C0061 Heatsink temperature [C]C0063 Absolute motor temperature [C]

Display only with connected KTY (PTC) via X7 or X8

C0064 Controller load [%]

Identification

- You can read the software version of the controller under C0099.

- Under C0093 you can read the controller type.

Page 88: ba93sugb.pdf

Configuration

8-19300BA0998

8 ConfigurationEvery application needs a certain, application-specific configuration (program).

For this, function blocks are available which can be linked individually for theapplication. The function blocks are linked via codes (see chapter 8.3).

8.1 Predefined configurations

Base configurations are already predefined under code C0005 for standardapplication of the controller. The signal flow charts of the most important baseconfigurations are shown in the appendix.

8.1.1 Working with predefined configurations

To adapt predefined configurations to your application, proceed as follows:

1. Select base configuration under C0005.

2. Select operating mode under C0006 (see chapter 8.2).

3. Configure different signal flow, if necessary:- Remove or integrate function blocks (see chapter 8.3)- Parameterize function blocks (see chapter 8.3.2)- Reconfigure terminals

Tip!If you change the signal flow of the basic configuration, e.g. by adding functionblocks, C0005 is set to ”0”. The message ”COMMON” is displayed.If you change only the assignment of the control inputs and outputs, C0005 is notchanged. Under code C0464 an identification is also displayed.

Page 89: ba93sugb.pdf

Configuration

8-2 9300BA0998

8.2 Operating modes

You determine, by the choice of operating mode,which interface you want to usefor parameter setting or control of the controller.

8.2.1 Parameterization

The parameters are set via the operating module or the field bus module which isplugged to X1, or via the CAN bus (X4). Basically, the parameters can be changedby both interfaces.

8.2.2 Control

The control is via terminals (X5 and X6), via the field bus module at X1 or via thesystem bus (X4). Mixed modes are also possible.

Tip!C0005 contains predefined configurations which allow a very simple change of theoperating mode (see systems manual).

Page 90: ba93sugb.pdf

Configuration

8-39300BA0998

Example: C0005 = 1005

This configuration corresponds to a speed control with control via system bus(CAN).

If more inputs of the function blocks are to be controlled via an interface, proceedas follows:

- Assign the function block inputs to be controlled to ”control objects”depending on the interface used (see chapter 8.3.3):- Free control codes

in case of control via LECOM A/B/LI (RS232, RS485 or optical fibreinterface) or operating module.

- AIF objectsin case of control using InterBus S or Profibus DP.

- CAN objectsin case of control using system bus.

- Then, the inputs can be controlled using these codes or input objects, byaccessing them via the interface.

Example for a distribution of the control on terminals and RS232:

The main speed setpoint in the configuration C0005=1000 is to be controlled viaLECOM A/B/LI. All other inputs remain under terminal control.

1. Select C0780 via LECOM:- C0780 is the configuration code for the main set-value NSET-N in the

function block ”Speed setpoint conditioning” (NSET).

2. Assign a free control code via a selection number.- e.g. 19515 (control code C0141)

The main speed setpoint is now controlled by C0141.

Page 91: ba93sugb.pdf

Configuration

8-4 9300BA0998

8.3 Working with function blocks

You can configure the signal flow in the controller yourself, by connecting functionblocks. The controller can thus be easily adapted to diverse applications.

8.3.1 Signal types

Every function block has a number of inputs and outputs for connection.Corresponding to their functions, there are only certain types of signals at theinputs and outputs:

- Quasi analog signals- Symbol: L- Unit: %- Designation: a- Value range: 16384 = 100%- Resolution: 16 bit

- Digital signals- Symbol: P- Unit: binary, with HIGH or LOW level- Designation: d- Resolution: 1 bit

- Speed signals

- Symbol: a- Unit: rpm- Designation: phd- Resolution: 16 bit

You can connect only the same types of signals. For example, an analog outputsignal of one function block can only be connected to the analog input of anotherfunction block. If you try to connect two different signal types, the connection isrejected.

Tip!A detailed description of all function blocks can be obtained from the systemsmanual.

Page 92: ba93sugb.pdf

Configuration

8-59300BA0998

8.3.2 Elements of a function block

FCNT1-CLKUPC1102/1

C1102/2

FCNT1-LOADC1102/3

C1104/3

FCNT1-OUT

FCNT1

C1101/1

C1101/2C1103/2

C1103/1

C1104/2

FCNT1-LD-VAL

FCNT1-CLKDWN

C1104/1

C1100

CTRL

FCNT1-CMP-VAL

FCNT1-EQUALInput symbol

Configuration code

Display code

Function

Input name Name of the function block

Output name

Output symbol

Parameterization code

FIG 8-1 Structure of an FB using the example of FCNT1

Name of the FB

Identifies the FB disambigeously. FBs with the same function are distinguished bya number behind their names.

EveryFB isdefined byaselectionnumber.Theinput of theselectionnumber into theprocessing table (seechapter 8.3.4)is always required for thecalculationof theFB.The selection numbers can be obtained from selection list 5 (see chapter 11.4).

Example:

(FCNT1, see FIG 8-1)

- FCNT1 selection number 6400 (selection list 5).

Input symbol

Designates the signal type which is allowed for this output as a signal source (seealso chapter 8.3.1).

Tip!You cannot configure inputs which are not linked.

Name of the input

Consists of the FB name and a designation. Inputs with the same function aredistinguished by a number behind their designation.

Page 93: ba93sugb.pdf

Configuration

8-6 9300BA0998

Configuration code

Configures the input with a signal source (e.g. terminal signal, control code, outputof a FB, ¤). Inputs with identical codes are distinguished by the subcode.Thesubcode is attached to the code (Cxxxx/1).These codes are configured by theirsubcodes.

It is not possible to connect an input with several signal sources.

Display code

Displays thecurrent input value. Inputswith identicalcodesaredistinguished bythesubcode.The subcode is attached to the code (Cxxxx/1).These codes aredisplayed via their subcodes.

Display codes cannot be processed.

Function

Represents the mathematical function as a block diagram (see FIG 8-1).

Parameterization code

Adaptation of the function or the behaviour to the application.The settings areexplained and shown in the text and/or the line diagram (see description of the FBin the systems manual).

Output symbol

Designates the signal type. Connections with inputs of the same signal type arepossible (see also chapter 8.3.1).

Every output is defined by a selection number.The selection numbers are dividedinto selection lists (1 to 4)according to the different signal types (see chapter 11.4).An output is linked to an input by the selection numbers.

Example:

(FCNT1, see FIG 8-1)

- FCNT1-OUT selection number 6400 (analog signal, selection list 1).

- FCNT1-EQUAL selection number 6400 (digital signal, selection list 2).

Tip!You cannot configure outputs which are not linked.

Name of the output

Consists of the FB name and a designation. Outputs with the same function aredistinguished by a number behind their designation.

Page 94: ba93sugb.pdf

Configuration

8-79300BA0998

8.3.3 Connect function blocks

General rules

- Assign a signal source to an input.

- One input can have only one signal source.

- Inputs of different function blocks can have the same signal source.

- You can connect only the same types of signals.

Stop!Existing connections which are not desired must be removed byreconfiguration.Otherwise, the drive cannot perform the desired function.

Tip!For the visualization of existing connections, Lenze offers a network list generator(see accessories: GDC PC program).

AND1

&

AND1-IN1

AND1-IN2

AND1-IN3

AND1-OUT

C0821/1

C0821/2

C0821/3

C0820/1

C0820/2

C0820/3

OR1

|1

OR1-IN1

OR1-IN2

OR1-IN3

OR1-OUT

C0831/1

C0831/2

C0831/3

C0830/1

C0830/2

C0830/3

NOT11 NOT1-OUTNOT1-IN

C0841

NOT21 NOT2-OUTNOT2-IN

C0843

C0840

C0842

t0

DIGDEL1-IN

C0724

DIGDEL1-OUT

DIGDEL1C0721C0720

C0723

Connection not possible

Possible connection

X

FIG 8-2 Connection function blocks correctly

Page 95: ba93sugb.pdf

Configuration

8-8 9300BA0998

Basic procedure

1. Select the configuration code of the function block input which is to bechanged.

2. Determine the source of the input signal for the selected input (e.g. fromthe output of another function block)

3. The function block input is assigned via a menu which contains onlythose signal sources which are of the same type as the function blockinput to be assigned.

4. Select the signal source and confirm.

5. Remove undesired connections, if any.- For this, select the corresponding signal assignment of the input via the

configuration code (e. g. FIXED 0, FIXED 1, FIXED 0%, ...).

6. Repeat 1. to 5. until the desired configuration is set.

7. Save modified configuration in the desired parameter set.

Example

- Condition:- Factory setting

- Task:- Square the analog signal of X6/3, X6/4 and output to X6/62.

- Solution:- You need the function blocks AIN2, ARIT2 and AOUT2.

+ - */ x/(1-y)

C0600

xy

ARIT2

ARIT2-OUTC0602/1

á200%

C0602/2

ARIT2-IN1

ARIT2-IN2

C0601/1

C0601/2

62

AOUT1C434/1

+

+

AOUT1-IN

AOUT1-GAIN

AOUT1-OFFSET

C0434/3

C0434/2

C0431

C0433

C0432

3

4

AIN2

++

AIN2-OUT

AIN2-GAIN

AIN2-OFFSET

C0409/1

C0409/2

C0407

C0408

C0108/1

C0109/1

C0027/2

C0026/2

FIG 8-3 Example of a simple configuration

Page 96: ba93sugb.pdf

Configuration

8-99300BA0998

Make connections

1. Determine signal source for ARIT2-IN1:- Change to the code level using the arrow keys- Select C0601/1 using ? or +.- Change to the parameter level using PRG.- Select output AIN2/OUT (selection number 55) using ? or +.- Confirm using SH + PRG- Change to the code level again using PRG.

2. Determine signal source for ARIT2-IN2:- Select C0601/2 using ?.- Change to the parameter level using PRG.- Select output AIN2/OUT (selection number 55) using ? or +.- Confirm using SH + PRG- Change to the code level again using PRG.

3. Parameterize ARIT2:- Select C0600 using +.- Change to the parameter level using PRG.- Select multiplication (selection number 3).- Confirm using SH + PRG- Change to the code level again using PRG.

4. Determine signal source for AOUT1:- Select C0431 using +.- Change to the parameter level using PRG.- Select output ARIT2-OUT (selection number 5505).- Confirm using SH + PRG- Change to the code level again using PRG.

5. Enter function block ARIT2 in the processing table:- Select C0465 and subcode 8 using ?.- Change to the parameter level using PRG.- Enter function block ARIT2 (selection number 5505).- Confirm using SH + PRG- Change to the code level again using PRG.- The sequence of the FB processing is thus determined.

Page 97: ba93sugb.pdf

Configuration

8-10 9300BA0998

Remove connections

- Since a source can have several targets, there may be further signalconnections, which may not be wanted.

- Example:- In the default setting of the base configuration C0005 = 1000 (speed

control), ASW1-IN1 and AIN2-OUT are connected.- This connection is not automatically removed by the settings described

above! If you do not want this connection, it must be removed.

+ - */ x/(1-y)

C0600

xy

ARIT2

ARIT2-OUTC0602/1

á200%

C0602/2

ARIT2-IN1

ARIT2-IN2

C0601/1

C0601/2

62

AOUT1C434/1

+

+

AOUT1-IN

AOUT1-GAIN

AOUT1-OFFSET

C0434/3

C0434/2

C0431

C0433

C0432

3

4

AIN2

++

AIN2-OUT

AIN2-GAIN

AIN2-OFFSET

C0409/1

C0409/2

C0407

C0408

C0108/1

C0109/1

C0027/2

C0026/2

ASW1-IN1

C0812/1

1

0

C0812/2

ASW1-SET

ASW1-IN2

ASW1

ASW1-OUT

C0813

C0810/1

C0810/2

C0811FIXED0

FIXED0%NSET-NADD

FIG 8-4 Remove connections in a configuration

6. Remove connection between ASW1-IN1 and AIN2-OUT:- Select output AIN2/OUT (selection number 55) using ? or + Select

C0810/1- Change to the parameter level using PRG.- Select the constant FIXED0% (selection number 1000) using ? or +.- Confirm using SH + PRG- Change to the code level again using PRG.

Now, the connection is removed.

7. Save new configuration, if desired:- If you do not want to lose the modifications after mains disconnection, save

the new signal configuration under C0003 in one of the parameter sets.

Page 98: ba93sugb.pdf

Configuration

8-119300BA0998

8.3.4 Entries into the processing table

The 93XX controller provides a certain time for calculating the processing time ofFBs. Since the type and number of FBs to be used depends on the application andcan vary strongly, not all available FBs are permanently calculated. A processingtable is therefore provided under code C0465, where only the FBs used are listed.This means that the drive system is perfectly matched to the task.If further functionblocks are integrated into an existing configuration, these must be listed in theprocessing table.

Several aspects must be observed:

The number of FBs to be processed is limited

A maximum of 50 FBs can be integrated into a configuration.Every FB requires acertain processing time. Code C0466 displays the residual time for the processingof FBs. If this time has elapsed no further FBs can be integrated.

Entry sequence into the FBs

Normally, the entry sequence under C0465 is arbitrary, but it may be important forapplications with high response. In general, the most favourable sequence isadapted to the signal flow.

Example:

AND1

&

AND1-IN1

AND1-IN2

AND1-IN3

AND1-OUT

C0821/1

C0821/2

C0821/3

C0820/1

C0820/2

C0820/3

AND2

&

AND2-IN1

AND2-IN2

AND2-IN3

AND2-OUT

C0823/1

C0823/2

C0823/3

C0822/1

C0822/2

C0822/3

OR1

≥1

OR1-IN1

OR1-IN2

OR1-IN3

OR1-OUT

C0831/1

C0831/2

C0831/3

C0830/1

C0830/2

C0830/3

E1

E2

E3

E4

E51

0

C0114/1...5

DIGIN DIGIN1

DIGIN2

DIGIN3

DIGIN4

DIGIN5

C0443

A1

A2

A3

A41

0

C0118/1...4

DIGOUTDIGOUT1

DIGOUT2

DIGOUT3

DIGOUT4

C0117/1

C0117/2

C0117/3C0117/4

C0444/4C0444/3C0444/2C0444/1

FIXED0

FIXED1

FIG 8-5 Example of a configuration

Page 99: ba93sugb.pdf

Configuration

8-12 9300BA0998

Structure of the processing table for the configuration example FIG 8-5:

1. DIGIN does not have to entered into the processing table

2. The first FB is AND1, since it receives its input signals from DIGIN andonly has successors.

3. The second FB is OR1, since its signal source is the output of AND1(predecessor). This means that the output signal in AND1 must begenerated first, before it can be processed in OR1. At the same time,OR1 has a successor.This means that OR1 must be entered in theprocessing table before the successor.

4. The third FB is AND2, since it has a predecessor (see 3.)

5. The entries in C0465 are:- Position 10: AND1 10500- Position 11: OR1 10550- Position 12: AND2 10505

This example was started with position 10, because these positions are notassigned in the default setting.

FBs do not have to be entered consecutively in the processing table. Emptypositions in the processing table are permissible.

Tip!Other FBs can also be entered between the FBs listed in the example.

FBs which do not have to be entered into the processing table

The following signal sources are always executed and do not have to be enteredinto the processing table:

- AIF-IN

- CANx-IN

- DIGIN

- DIGOUT

- FCODE (all free codes)

- MCTRL

- fixed signal sources (FIXED0, FIXED0%, etc.)

Page 100: ba93sugb.pdf

Configuration

8-139300BA0998

Frequent faults in the configuration

Malfunction Cause Remedy

FB does not supply an output signal FB was not entered into the processingtable C0465

Enter FB

FB only supplies constant signals FB was deleted from or overwritten in theprocessing table

Enter FB again, possibly under a differentsubcode (position)

The output signal does not arrive at thefollowing FB

No connection between the functionblocks

Make connection (from the view of thenext FB) by the configuration code (CFG)

FB cannot be entered in the table C0465 Residual process time is too short (seeC0466)

Remove FBs not used (e.g. inputs andoutputs not used)

In networked drives, functions may be re-located to other controllers

The controller outputs internally calculatedsignals with a delay

FBs are processed in an incorrect se-quence

Adapt processing table under C0465 tothe signal flow

Page 101: ba93sugb.pdf

Configuration

8-14 9300BA0998

8.4 Description of function blocks

Table of exisiting function blocks

Functionbl k

Description CPU time used in base configuration C0005block

p[ms] 1000 4000 5000 6000 7000 20 21

AND1 Logic AND, block1 7 - -

AND2 Logic AND, block2 - -

AND3 Logic AND, block3 - -

AND4 Logic AND, block4 -

AND5 Logic AND, block5AND6 Logic AND, block6AND7 Logic AND, block7OR1 Logic OR, block1 7 - - - - -

OR2 Logic OR, block2 - -

OR3 Logic OR, block3 - -

OR4 Logic OR, block4 -

OR5 Logic OR, block5 -

NOT1 Logic NOT, block1 4 - -

NOT2 Logic NOT, block2 - -

NOT3 Logic NOT, block3 - -

NOT4 Logic NOT, block4 -

NOT5 Logic NOT, block5 -

R/L/Q QSP / set-value inversion 9 - - - -

FLIP1 D-Flipflop 1 7 - -

FLIP2 D-Flipflop 2DIGDEL1 Binary delay element 1 10DIGDEL2 Binary delay element 2DIGIN Input terminals X5/E1¤X5/E5 - - - - - - - -

DIGOUT Output terminals X5/A1¤X5/A4 - - - - - - - -

AIN1 Analog input X6/1, X6/2 11 - - - - - - -

AIN2 Analog input X6/3, X6/4 29 - - - - - - -

AOUT1 Analog output X6/62 13 - - - - - - -

AOUT2 Analog output X6/63 - - - - - - -

FCNT1 Counter 11FEVAN1 Free analog input variable 4FEVAN2 Free analog input variableCMP1 Comparator 1 15 - - - - - - -

CMP2 Comparator 2 - -

CMP3 Comparator 3 -

ASW1 Analog changeover 1 4 - - - -

ASW2 Analog changeover 2 - -

ASW3 Analog changeover 3 - -

ASW4 Analog change-over 4 - -

ANEG1 Analog inverter 1 - - - - - - -

ANEG2 Analog inverter 2 -

PT1-1 First order time-delay element 9ARIT1 Arithmetic block 1 12 - -

ARIT2 Arithmetic block 2ARITPH1 32-bBit arithmetic block 15LIM1 Limiter 6 - -

Page 102: ba93sugb.pdf

Configuration

8-159300BA0998

Functionblock

used in base configuration C0005CPU time[ms]

DescriptionFunctionblock 212070006000500040001000

CPU time[ms]

Description

ADD1 Addition block 9 -

ABS1 Absolute value generator 5 - -

FIXSET1 Fixed set-values 10DFIN Digital frequency input 6 - - - - - -

DFOUT Digital frequency output 38 - - - - - - -

DFSET Digital frequency processing 93 - - - -

DCTRL Device control - - - - - - - -

MCTRL Servo control - - - - - - - -

NSET Speed set-value conditioning 77 - - - - -

MPOT1 Motor potentiometer 22PCTRL1 Process controller 63REF Homing function 110 - - - - -

RFG1 Ramp generator 18 -

SRFG1 S-shaped ramp generator 15SYNC1 Multi-axis positioning 55GEARCOMP Gearbox torsion 1DT1-1 Differential element 13DFRFG1 Digital frequency ramp generator 44MFAIL Mains failure detection - -

BRK Trigger holding brake 17TRANS1 Binary flank evaluation 8TRANS2 Binary flank evaluationTRANS3 Binary flank evaluationTRANS4 Binary flank evaluationMONIT Monitoring - - - - - - - -

MLP1 Motor phase failure detection 30S&H Sample and Hold 5STORE1 Memory 1 35STORE2 Memory 2 20DB1 Dead band 8 -

CONV1 Conversion 9CONV2 ConversionCONV3 Conversion -

CONV4 ConversionCONV5 Conversion -

CONV6 Conversion -

CONVPHA1 32-bit conversion 6CONVPHPH1 32-bit conversion 80CONVPP1 32-bit / 16-bit conversion 55

Page 103: ba93sugb.pdf

Configuration

8-16 9300BA0998

Functionblock

used in base configuration C0005CPU time[ms]

DescriptionFunctionblock 212070006000500040001000

CPU time[ms]

Description

PHADD1 32-bit addition block 10PHCMP1 Comparator 9 -

PHCMP2 Comparator -

PHCMP3 Comparator -

PHINT1 Phase integrator 8PHINT2 Phase integratorPHINT2 Phase integratorPHDIFF 32-bit comparison between setpoint and

actual value10

PHDIV1 Conversion 9AIF-OUT Fieldbus 60 - - - - -

CAN-OUT System bus - - - - -

FCODE 17 Free control codes - - - - - - - -

FCODE 26/1 - - - - - - -

FCODE 26/2 - - - - - - -

FCODE 27/1 - - - - - - -

FCODE 27/2 - - - - - - -

FCODE 32 - - - -

FCODE 37 -

FCODE 108/1 - - - - - - -

FCODE 108/2 - - - - - - -

FCODE 109/1 - - - - - - -

FCODE 109/2 - - - - - - -

FCODE 141 -

FCODE 175 -

FCODE 250 -

FCODE 471 - -

FCODE 472/1FCODE 472/2FCODE 472/3 - - - - - -

FCODE 472/4FCODE 472/5 - - - - -

FCODE 472/6 - - - - -

FCODE 472/7FCODE 472/8FCODE 472/9 - -

FCODE 472/10 - -

FCODE 472/11 -

FCODE 472/12FCODE 472/13FCODE 472/14FCODE 472/15FCODE 472/16FCODE 472/17FCODE 472/18FCODE 472/19FCODE 472/20

Page 104: ba93sugb.pdf

Configuration

8-179300BA0998

Functionblock

used in base configuration C0005CPU time[ms]

DescriptionFunctionblock 212070006000500040001000

CPU time[ms]

Description

FCODE 473/1 - - - -

FCODE 473/2 - - -

FCODE 473/3 - - -

FCODE 473/4FCODE 473/5FCODE 473/6FCODE 473/7FCODE 473/8FCODE 473/9FCODE 473/10FCODE 474/1FCODE 474/2FCODE 474/3FCODE 474/4FCODE 474/5FCODE 475/2

Page 105: ba93sugb.pdf

Configuration

8-18 9300BA0998

8.5 Monitoring

Various monitoring functions protect the drive from impermissible operatingconditions.

If a monitoring function is released,

- the corresponding set reaction is triggered (see chapter 8.5.1).

- a digital output is set if it is assigned to the corresponding reaction.

- the fault indication is entered at the first position in the history buffer (seechapter 9.2).

8.5.1 Reactions

The controller can react to interference in four different ways:

- TRIP (highest priority)

- Message

- Warning

- OFF=no reaction (lowest priority)

For some operating faults you can determine the reaction of the controller (seechapter 8.5.2).

TRIP

Status indications of the operating module in case of TRIPRDY IMP FAILP 3 3

3 : on P : off H : flashing

Drive behaviour:

- Switches the power outputs U, V, W to a high resistance until TRIP-Reset isdone

- The drive is idling (no control!).

- After TRIP reset (see chapter 9.4) the drive accelerates to its setpoint alongthe set ramps.

Page 106: ba93sugb.pdf

Configuration

8-199300BA0998

Message

Status indications of the operating module in case of messageRDY IMP FAILP 3 3

3 : on P : off H : flashing

Drive behaviour:

- Switches the power outputs U, V, W to a high resistance as long as the faultis active.

- Short-term fault $0.5 s:- The drive is idling (no control!), as long as the fault is active.- If the fault is eliminated, the drive moves to its set-value with maximum

torque.

- Long-term fault 0.5 s- The drive is idling (no control!) as long as the fault is active- Homing points are lost- If the fault is eliminated, the drive accelerates to its setpoint along the set

ramps.

Danger!The drive restarts automatically if the fault is eliminated.

Warnung

Status indication of the operating module in case of warningRDY IMP FAIL3 P 3

3 : on P : off H: flashing

Drive behaviour:

- The drive operates under control.

OFF

- No reaction on operating faults! Monitoring is deactivated.

Stop!If monitoring functions are deactivated, the drive can be destroyed.

Page 107: ba93sugb.pdf

Configuration

8-20 9300BA0998

8.5.2 Monitoring functions

Overview of the fault sources detected by the controller, and the correspondingreactions.

Fault indication Possible reactions

Display LECOM Meaning T M W off CodeCCr T: 71 System fault - - - - -CE0 T: 61

W: 2061Communication error (AIF) T - T - C0126

CE1 T: 62W: 2062

Communication error at the process data input objectCAN-IN1 (time monitoring can be set under C0357/1)

T - T - C0591

CE2 T: 63W: 2063

Communication error at the process data input objectCAN-IN2 (time monitoring can be set under C0357/2)

T - T - C0592

CE3 T: 64W: 2064

Communication error at the process data input objectCAN-IN3 (time monitoring can be set under C0357/3)

T - T - C0593

CE4 T: 65W: 2065

BUS-OFF state (many communication errors occurred) T - T - C0595

EEr T: 91W: 2091M: 1091

External monitoring - T T T C0581

H05 T: 105 Internal fault - - - - -H07 T: 107 Internal fault - - - - -H10 T: 110

W: 2110Sensor fault: heat sink temperature - - - T C0588

H11 T: 111W: 2111

Sensor fault: indoor temperature - - - T

LP1 T: 32 Motor phase failure detection (function block must beentered in C0465)

T - T - C0597

LU M: 1030 Undervoltage - - - - -NMAX T: 200 Maximum speed exceeded (C0596) - - - - -OC1 T: 11 Short-circuit - - - - -OC2 T: 12 Earth fault - - - - -OC5 T: 15 I x t overload - - - - -OH T: 50 Heat sink temperature 1 (max. permissible, fixed) - - - - -OH3 T: 53 Motor temperature 1 (max. permissible, fixed) - - - T C0583OH4 W: 2054 Heat sink temperature 2 (adjustable; C0122) - - - T C0582OH7 W: 2057 Motor temperature 2 (can be set; code: C0121) - - - T C0584OH8 T: 58

W: 2058Motor temperature (fixed) via inputs T1/T2 T - T* - C0585

OU M: 1020 Overvoltage in the DC bus - - - - -P03 T: 153

W: 2153Contouring error T - - T C0589

P13 T: 163W: 2163

Phase overflow - - T T C0590

P16 T: 166W: 2166

Sync error T - T T C1290/1

PEr T: 74 Program error - - - - -PI T: 79 Fault during initialization - - - - -PR0 T: 75 General fault in parameter sets - - - - -PR1 T: 72 Fault in parameter set 1 - - - - -PR2 T: 73 Fault in parameter set 2 - - - - -PR3 T: 77 Fault in parameter set 3 - - - - -PR4 T: 78 Fault in parameter set 4 - - - - -

Page 108: ba93sugb.pdf

Configuration

8-219300BA0998

Fault indication Possible reactions

Display CodeoffWMTMeaningLECOMSd2 T: 82

W: 2082Resolver fault - - T* T C0586

Sd3 T: 83W: 2083

Encoder fault at X9 PIN 8 T - T* - C0587

Sd5 T: 85W: 2085

Encoder fault at X6/1 X6/2 (C0034 = 1) T - T - C0598

Sd6 T: 86W:2086

Sensor fault: motor temperature (X7 or X8) - - T T C0594

Sd7 T: 87 Fault in the absolute value encoder at X8 T - - - C0025

T: TRIP M: Message W: Warning -: Lenze T: possible -: not possible

T*: possible, but the motor may be destroyed if the fault is not removed immediately

Tip!The information in the row ”LECOM” is read from C0168/x if the history buffer isaccessed via a fieldbus module.

Overcurrent diagram of the fault indication ”OC5”

200%

150%

100%

70%

10s 60s 120s 180s

time

Controller output current *

Ixt diagram (100% load)

for C0022$ 150 INx

70% thermal continuous currentfor C0022 150% INx

* rated controller current 100%

x depending on the chopping frequency of the inverter

100% thermal continuous current

K35.0151

FIG 8-6 Max. permitted overcurrent depending on the time

Page 109: ba93sugb.pdf

Configuration

8-22 9300BA0998

8.5.3 Fault display via digital output

You can assign the fault indications TRIP, message, and warning in the functionblock DIGOUT to digital outputs (e.g. the terminals X5/A1¤0 X5/A4).

Display TRIP or Message or Warning individually (individual indication):

1. Select digital output in the code level under C0117 and subcode.

2. Assign TRIP or Message or Warning to the parameter level.

Display TRIP, Message, Warning collectively (collective indication):

1. Assign TRIP, Message and Warning to an OR element.

2. Select digital output in the code level under C0117 and subcode.

3. Assign output of the OR-element in the parameter level.

Display monitoring functions individually:

1. Select digital output in the code level under C0117 and subcode.

2. Assign monitoring function (e.g. MONIT-OH7).

Page 110: ba93sugb.pdf

Troubleshooting and fault elimination

9-19300BA0998

9 Troubleshooting and fault elimination- You can recognize immediately whether a fault has occurred by display

elements or status information (see chapter 9.1).

- You can analyze the fault using the history buffer (chapter 9.2) and the list inchapter 9.3.

- The list in chapter 9.3 indicates how to eliminate the fault.

9.1 Troubleshooting

Display on the controller

Two LEDs indicate the controller status.

LED green LED red Check

3 P Controller enabled; no fault

H P C0183; possibly C0168/1

P H C0168/1

3 : on P : off H: flashing

Display on the operating module

Status messages in the display indicate the controller status.

FAIL = 3 : TRIP or Message or Warning is active

FAIL RDY IMP Check

P 3 P Controller enabled; no fault

3 P 3 C0168/1

P P 3 C0183

P 3 3 C0183

3 3 P C0168/1

3 3 3 C0168/1

3 : on P : off

Display via the LECOM status word C0150

Four bits of the status word indicate the controller status.

Bit 7Ctrl. enable

Bit 12Warning

Bit 13Message

Bit 15Ready foroperation

Check

1 0 0 1 C0183

1 1 1 0 C0168/1

0 1 0 1 C0168/1

1 0 1 1 C0168/1

0 1 0 1 C0168/1

Page 111: ba93sugb.pdf

Troubleshooting and fault elimination

9-2 9300BA0998

9.2 Fault analysis with the history buffer

Thehistorybuffer isused to tracefaults.Thefault messagesare stored in thehistorybuffer in the order of their occurrence.

Tip!The codes of the history buffer are contained in the menu Diagnostics

9.2.1 Structure of the history buffer

- The history buffer has eight memory units which can be requested bysubcodes.

- The first memory unit (subcode 1) contains information about the activefault.- The history buffer is written only after the fault has been eliminated or

acknowledged. The last fault but six is eliminated from the history bufferand can no longer be read.

- The memory units 1 to 7 contain information on the last to the last fault butsix.

- For every fault occurred, certain information is stored which can be retrievedby codes:

Code and information to be called Memory unit

C0168 C0169 C0170 Subcode1 Active fault2 Memory unit 1

Frequency of a 3 Memory unit 2

Fault recognition Time of the lastFrequency of afault immediately 4 Memory unit 3Fault recognition

and reactionTime of the lastoccurrence

fault immediatelyfollowed by the

f l5 Memory unit 4y

same fault 6 Memory unit 57 Memory unit 68 History buffer unit 7

Page 112: ba93sugb.pdf

Troubleshooting and fault elimination

9-39300BA0998

9.2.2 Working with the history buffer

Fault recognition and reaction

- C0168 contains the fault recognition for every memory unit and the reactionon the fault.- It is entered as LECOM fault number (see chapter 8.5.2).

Please note:

- If there are several faults with different reactions:- Only the reaction with the higest priority (TRIP Message Warning) is

entered.

- If there are faults with the same reaction (e.g. 2 messages) simultaneously:- Only the fault which occurred first is entered.

Time

- The times when the faults occurred are entered under C0169:- Reference time is the state of the mains switch-on elapsed-time meter

(C0179).

Please note:

- If a fault is immediately followed by another several times, only the time ofthe last occurrence is stored.

Frequency

- The frequency of a fault immediately followed by the same fault is enteredunder C0170. The time of the last occurrence is stored.

Clear history buffer

Set C0167 = 1 to clear the history buffer.

Page 113: ba93sugb.pdf

Troubleshooting and fault elimination

9-4 9300BA0998

9.3 Fault indications

Tip!If the fault indication is requested by a fieldbus, a LECOM no. is read from C0168/xinstead of theabbreviation. Themeaning of theLECOM no. is listed inchapter8.5.2”Monitoring functions”.

Display Fault Cause Remedy--- No fault - -CCr System fault Strong interference on control cables

Ground or earth loops in the wiringScreen control cablesPE wiring (see chapter 4.3 ”Installation of aCE-typical drive system”)

CE0 Communication error Interference during transmission of controlcommands via automation interface X1

Plug in automation module firmly, bolt down ifnecessary

CE1 Communication error inthe process data objectCAN_IN_1

CAN_IN_1 object receives faulty data orcommunication is interrupted

Check cable at X4Check transmitterIncrease monitoring time under C0357/1 ifnecessary

CE2 Communication error inthe process data objectCAN_IN_2

CAN_IN_2 object receives faulty data orcommunication is interrupted

Check cable at X4Check transmitterIncrease monitoring time under C0357/2 ifnecessary

CE3 Communication error inthe process data objectCAN_IN_3

CAN_IN_3 object receives faulty data orcommunication is interrupted

Check cable at X4Check transmitterIncrease monitoring time under C0357/3 ifnecessary

CE4 BUS-OFF state Controller has received too many incorrecttelegrams by system bus X4 and hasdisconnected from the bus

Check wiringCheck bus terminator (if any)Check screen contact of the cablesCheck PE connectionCheck bus load:Reduce baud rate (observe cable length)

EEr External fault (TRIP-Set) A digital input assigned to the TRIP setfunction has been activated

Check external encoder

H05 Internal fault Contact LenzeH07 Incorrect power stage During initialization of the controller, an

incorrect power stage was detectedContact Lenze

H10 Sensor fault: heat sinktemperature

Sensor of heat sink temperature detectionindicates indefinite values

Contact Lenze

H11 Sensor fault: indoortemperature

Sensor of the indoor temperature detectionindicates indefinite values

Contact Lenze

LP1 Motor phase failure A current-carrying motor phase has failed Check motor;Check supply cables

The current limit is set too low Set a higher current limit under C0599This monitoring is not suitable for:- Synchronous servo motors- for field frequencies > 480 Hz

Deactivate monitoring with C0597= 3

LU Undervoltage DC bus voltage is smaller than the value fixedunder C0173

Check mains voltageCheck supply cable

N MAX max. plant speedexceeded (C0596)

Active load (e.g. for hoists) too highDrive is not speed-controlled, torqueexcessively limited

Check drive dimensioning.Increase torque limit if necessary

Page 114: ba93sugb.pdf

Troubleshooting and fault elimination

9-59300BA0998

Display RemedyCauseFaultOC1 Short-circuit Short-circuit

Excessive capacitive charging current of themotor cable

Find out cause of short circuit; check cableUse motor cable which is shorter or of lowercapacitance

OC2 Earth fault One of the motor phases has earth contactExcessive capacitive charging current of themotor cable

Check motor; check cableUse motor cable which is shorter or of lowercapacitance

OC5 I x t overload Frequent and too long acceleration processeswith overcurrentPermanent overload with IMotor > 1.05 x INx

Check drive dimensioning.

OH Heat sink temperature ishigher than the value setin the controller

Ambient temperatureT a > 40 C or 50 C

Heat sink very dirtyIncorrect mounting position

Allow controller to cool and ensure betterventilationCheck ambient temperature in the controlcabinetClean heat sinkChange mounting position

OH3 1) Motor temperature ishigher than the valueset in the controller

Motor too hot because of excessive current orfrequent and too long accelerationNo PTC connected

Check drive dimensioning.

Connect PTC or switch off monitoring(C0583= 3)

OH4 Heat sink temperature ishigher than the value setunder C0122

Ambient temperatureT a > 40 C or 50 C

Heat sink very dirtyIncorrect mounting positionValue set under C0122 was too low

Allow controller to cool and ensure betterventilationCheck ambient temperature in the controlcabinetClean heat sinkChange mounting positionEnter higher value

OH7 1) Motor temperature ishigher than the valueset under C0121

Motor too hot because of excessive current orfrequent and too long accelerationNo PTC connected

Value set under C0121 was too low

Check drive dimensioning.

Connect PTC or switch off monitoring(C0584= 3)Enter higher value

OH8 PTC at terminals T1, T2indicates motoroverheat

Motor too hot because of excessive current orfrequent and too long accelerationTerminals T1, T2 are not assigned

Check drive dimensioning.

Connect PTC or thermostat or switch offmonitoring (C0585= 3)

OU Overvoltage Excessive braking energy (DC bus voltagehigher than the value set under C0173)

Use brake module or energy recovery module

P03 Contouring error Phase difference between set and actualposition is larger than the contouring errorlimit set under C0255Drive cannot follow digital frequency (Imaxlimit)

Extend contouring error limit with C0255Switch off monitoring if necessary (C0589 =3)

Check drive dimensioning.P13 Phase overflow Phase controller limit reached

Drive cannot follow digital frequency (Imaxlimit)Enable driveCheck drive dimensioning

Page 115: ba93sugb.pdf

Troubleshooting and fault elimination

9-6 9300BA0998

Display RemedyCauseFault

Transmission error of async telegram on thesystem bus

The time between two sync telegrams isfaulty

C0362 display the delay between two synctelegrams (C0362 = 0, communicationinterrupted)- Set the time in C1121 = set time in C0362- Adapt the time of the sync telegram from

the master

P16

system bus Sync telegram from the master (PLC) does notarrive

- Check communication channel- Check baud rate, controller address

P16The controller was enabled before theinitialization was completed

Repeat mains connection and wait forinitializing

T i i f

The controller was enabled before theinitialization was completed

Repeat mains connection and wait forinitializing

Transmission error of async telegram viaterminal

No synchronization signal Connect synchonization signal to terminal X10E5

terminalThe period of the synchronization signal is nota multiple of 1 ms

Adapt period

PEr Program interference A fault in the program was detected Send controller with data (on diskette) toLenze

PI Initializing error A fault was detected during parameter settransfer between the controllersParameter set does not match with thecontroller

Correct parameter set

PR0PR1PR2PR3PR4

Parameter set error Fault when reading a parameter setCAUTION:The factory setting is loaded automatically

Set the desired parameters and save underC0003For PRO the supply voltage must be switchedoff additionally

Sd2 Resolver fault Resolver cable interrupted Check resolver cable for open circuitCheck resolveror switch off monitoring (C0586 = 3)

Sd3 Encoder fault at X9/8 Cable interruptedInput X9 PIN 8 not assigned

Check cable for open circuitAssign input X9 PIN 8 with 5V or switch offmonitoring (C0587 = 3)

Sd5 Master current sourcedefective

Master current at X6/1 X6/2 < 2mA Check cable for open circuitCheck master current source

Sd6 Sensor fault Encoder of the motor temperature detectionat X7 or X8 indicates undefined values

Check supply cable for firm connectionSwitch off monitoring with C0594 = 3 ifnecessary

Sd7 Encoder fault Absolute encoder with RS485 interface doesnot transmit data

Check supply cableCheck encoderCheck voltage supply C0421No Stegmann encoder connected

1) Temperature detection via resolver or incremental encoder

Page 116: ba93sugb.pdf

Troubleshooting and fault elimination

9-79300BA0998

9.4 Rest of fault indications

TRIP

- After eliminating the fault, the pulse inhibit is only reset afteracknowledgement of TRIP.

- Acknowledge TRIP by:- Operating module:

Press STOP key.Then press RUN to enable the controller again.

- LECOM: Set C0043 to ”0”- Control word C0135- Terminal X5/E5- Control word AIF- Control word system bus

Tip!If a TRIP source is still active, the TRIP cannot be reset.

Message

- After eliminating the fault, the pulse inhibit is reset automatically.

Page 117: ba93sugb.pdf

Troubleshooting and fault elimination

9-8 9300BA0998

Page 118: ba93sugb.pdf

Maintenance

10-19300BA0998

10 Maintenance- The controller is free of maintenance if the prescribed conditions of

operation are observed (see chapter 3.2).

- If the ambient air is polluted, the air vents of the controller may beobstructed. Check the air vents periodically (depending on the degree ofpollution approx. every four weeks):- Free the obstructed air vents using a vacuum cleaner.

Stop!Do not use sharp or pointed tools such as a knife or screwdriver to clean the airvents.

Page 119: ba93sugb.pdf

Maintenance

10-2 9300BA0998

Page 120: ba93sugb.pdf

Appendix

11-19300BA0998

11 Appendix

11.1 Accessories

For the controllers, Lenze offers the following accessories:

- Mains filters

- Fuses

- Fuse holders

- System cable for resolver

- System cable for digital frequency coupling

A PC can be connected to the controller via the field bus module LECOMA/B(RS232, RS485 or fibre optics). The controller can be easily parameterized usingthe Global Drive Control or LEMOC2 PC programs.

PC program Global Drive Control

The program runs under Windows and is supplied with drivers for LECOMA/B(RS232, RS485 or fibre optics).

Further functions of the PC program:

- Process signal visualization

- Diagnostics and troubleshooting

- Commissioning support

- Oscilloscope function

Page 121: ba93sugb.pdf

Appendix

11-2 9300BA0998

11.2 Application examples

11.2.1 Speed control

The most important settings (short setup)

Tip!The following codes arecontained in the menu: ”Short Setup / Speed mode” of theoperating module or Global Drive Control or LEMOC 2.

Input motor type (contains all nameplate data of the motor)

C0173 xxx Enter UG limit (mains voltage)C0086 xxx Enter LENZE motor type

Enter maximum motor current

C0022 xxxA Determine Imax

Enter controller configuration

C0005 1000 Select speed controlC0025 xxx Enter feedback system

Speed setpoint settings

C0011 xxx rpm Determine max. speedC0012 xxx s Set acceleration timeC0013 xxx s Set deceleration timeC0105 xxx s Set QSP deceleration time

Application parameters

C0070 xxx Vp n controllerC0071 xxx Tn n-controller

Save parameters

C0003 xxx Save all parameters

Page 122: ba93sugb.pdf

Appendix

11-39300BA0998

3 4

C0027/2

C0026/2

AIN

2

+ +

ASW1

C0812/1

10

E1

E2

E3

E4

E5

10

C0114/1...5

DIG

INDIG

IN1

DIG

IN2

DIG

IN3

DIG

IN4

R LR/L

QSP

R/L

/Q

TRIP-S

ET

TRIP-R

ESET

AN

EG

C0472/3

A1

A2

A3

A4

10

C0118/1...4

DIG

OU

TDIG

OUT1

DIG

OUT2

DIG

OUT3

DIG

OUT4

C0017

TRIP

RDY

MMAX

NACT=0

DIG

IN5

FIXED0

FIXED0

FIXED0

FIXED0%

C0680

C0681

C0683/1

CM

P1

*-1

1 2

C0034

C0027/1

C0026/1

AIN

1

+ +

QSP

FIXED0

FIXED0%

FIXED0%

FIXED0%

X5

X6

X6

X5

1 0

C0105

C0254

+ -

C0908

C0070

C0071

+-1

+10

C0022

C0081

C0087

C0088

C0089

C0090

C0091

PW

M

C0420

C0490

C0495

MCTRL-PHI-SET

MCTRL-N

2-LIM

MCTRL-M

-ADD

MCTRL-PHI-LIM

MCTRL-PHI-ON

C0906/2

MCTRL-N

-SET

VE

CT

-CT

RL

MCTRL-N

SET2

MC

TR

L

MCTRL-N

ACT

MCTRL-PHI-ACT

C0906/6

C0906/1

MCTRL-M

SET2

MCTRL-N

/M-SWT

1 0

MCTRL-H

I-M-LIM

MCTRL-LO-M

-LIM

C0051

+ +

C0050

C0018

C0006

C0084

C0085

C0086

C0025

MCTRL-M

MAX

MCTRL-IMAX

C0909

C0011

±100%

C0056

C0072

C0906/5

C0907/1

MCTRL-FLD-W

EAK

C0906/7

MCTRL-I-SET

C0906/8

MCTRL-I-LOAD

C0907/4

MCTRL-Q

SP

C0907/3

C0907/2

C0906/3

C0906/4

C0893

C0892

C0899

C0900

C0902

C0901

C0890

C0894

C0895

C0897

C0896

C0891

C0898

MCTRL-Q

SP-O

UT

RESOLVER

ENCODER

DCTRL-Q

SP

1

MCTRL-M

ACT

MCTRL-D

CVOLT

C0042

MCTRL-PHI-ANA

CONST

+

+

C0497

X7

X8

MCTRL-PHI-ANG

C0075

C0076

C0077

C0078

MCTRL-IACT

C0030

C0540

CTRL

DFOUT-A

N-IN

C0547

C0541

DFOUT-D

F-IN

C0549

C0542

C0548

C0544

DFOUT-SYN-R

DY

DFOUT-O

UT

DF

OU

T

C0545

10 2 3 4 5X

8

X9

X10

C0540

E5

X5

C0134

C0182

CINH

*-1

C0039/1

C0039/15

C0039/2

C0103/1

C0103/15

C0103/2

C0101/1

C0101/15

C0101/2

C0012

C0013

+-

*/

X/(

1-Y

)

*-1

C0190

X Y

CINH

C0220/

C0221

NS

ET

C0046

C0049

NSET-N

ADD

NSET-N

1010

DMUX

0 3

0 15

NSET-N

ADD-INV

NSET-JOG*1

NSET-JOG*2

NSET-JOG*4

NSET-JOG*8

DMUX

0 3

0 15

NSET-TI*1

NSET-TI*2

NSET-TI*4

NSET-TI*8

JOG1...15

TI0...15

NSET-N

-INV

NSET-R

FG-STOP

NSET-R

FG-0

C0241

NSET-N

OUT

NSET-R

FG-I=0

NSET-SET

NSET-LOAD

NSET-C

INH-VAL

C0799/1

C0799/12

C0799/13

C0798/1

C0798/2

C0799/2

C0799/3

C0784

C0790

C0789

C0781

C0780

C0787/1

C0788/1

C0785

C0786

C0783

C0782

C0787/2

C0787/3

C0787/4

C0788/2

C0788/3

C0788/4

C0130

C0045

±200%

MCTRL-N

ACT

MCTRL-N

SET2

MCTRL-Q

SP-O

UT

R/L/Q

-QSP

FIXED0%

FIXED0

FIXED0IN

C

FIXED100%

FIXED0

FIXED-PHI-0

63

AO

UT

2C439/1

+ +

AOUT2-IN

AOUT2-G

AIN

AOUT2-O

FFSET

C0439/3

C0439/2

C0436

C0438

C0437

X6 62

AO

UT

1C434/1

+ +

AOUT1-IN

AOUT1-G

AIN

AOUT1-O

FFSET

C0434/3

C0434/2

C0431

C0433

C0432

X6

S-

a

Ra

mp

ge

ne

rato

rm

ain

se

tpo

int

sh

ap

e

Sp

ee

dc

on

tro

lle

r Sp

ee

d

lim

ita

tio

n

To

rqu

e

lim

ita

tio

n

Cu

rre

nt

co

ntr

olle

r

Lin

kin

go

f

ma

ina

nd

ad

dit

ion

alse

tpo

int

Ra

mp

ge

ne

rato

ra

dd

itio

na

lse

tpo

int

QS

Pd

ec

el.

ram

p

Ph

ase

co

ntr

olle

r

Ac

tua

lsp

ee

d

FIG 12-1 Signal flow chart of configuration 1000

Page 123: ba93sugb.pdf

Appendix

11-4 9300BA0998

L1L2

L3

PE

M

LK

K1Mains contactor

Main switch

R

X7

Motor

Fuses forcable protection

Mains choke

3 ~

X5X6

RFRLR

QSP

28 E1 E2 E3 E4E5 A1 A2 A3 A4 594321WVU

L3L2L1

39

=

+

-

+UG-UG+UG -UG

935293XX

RB

RB2RB1

PEPE

PE PE

K1

K1RBJ

N

OFF

ON

K1

RBJ

F1 F2

TRIP-SET

FIG 12-2 Connection diagram of configuration 1000

Tip!A brake unit is required only if the DC bus voltage of the 93XXservo inverter in thegenerator mode exceeds the upper switch-off threshold set under C0173(activation of the OU monitoring function).The brake unit avoids the activation of”OU” by converting the kinetic energy of the machine into heat and thus keeps theDC bus voltage below the upper switch-off threshold.

Page 124: ba93sugb.pdf

Appendix

11-59300BA0998

11.2.2 Torque control with speed limitation

The most important settings (short setup)

Tip!The following codes arecontained in themenu: ”Short Setup / Torquemode” of theoperating module or Global Drive Control or LEMOC 2.

Input motor type (contains all nameplate data of the motor)

C0173 xxx Enter UG limit (mains voltage)C0086 xxx Enter LENZE motor type

Enter maximum motor current

C0022 xxxA Determine Imax

Enter controller configuration

C0005 4000 Select torque controlC0025 xxx Enter feedback system

Speed setpoint settings

C0011 xxx rpm Determine max. speedC0105 xxx s Set QSP deceleration time

Speed limitation

C0472/4 xxx % nmax Determine lower speed limit

Application parameters

C0070 xxx Vp n controllerC0071 xxx Tn n-controller

Save parameters

C0003 xxx Save all parameters

Page 125: ba93sugb.pdf

Appendix

11-6 9300BA0998

3 4

C0027/2

C0026/2

AIN

2

+ +

E1

E2

E3

E4

E5

10

C0114/1...5

DIG

INDIG

IN1

DIG

IN2

DIG

IN3

DIG

IN4

R LR/L

QSP

R/L

/Q

TRIP-S

ET

TRIP-R

ESET

AN

EG

C0472/3

A1

A2

A3

A4

10

C0118/1...4

DIG

OU

TDIG

OUT1

DIG

OUT2

DIG

OUT3

DIG

OUT4

C0017

TRIP

RDY

MMAX

NACT=0

DIG

IN5

FIXED0

C0680

C0681

C0683/1

CM

P1

*-1

1 2

C0034

C0027/1

C0026/1

AIN

1

+ +

QSP

FIXED0

FIXED0

FIXED0%

X5

X6

X6

X5

1 0

C0105

C0254

+ -

C0908

C0070

C0071

+-1

+10

C0022

C0081

C0087

C0088

C0089

C0090

C0091

PW

M

C0420

C0490

C0495

MCTRL-PHI-SET

MCTRL-N

2-LIM

MCTRL-M

-ADD

MCTRL-PHI-LIM

MCTRL-PHI-ON

C0906/2

MCTRL-N

-SET

VE

CT

-CT

RL

MCTRL-N

SET2

MC

TR

L

MCTRL-N

ACT

MCTRL-P

HI-ACT

C0906/6

C0906/1

MCTRL-M

SET2

MCTRL-N

/M-SWT

1 0

MCTRL-H

I-M-LIM

MCTRL-LO-M

-LIM

C0051

+ +

C0050

C0018

C0006

C0084

C0085

C0086

C0025

MCTRL-M

MAX

MCTRL-IMAX

C0909

C0011

±100%

C0056

C0072

C0906/5

C0907/1

MCTRL-FLD-W

EAK

C0906/7

MCTRL-I-SET

C0906/8

MCTRL-I-LOAD

C0907/4

MCTRL-Q

SP

C0907/3

C0907/2

C0906/3

C0906/4

C0893

C0892

C0899

C0900

C0902

C0901

C0890

C0894

C0895

C0897

C0896

C0891

C0898

MCTRL-Q

SP-O

UT

RESOLVER

ENCODER

DCTRL-Q

SP

1

MCTRL-M

ACT

MCTRL-D

CVOLT

C0042

MCTRL-PHI-ANA

CONST

+

+

C0497

X7

X8

MCTRL-P

HI-ANG

C0075

C0076

C0077

C0078

MCTRL-IACT

C0030

C0540

CTRL

DFOUT-AN-IN

C0547

C0541

DFOUT-D

F-IN

C0549

C0542

C0548

C0544

DFOUT-S

YN-R

DY

DFOUT-O

UT

DF

OU

T

C0545

10 2 3 4 5X

8

X9

X10

C0540

E5

X5

C0134

C0182

CINH

*-1

C0039/1

C0039/15

C0039/2

C0103/1

C0103/15

C0103/2

C0101/1

C0101/15

C0101/2

C0012

C0013

+-

*/

x/(

1-y

)

*-1

C0190

x y

CINH

C0220/

C0221

NS

ET

C0046

C0049

NSET-N

ADD

NSET-N

1010

DMUX

0 3

0 15

NSET-N

ADD-INV

NSET-JOG*1

NSET-JOG*2

NSET-JOG*4

NSET-JOG*8

DMUX

0 3

0 15

NSET-TI*1

NSET-TI*2

NSET-TI*4

NSET-TI*8

JOG1...15

TI0...15

NSET-N

-INV

NSET-R

FG-STOP

NSET-R

FG-0

C0241

NSET-N

OUT

NSET-R

FG-I=0

NSET-SET

NSET-LOAD

NSET-C

INH-VAL

C0799/1

C0799/12

C0799/13

C0798/1

C0798/2

C0799/2

C0799/3

C0784

C0790

C0789

C0781

C0780

C0787/1

C0788/1

C0785

C0786

C0783

C0782

C0787/2

C0787/3

C0787/4

C0788/2

C0788/3

C0788/4

C0130

C0045

±200%

FIXED0

C0472/4

MTCRL-N

SET2

MCTRL-Q

SP-O

UT

MCTRL-N

ACT

FIXED0%

FIXED0INC

FIXED100%

FIXED0

FIXED-PHI-0

63

AO

UT

2C439/1

+ +

AOUT2-IN

AOUT2-G

AIN

AOUT2-O

FFSET

C0439/3

C0439/2

C0436

C0438

C0437

X6

62

AO

UT

1C434/1

+ +

AOUT1-IN

AOUT1-G

AIN

AOUT1-O

FFSET

C0434/3

C0434/2

C0431

C0433

C0432

X6

R/L/Q

-QSP

S-

Ra

mp

ge

ne

rato

rm

ain

se

tpo

int

sh

ap

eL

ink

ing

of

ma

in

an

da

dd

itio

na

l

se

tpo

int

Cu

rre

nt

co

ntr

olle

r

Ra

mp

ge

ne

rato

ra

dd

itio

na

lse

tpo

int

Sp

ee

dc

on

tro

lle

rQ

SP

de

ce

l.ra

mp

Ph

ase

co

ntr

olle

r

Sp

ee

d

lim

ita

tio

n

Ac

t.sp

ee

d

To

rqu

e

lim

ita

tio

n

FIG 12-3 Signal flow chart of configuration 4000

Page 126: ba93sugb.pdf

Appendix

11-79300BA0998

11.2.3 Digital frequency - master

The most important settings (short setup)

Tip!The following codes are contained in the menu: ”Short Setup / DF master” of theoperating module or Global Drive Control or LEMOC 2.

Input motor type (contains all nameplate data of the motor)

C0173 xxx Enter UG limit (mains voltage)C0086 xxx Enter LENZE motor type

Enter maximum motor current

C0022 xxxA Determine Imax

Enter controller configuration

C0005 5000 Digital frequency - master in general5900 with emergency stop for the drive network for QSP

C0025 xxx Enter feedback system

Speed setpoint settings

C0011 xxx rpm Determine max. speedC0012 xxx s Set acceleration timeC0013 xxx s Set deceleration timeC0105 xxx s Set QSP deceleration time for C0005 = 5000C0672 xxx s Set QSP deceleration time for C0005 = 59xxC0032 xxx Gearbox factor numeratorC0033 xxx Gearbox factor denominatorC0473/1 xxx Numerator of the stretch factorC0533 xxx Denominator of the stretch factor

Application parameters

C0070 xxx Vp n controllerC0071 xxx Tn n-controllerC0254 xxx Gain of the phase controller

Save parameters

C0003 xxx Save all parameters

Page 127: ba93sugb.pdf

Appendix

11-8 9300BA0998

C0472/5

C0032

C0473/1

C0473/3

RSP

QSP

QSP TRIP-SET

TRIP-R

ESET

FIXED0

FIXED0

FIXED0

1 2

C0034

C0026/1

AIN

1

+ +

C0027/1

X6

C0134

C0182

CINH

*-1

C0039/1

C0039/15

C0039/2

C0103/1

C0103/15

C0103/2

C0101/1

C0101/15

C0101/2

C0012

C0013

+-

*/

x/(

1-y

)

*-1

C0190

x y

CINH

C0220/

C0221

NS

ET

C0046

C0049

NSET-N

ADD

NSET-N

1010

DMUX

0 3

0 15

NSET-N

ADD-INV

NSET-JOG*1

NSET-JOG*2

NSET-JOG*4

NSET-JOG*8

DMUX

0 3

0 15

NSET-TI*1

NSET-TI*2

NSET-TI*4

NSET-TI*8

JOG1...15

TI0...15

NSET-N

-INV

NSET-R

FG-STOP

NSET-R

FG-0

C0241

NSET-N

OUT

NSET-R

FG-I=0

NSET-SET

NSET-LOAD

NSET-C

INH-VAL

C0799/1

C0799/12

C0799/13

C0798/1

C0798/2

C0799/2

C0799/3

C0784

C0790

C0789

C0781

C0780

C0787/1

C0788/1

C0785

C0786

C0783

C0782

C0787/2

C0787/3

C0787/4

C0788/2

C0788/3

C0788/4

C0130

C0045

±200%

C0030

C0540

CTRL

DFOUT-AN-IN

C0547

C0541

DFOUT-D

F-IN

C0549

C0542

C0548

C0544

DFOUT-SYN-R

DY

DFOUT-O

UT

DF

OU

T

C0545

10 2 3 4 5X

8

X9

X10

C0540

E5

X5

*a b ba

*a b ba

++

10

++

C0537

C0536/2

C0536/1

C0033

C0533

C0530

C0252

C0536/3

C0538/2

C0539

DF

SE

T

DF

SE

T-N

OU

T

+

-

DF

SE

T-A

-TR

IM

DF

SE

T-N

-TR

IM

DF

SE

T-R

AT

-DIV

DF

SE

T-R

ES

ET

DF

SE

T-I

N

DF

SE

T-P

SE

T

DF

SE

T-V

P-D

IVD

FS

ET

-PO

UT

DF

SE

T-S

ET

C0538/3

++C0253

C0531

C0535

C0532

2 12 1E

4

E5

X5

X5

X9/6

,7

MC

TR

L-P

HI-

AC

T

C0538/1

DF

SE

T-0

-PU

LS

E

DF

SE

T-A

CK

C0525

C0522

C0524

C0521

C0520

C0527

C0526

C0523

C0534

*C0529

C0528/1

C0528/2

CTRL

OR

1

1

OR1-IN1

OR1-IN2

OR1-IN3

OR1-O

UT

C0831/1

C0831/2

C0831/3

C0830/1

C0830/2

C0830/3

E1

E2

E3

E4

E5

10

C0114/1...5

DIG

IN

DIG

IN1

DIG

IN2

DIG

IN3

DIG

IN4

DIG

IN5

C0443

28

DCTRL-X

5/28

X5

DIG

IN-C

INH

1

RE

F

RE

F-N

-IN

RE

F-P

HI-

IN

RE

F-N

-SE

T

RE

F-P

SE

T

RE

F-O

N

RE

F-B

US

Y

RE

F-O

KR

EF

-MA

RK

C0929

C0923

C0928

C0922

C0927/2

C0921

C0927/1

C0920

CT

RL

C0935

C0936

C0931

C0932

C0930

C0934

C0933

RE

F-P

OS

-LO

AD

RE

F-A

CT

PO

S-I

N

C0926/1

C0925

C0927/3

C0924

C0926/3

C0926/4

MCTRL-N

ACT

FIXDE0

3 4

C0027/2

C0026/2

AIN

2

+ +

ASW1

C0812/1

10

FIXED0%

X6

MCTRL-N

SET2

MCTRL-Q

SP-O

UT

FIXEDPHI-0

FIXED0

C0474/1

Sp

ee

d

trim

min

g

Se

tp

ha

se

Ph

ase

off

se

t

Ph

ase

trim

min

g

Ph

ase

trim

min

g=

f(n

)

FIG 12-4 Signal flow chart of configuration 5000

Page 128: ba93sugb.pdf

Appendix

11-99300BA0998

C0017

TRIP

RDY

NACT=0

C0680

C0681

C0683/1

CM

P1

AN

EG

C0472/3

*-1

FIXED0

FIXED1

FIXED0%

FIXED0%

C0472/6

1 0

C0105

C0254

+ -

C0908

C0070

C0071

+-1

+10

C0022

C0081

C0087

C0088

C0089

C0090

C0091

PW

M

C0420

C0490

C0495

MCTRL-PHI-SET

MCTRL-N

2-LIM

MCTRL-M

-ADD

MCTRL-PHI-LIM

MCTRL-PHI-ON

C0906/2

MCTRL-N

-SET

VE

CT

-CT

RL

MCTRL-N

SET2

MC

TR

L

MCTRL-N

ACT

MCTRL-P

HI-ACT

C0906/6

C0906/1

MCTRL-M

SET2

MCTRL-N

/M-SWT

1 0

MCTRL-H

I-M-LIM

MCTRL-LO-M

-LIM

C0051

+ +

C0050

C0018

C0006

C0084

C0085

C0086

C0025

MCTRL-M

MAX

MCTRL-IMAX

C0909

C0011

±100%

C0056

C0072

C0906/5

C0907/1

MCTRL-FLD-W

EAK

C0906/7

MCTRL-I-SET

C0906/8

MCTRL-I-LOAD

C0907/4

MCTRL-Q

SP

C0907/3

C0907/2

C0906/3

C0906/4

C0893

C0892

C0899

C0900

C0902

C0901

C0890

C0894

C0895

C0897

C0896

C0891

C0898

MCTRL-Q

SP-O

UT

RESOLVER

ENCODER

DCTRL-Q

SP

1

MCTRL-M

ACT

MCTRL-D

CVOLT

C0042

MCTRL-PHI-ANA

CONST

+

+

C0497

X7

X8

MCTRL-P

HI-ANG

C0075

C0076

C0077

C0078

MCTRL-IACT

A1

A2

A3

A4

10

C01

18/1...4

DIG

OU

TDIG

OUT1

DIG

OUT2

DIG

OUT3

DIG

OUT4

C0117

/1

C0117

/2

C0117

/3C0117

/4

C04

44/4

C04

44/3

C044

4/2

C04

44/1

X5

1

63

AO

UT

2C439/1

+ +

AOUT2-IN

AOUT2-G

AIN

AOUT2-O

FFSET

C0439/3

C0439/2

C0436

C0438

C0437

X6

62

AO

UT

1C434/1

+ +

AOUT1-IN

AOUT1-G

AIN

AOUT1-O

FFSET

C0434/3

C0434/2

C0431

C0433

C0432

X6

DIG

IN1

FIXED0%

FIXED100%

C0109/1

C0108/1

C0108/2

C0109/2

FIXED0

QS

Pd

ec

el.

ram

p

Ph

ase

co

ntr

olle

r

Sp

ee

dc

on

tro

lle

r Sp

ee

d

lim

ita

tio

n

Ac

tua

lsp

ee

d

To

rqu

elim

ita

tio

n

Cu

rre

nt

co

ntr

olle

r

Page 129: ba93sugb.pdf

Appendix

11-10 9300BA0998

11.2.4 Digital frequency bus - slave

The most important settings (short setup)

Tip!The following codes are contained in the menu: ”Short Setup / DFslave bus” of theoperating module or Global Drive Control or LEMOC 2.

Input motor type (contains all nameplate data of the motor)

C0173 xxx Enter UG limit (mains voltage)C0086 xxx Enter LENZE motor type

Enter maximum motor current

C0022 xxxA Determine Imax

Enter controller configuration

C0005 6000 Select digital frequency bus - slaveC0025 xxx Enter feedback system

Speed setpoint settings

C0011 xxx rpm Determine max. speedC0032 xxx Gearbox factor numeratorC0033 xxx Gearbox factor denominatorC0425 xxx Adapt encoder constant to the master

Application parameters

C0070 xxx Vp n controllerC0071 xxx Tn n-controllerC0254 xxx Gain of the phase controller

Save parameters

C0003 xxx Save all parameters

Page 130: ba93sugb.pdf

Appendix

11-119300BA0998

FIXED0

DIG

IN1

FIXED0

FIXED0%

FIXED100%

C0474/1

C0425DF

INC0472/5

C0032

C0473/1

C0473/3

CINH

OR

1

1QSP

62

AOUT1

C0108/1

C0109/1

C434/1

++

C0017 C

0680

C0681

C0683/1

CM

P1

AN

EG

C0472/3

*-1

FIXED0

FIXED1

FIXED0%

FIXED0%

C0472/6

QSP

TRIP-SET

TRIP-R

ESET

FIXED0

NACT=0

TRIP

RDY

NACT=0

NACT=0

63

AOUT2

C0108/2

C0109/2

C439/1

+ +

X9

X10

X6

X6

*a b ba

*a b ba

++

10

++

C0537

C0536/2

C0536/1

C0033

C0533

C0530

C0252

C0536/

C0538/2

C0539

DF

SE

T

DF

SE

T-N

OU

T

+

-

DF

SE

T-A

-TR

IM

DF

SE

T-N

-TR

IM

DF

SE

T-R

AT

-DIV

DF

SE

T-R

ES

ET

DF

SE

T-I

N

DF

SE

T-P

SE

T

DF

SE

T-V

P-D

IVD

FS

ET

-PO

UT

DF

SE

T-S

ET

C0538/3

++C0253

C0531

C0535

C0532

2 12 1E

4

E5

X5

X5

X9/6

,7

MC

TR

L-P

HI-

AC

T

C0538/1

DF

SE

T-0

-PU

LS

E

DF

SE

T-A

CK

C0525

C0522

C0524

C0521

C0520

C0527

C0526

C0523

C0534

*C0529

C0528/1

C0528/2

CTRL

E1

E2

E3

E4

E5

10

C0114/1...5

DIG

IN

DIG

IN1

DIG

IN2

DIG

IN3

DIG

IN4

DIG

IN5

C0443

28

DCTRL-X5/28

X5

DIG

IN-C

INH

1

RE

F

RE

F-N

-IN

RE

F-P

HI-

IN

RE

F-N

-SE

T

RE

F-P

SE

T

RE

F-O

N

RE

F-B

US

Y

RE

F-O

K

RE

F-M

AR

K

C0929

C0923

C0928

C0922

C0927/2

C0921

C0927/1

C0920

CT

RL

C0935

C0936

C0931

C0932

C0930

C0934

C0933

RE

F-P

OS

-LO

AD

RE

F-A

CT

PO

S-I

N

C0926/1

C0925

C0927/3

C0924

C0926/3

C0926/4

1 0

C0105

C0254

+ -

C0908

C0070

C0071

+-1

+10

C0022

C0081

C0087

C0088

C0089

C0090

C0091

PW

M

C0420

C0490

C0495

MCTRL-P

HI-SET

MCTRL-N

2-LIM

MCTRL-M

-ADD

MCTRL-PHI-LIM

MCTRL-PHI-ON

C0906/2

MCTRL-N

-SET

VE

CT

-CT

RL

MCTRL-N

SET2

MC

TR

L

MCTRL-N

ACT

MCTRL-PHI-ACT

C0906/6

C0906/1

MCTRL-M

SET2

MCTRL-N

/M-SWT

1 0

MCTRL-H

I-M-LIM

MCTRL-LO-M

-LIM

C0051

+ +

C0050

C0018

C0006

C0084

C0085

C0086

C0025

MCTRL-M

MAX

MCTRL-IMAX

C0909

C0011

±100%

C0056

C0072

C0906/5

C0907/1

MCTRL-FLD-W

EAK

C0906/7

MCTRL-I-SET

C0906/8

MCTRL-I-LOAD

C0907/4

MCTRL-Q

SP

C0907/3

C0907/2

C0906/3

C0906/4

C0893

C0892

C0899

C0900

C0902

C0901

C0890

C0894

C0895

C0897

C0896

C0891

C0898

MCTRL-Q

SP-O

UT

DCTRL-Q

SP

1

MCTRL-M

ACT

MCTRL-D

CVOLT

C0042

MCTRL-P

HI-ANA

CONST

+

+

C0497

RESOLVER

X7

ENCODER

X8

MCTRL-PHI-ANG

C0075

C0076

C0077

C0078

MCTRL-IACT

A1

A2

A3

A4

10

C0118/1...4

DIG

OU

TDIG

OUT1

DIG

OUT2

DIG

OUT3

DIG

OUT4

C0117/1

C0117/2

C0117/3

C0117/4

C0444/4

C0444/3

C0444/2

C0444/1

X5

1

Cu

rre

nt

co

ntr

olle

r

To

rqu

e

lim

ita

tio

n

Sp

ee

d

co

ntr

olle

r

Sp

ee

d

lim

ita

tio

n

QS

Pd

ec

el.

ram

p

Ph

ase

co

ntr

olle

r

Ac

tua

lsp

ee

d

Sp

ee

d

trim

min

g

Se

tp

ha

se

Ph

ase

trim

min

g

Ph

ase

trim

min

g=

f(n

)

Ph

ase

off

se

t

ac

t.p

ha

se

FIG 12-5 Signal flow chart of configuration 6000

Page 131: ba93sugb.pdf

Appendix

11-12 9300BA0998

11.2.5 Digital frequency cascade - slave

The most important settings (short setup)

Tip!The following codes are contained in the menu: ”Short Setup / DFslave cas” of theoperating module or Global Drive Control or LEMOC 2.

Input motor type (contains all nameplate data of the motor)

C0173 xxx Enter UG limit (mains voltage)C0086 xxx Enter LENZE motor type

Enter maximum motor current

C0022 xxxA Determine Imax

Enter controller configuration

C0005 7000 Select digital frequency cascade - slave

Speed setpoint settings

C0011 xxx rpm Determine max. speedC0032 xxx Gearbox factor numeratorC0033 xxx Gearbox factor denominatorC0425 xxx Adapt encoder constant to the masterC0473/1 xxx Numerator of the stretch factorC0533 xxx Denominator of the stretch factor

Application parameters

C0070 xxx Vp n controllerC0071 xxx Tn n-controllerC0254 xxx Gain of the phase controller

Save parameters

C0003 xxx Save all parameters

Page 132: ba93sugb.pdf

Appendix

11-139300BA0998

C0030

C0540

CTRL

DFOUT-AN-IN

C0547

C0541

DFOUT-D

F-IN

C0549

C0542

C0548

C0544

DFOUT-SYN-R

DY

DFOUT-O

UT

DF

OU

T

C0545

10 2 3 4 5X

8

X9

X10

C0540

E5

X5

C0474/1

FIXED0

FIXED0%

FIXED0

FIXED100%

FIXED0%

FIXED0

DIG

IN1

C0425DF

INC0472/5

C0032

C0473/1

C0473/3

CIN

HO

R1

1QSP

62

AOUT1

C0108/1

C0109/1

C434/1

++

C0017 C

0680

C0681

C0683/1

CM

P1

AN

EG

C0472/3

*-1

FIXED0

FIXED1

FIXED0%

FIXED0%

C0472/6

QSP

TRIP-S

ET

TRIP-R

ESET

FIXED0

NACT=0

TRIP

RDY

NACT=0

NACT=0

63

AOUT2

C0108/2

C0109/2

C439/1

+ +

X9

X6

X6

*a b ba

*a b ba

++

10

++

C0537

C0536/2

C0536/1

C0033

C0533

C0530

C0252

C0536/3

C0538/2

C0539

DF

SE

T

DF

SE

T-N

OU

T

+

-

DF

SE

T-A

-TR

IM

DF

SE

T-N

-TR

IM

DF

SE

T-R

AT

-DIV

DF

SE

T-R

ES

ET

DF

SE

T-I

N

DF

SE

T-P

SE

T

DF

SE

T-V

P-D

IVD

FS

ET

-PO

UT

DF

SE

T-S

ET

C0538/3

++C0253

C0531

C0535

C0532

2 12 1E

4

E5

X5

X5

X9

/6,7

MC

TR

L-P

HI-

AC

T

C0538/1

DF

SE

T-0

-PU

LS

E

DF

SE

T-A

CK

C0525

C0522

C0524

C0521

C0520

C0527

C0526

C0523

C0534

*C0529

C0528/1

C0528/2

CTRL

E1

E2

E3

E4

E5

10

C0114/1...5

DIG

IN

DIG

IN1

DIG

IN2

DIG

IN3

DIG

IN4

DIG

IN5

C0443

28

DCTRL-X5/28

X5

DIG

IN-C

INH

1

RE

F

RE

F-N

-IN

RE

F-P

HI-

IN

RE

F-N

-SE

T

RE

F-P

SE

T

RE

F-O

N

RE

F-B

US

Y

RE

F-O

KR

EF

-MA

RK

C0929

C0923

C0928

C0922

C0927/2

C0921

C0927/1

C0920

CT

RL

C0935

C0936

C0931

C0932

C0930

C0934

C0933

RE

F-P

OS

-LO

AD

RE

F-A

CT

PO

S-I

N

C0926/1

C0925

C0927/3

C0924

C0926/3

C0926/4

1 0

C0105

C0254

+ -

C0908

C0070

C0071

+-1

+10

C0022

C0081

C0087

C0088

C0089

C0090

C0091

PW

M

C0420

C0490

C0495

MCTRL-PHI-SET

MCTRL-N

2-LIM

MCTRL-M

-ADD

MCTRL-P

HI-LIM

MCTRL-P

HI-ON

C0906/2

MCTRL-N

-SET

VE

CT

-CT

RL

MCTRL-N

SET2

MC

TR

L

MCTRL-N

ACT

MCTRL-PHI-ACT

C0906/6

C0906/1

MCTRL-M

SET2

MCTRL-N

/M-SWT

1 0

MCTRL-H

I-M-LIM

MCTRL-LO-M

-LIM

C0051

+ +

C0050

C0018

C0006

C0084

C0085

C0086

C0025

MCTRL-M

MAX

MCTRL-IMAX

C0909

C0011

±100%

C0056

C0072

C0906/5

C0907/1

MCTRL-FLD-W

EAK

C0906/7

MCTRL-I-S

ET

C0906/8

MCTRL-I-LOAD

C0907/4

MCTRL-Q

SP

C0907/3

C0907/2

C0906/3

C0906/4

C0893

C0892

C0899

C0900

C0902

C0901

C0890

C0894

C0895

C0897

C0896

C0891

C0898

MCTRL-Q

SP-O

UT

RESOLVER

DCTRL-Q

SP

1

MCTRL-M

ACT

MCTRL-D

CVOLT

C0042

MCTRL-PHI-ANA

CONST

+

+

C0497

X7

MCTRL-PHI-ANG

C0075

C0076

C0077

C0078

MCTRL-IACT

A1

A2

A3

A4

10

C0118/1...4

DIG

OU

TDIG

OUT1

DIG

OUT2

DIG

OUT3

DIG

OUT4

C0117/1

C0117/2

C0117/3

C0117/4

C0444/4

C0444/3

C0444/2

C0444/1

X5

1

Ph

ase

off

se

tS

et

ph

ase

Ph

ase

trim

min

g

Ph

ase

trim

min

g=

f(n

)

Ac

t.p

ha

se

Cu

rre

nt

co

ntr

olle

r

Sp

ee

d

co

ntr

olle

r

Sp

ee

d

lim

ita

tio

n

To

rqu

e

lim

ita

tio

n

QS

Pd

ec

el.

ram

p

Ph

ase

co

ntr

olle

r

Ac

t.sp

ee

d

Sp

ee

d

trim

min

g

FIG 12-6 Signal flow chart of configuration 7000

Page 133: ba93sugb.pdf

Appendix

11-14 9300BA0998

R

i=19

.4

Pull-off unit (mas

ter drive

)Stretch

unit 1

v = 80m

/min

v = 50m

/min

R

i=5.3

X9

Stretch >

Stretch <

Stretch

unit 2

v = 110

m/m

in

R

i=5.3

X9

X7

+24V external

RFR

RightT

RIP-R

ese

tTRIP

Digita

l frequency

QSP

Digita

l frequency

Vpull-off

RFR

Right

TRIP-R

ese

tTRIP

QSP

nse

t=0

RFR

RightT

RIP-R

ese

tTRIP

QSP

9300

Mas

ter

9300

Slave

9300

Slave

PLC

Proce

ss control

E4

E3

Stretch >

Stretch <

+24V external E4

E3

28

E1

E5

59

39

A1

A4

A2

+24V

external

28

E1

E5

59

39

A1

A4

A2

+24V

external

28

E1

E5

59

39

A1

A4

A2

+24V

external

Gearbox

Gearbox

Stretch fac

tor

Gearbox

Stretch fac

tor

X7

X10

X10

X10

M

=+

-12

Mmax

X7

Mmax

MM

nse

t=0

nse

t=0

Mmax

FIG 12-7 Connection diagram of configuration digital frequency

Page 134: ba93sugb.pdf

Appendix

11-159300BA0998

11.3 Code table

How to read the code table:

Column Abbreviation MeaningCode C0039

12

¤1415

Code C0039Subcode 1 of code C0039Subcode 2 of code C0039¤Subcode 14 of code C0039Subcode 15 of code C0039

[C0005] Parameter value of the code can only be modified when controller is inhibitedLCD LCD display of the operating moduleLenze Factory setting of the code

* The row ”Important” contains further informationSelection 1 1 % 99 Minimum value smallest step/unit maximum valueInfo - Meaning of the codeIMPORTANT - Additional, important explanation of the code

Code LCD Possible settings IMPORTANT

Lenze Selection InfoC0002 Par load 0 0 Load default Load factory setting into RAM Load parameter set

1 Load PS12 Load PS23 Load PS34 Load PS4

Load parameter set x into theRAM and activate

- Parameter set1 isloaded automaticallyafter every mainsconnection.

11 Load ext PS112 Load ext PS213 Load ext PS314 Load ext PS4

Load parameter set x from theoperating module into theRAM and activate

20 ext -> EEPROM Transmit all parameter setsfrom the operating module tothe controller and storenon-volatile

C0003 Par save 0 0 Ready Saving completed Save parameter set1 Save PS12 Save PS23 Save PS34 Save PS4

Save current parameter set xnon-volatile

11 Save extern Save all parameter sets to theoperating module

C0004 Op-display 56 All available codes Operating display Operating module showsselected code in theoperating level if no otherstatus indications ofC0183 are active.

Page 135: ba93sugb.pdf

Appendix

11-16 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0005] Signal CFG 1000 Signal configuration(predefined basicconfigurations)

0000 Common Modified base configuration1 CFG:86xx -1-2 CFG:86xx -2-2 CFG:86xx -11-

compatible to frequencyinverter 86xx:C005 = -1-/-2-/-11-

20 CFG:922x -20-21 CFG:922x -21-

compatible to servo controller922x: C005 = -20-/-21-

100 CFG:empty All internal connections areremoved

1000 Speed mode1001 Speed 11003 Speed 31005 Speed 51010 Speed 101011 Speed 111013 Speed 131015 Speed 151100 Speed 1001101 Speed 1011103 Speed 1031105 Speed 1051110 Speed 1101111 Speed 1111113 Speed 1131115 Speed 115

Speed control The digit indicates thepredefined controllercontrol- xxx1:

RS232, RS485 orfiber-optics

- xxx3:InterBus-S or Profibus

- xxx5:Systembus (CAN)

The last digit but oneindicates the predefinedvoltage source for thecontrol terminals- xx0x:

external supply voltage- xx1x:

internal voltage supply4000 Torque mode4001 Torque 14003 Torque 34005 Torque 54010 Torque 104011 Torque 114013 Torque 134015 Torque 15

Torque control with speedlimitation

internal voltage supplyvia X5/A1

The last digit but twoindicates additionalfunctions- x1xx:

Brake control- x9xx:

in case of quick stop thel t ti f5000 DF mst

5001 DF mst 15003 DF mst 35005 DF mst 55010 DF mst 105011 DF mst 115013 DF mst 135015 DF mst 155900 DF mst 9005901 DF mst 9015903 DF mst 9035905 DF mst 9055910 DF mst 9105911 DF mst 9115913 DF mst 9135915 DF mst 915

Master for digital frequencycoupling

qcomplete connection ofdrives isphase-controlled to zerospeed

Page 136: ba93sugb.pdf

Appendix

11-179300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

6000 DF slv bus6001 DF slv bus 16003 DF slv bus 36005 DF slv bus 56010 DF slv bus 106011 DF slv bus 116013 DF slv bus 136015 DF slv bus 15

Slave to digital frequency bus

7000 DF slv cas7001 DF slv cas 17003 DF slv cas 37005 DF slv cas 57010 DF slv cas 107011 DF slv cas 117013 DF slv cas 137015 DF slv cas 15

Slave to digital frequencycascade

[C0006] Op mode * Operating mode of the motorcontrol

* depending on C0086- Change of C0086 resets

1 SSC norm Y sensorless control for motorsin star connection

Change of C0086 resetsvalue to the assignedfactory settingCh f C0006 t2 Servo async Y Servo control asynchronous

motors in star connection

- Change of C0006 setsC0086 = 0!

3 Servo PM-SM Y Servo control synchronousmotors in star connection

11 SSC norm sensorless control for motorsin delta connection

22 Servo async Servo control asynchronousmotors in delta connection

C0009 LECOM address 1 1 1 99 Device address Bus device number whenoperated via interface- 10, 20, ..., 90 reserved

for broadbast to devicegroups for RS232,RS485, fibre optics.

C0011 Nmax 3000 500 1 rpm 16000 Maximum speed Reference value for theabsolute and relativesetpoint selection for theacceleration anddeceleration times.- For parameterization via

interface:Large changes in onestep should only bemade when thecontroller is inhibited.

C0012 Tir (acc) 0,000 0,000 0,001 s 999,900 Acceleration time Tir for themain setpoint NSET

Related to the speedchange 0¤nmax.

C0013 Tif (dec) 0.000 0.000 0.001 s 999.900 Deceleration time Tif for themain setpoint NSET

Related to the speedchange 0¤nmax.

C0017 FCODE (Qmin) 50 -16000 1 rpm 16000 Switching threshold nact < nx n act < C0017 activatesthe comparator outputCMP1-OUT

C0018 fchop 1 0 16/8 kHz sin Optimum noise reduction withautomatic change-over to 8kHz

Chopping frequency

Page 137: ba93sugb.pdf

Appendix

11-18 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

1 8 kHz sin Operation with optimumpower

2 16 kHz sin Operation with optimum noisereduction

C0019 Thresh nact= 0 0 0 1 rpm 16000 Threshold when nact = 0 isrecognized.

C0021 Slipcomp 0.00 0.00 0.01 % 20.00 Slip compensation active only in sensorlesscontrol below the value ofC0291

C0022 Imax current * 0 0.01 A 1.50 IN Imaxlimit * depending on C0086- Change of C0086 resets

value to the assigned0 0.01 A 2.00 IN Imaxlimit for 9321 to 9324

value to the assignedfactory setting(1.5*Imotor)for RSP change over to- for RSP change-over toImax > 1.5 Ir possible fortypes 9321 to 9324

[C0025] Feedback type 10 Selection of the feedbacksystem

- Input of the encoderspecified on the

l t f th L0 COMMON C0420, C0490 or C0495 waschanged subsequently

nameplate of the Lenzemotor:C0025 automatically1 no feedback Control without feedback

system (sensorless control,SSC)

- C0025 automaticallychanges C0420,C0490, C0495

10 RSx (Resolver) The resolver is designatedwith RSxxxxxxxx.

110 IT-512-5V111 IT-1024-5V112 IT-2048-5V113 IT-4096-5V

Incremental encoder with TTLlevel

210 IS-512-5V211 IS-1024-5V212 IS-2048-5V213 IS-4096-5V

Sine-cosine encoder

310 AS-512-8V Stegmann single turnsine-cosine encoder withRS485 interfaceFa. Stegmann

410 AM-512-8V Stegmann multi-turnSine cosine encoder withRS485 interface

C002612

FCODE (offset)FCODE (offset)

0.000.00

-199.99 0.01 % 199.99Freely assignable code forrelative analog signals

Used for:Offset for terminal X6/1,2Offset for terminal X6/3,4

C002712

FCODE (gain)FCODE (gain)

100.00100.00

-199.99 0.01 % 199.99Freely assignable code forrelative analog signals

Used for:Gain X6/1,2Gain X6/3,4

C0030 DFOUT const 3 0 256 inc/rev1 512 inc/rev2 1024 inc/rev3 2048 inc/rev4 4096 inc/rev5 8192 inc/rev6 16384 inc/rev

Constant for the digitalfrequency output inincrements per revolution

Page 138: ba93sugb.pdf

Appendix

11-199300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0032 FCODE Gearbox 1 -32767 1 32767 Freely assignable code Used for:Gearbox factor numerator

C0033 Gearbox denom 1 1 1 32767 Gearbox factor (denominator)for DFSET

C0034 Mst current 0 0 -10 V ... + 10 V1 + 4 mA ... + 20 mA2 -20 mA ... + 20 mA

Selection: Mastervoltage/master current forset-value input

C0037 Set-value rpm 0 -16000 1 rpm 16000 Setpoint input in rpmC0039

12345

...1415

JOG set-valueJOG set-valueJOG set-valueJOG set-valueJOG set-value...JOG set-valueJOG set-value

100.075.0050.0025.000.00...0.000.00

-199.99 0.01 199.99Fixed speeds (JOG set-values)can be selected for NSETusing digital inputs.

C0040 Ctrl enable 1 0 Ctrl inhibit1 Ctrl enable

Controller inhibit - write:- controls the code

- read:- reads the controller

statusC0042 DIS: QSP 0 QSP inactive

1 QSP activeQuick stop status display only

C0043 Trip reset 0 no/trip reset1 trip active

reset current tripActive trip

Reset of an active trip:- Set C0043 = 0

C0045 DIS: act JOG 0 Nset active1 JOG 12 JOG 2...15 JOG 15

Active JOG set-value display only

C0046 DIS: N -199.99 0.01 % 199.99 Main setpoint display onlyC0049 DIS: NADD -199.99 0.01 % 199.99 Additional setpoint display onlyC0050 MCTRL-NSET2 -100.00 0.01 % 100.00 n set at the speed controller

inputdisplay only

C0051 MCTRL-NACT -30000 1 rpm 30000 Actual speed display onlyC0052 MCTRL-Umot 0 1 V 800 Actual motor voltage display onlyC0053 UG-VOLTAGE 0 1 V 900 DC bus voltage display onlyC0054 IMot 0.0 0.1 A 500.0 Actual motor current display onlyC0056 MCTRL-MSET2 -100.00 0.01 % 100.00 Torque setpoint (output of the

speed controller)display only

C0057 Max Torque 0.0 0.1 Nm 500.0 Maximum possible torque ofthe drive configuration

display only- depending on C0022,

C0086C0058 Rotor diff -180.0 0.1 E 179.9 Zero phase of the rotor for

synchronous motors (C0095)display only

C0059 Mot pole no. 1 1 50 Pole pair number of the motor display onlyC0060 Rotor pos 0 1 2047 current rotor position display only

- 1 rev. = 2048 inc

C0061 Heatsink temp 0 1 °C 100 Heatsink temperature display onlyC0063 Mot temp 0 1 °C 200 Motor temperature display only

Page 139: ba93sugb.pdf

Appendix

11-20 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0064 Utilization 0 1 % 150 Controller load I x t during thelast 180 s

display only- C0064 > 100 %

releases Trip OC5- Trip reset is possible

only if C0064 < 95 %

C0067 Act trip see selection list 10All fault indications

Momentary fault indication display only

C0070 Vp speed-CTRL * 0.0 0.5 255.0 V pn speed controller * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

C0071 Tn speed-CTRL * 1.0 0.5 ms 600.0> 512 ms switched off

T nn speed controller * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

C0072 Td speed-CTRL 0.0 0.0 0.1 ms 32.0 T dn speed controllerC0075 Vp curr-CTRL * 0.00 0.01 15.99 V pi current controller * depending on C0086

- Change of C0086 resetsvalue to the assigneddefault setting

C0076 Tn curr-CTRL * 0.5 0.1 ms 1999.02000 ms switched off

T ni current controller * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

C0077 Vp field-CTRL 0.25 0.00 0.01 15.99 V pF field controllerC0078 Tn field-CTRL 15.0 1.0 0.5 ms 7999.0

8000 msswitched offT nF field controller

[C0081] Mot power * 0.01 0.01 kW 500.00 Rated motor power acc. tonameplate

* depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0081 setsC0086 = 0

[C0084] Mot Rs * 0.00 0.01 100.00 Stator resistance of the motorrequired for C0006 = 1

* depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0084 setsC0086 = 0

[C0085] Mot Ls * 0.00 0.01 200.00 Stray inductance of the motorrequired for C0006 = 1

* depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0085 setsC0086 = 0

[C0086] Mot type * Selection motor type * depending on thecontroller

- Change of C0086 resetsC0006, C0022, C0070,C0071, C0081, C0084,C0085, C0087, C0088,C0089, C0090, C0091to the assigned defaultsetting

0 COMMON no Lenze motor

Page 140: ba93sugb.pdf

Appendix

11-219300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

10 DSKA56-14011 DFKA71-12012 DSKA71-14013 DFKA80-6014 DSKA80-7015 DFKA80-12016 DSKA80-14017 DFKA90-6018 DSKA90-8019 DFKA90-12020 DSKA90-14021 DFKA100-6022 DSKA100-8023 DFKA100-12024 DSKA100-14025 DFKA112-6026 DSKA112-8527 DFKA112-12028 DSKA112-14030 DFQA100-5031 DFQA100-10032 DFQA112-2833 DFQA112-5834 DFQA132-2035 DFQA132-4240 DFQA112-5041 DFQA112-10042 DFQA132-3643 DFQA132-76

MDSKAXX056-22, fN : 140HzMDFKAXX071-22, fN : 120HzMDSKAXX071-22, fN : 140HzMDFKAXX080-22, fN : 60HzMDSKAXX080-22, fN : 70HzMDFKAXX080-22, fN : 120HzMDSKAXX080-22, fN : 140HzMDFKAXX090-22, fN : 60HzMDSKAXX090-22, fN : 80HzMDFKAXX090-22, fN : 120HzMDSKAXX090-22, fN :140HzMDFKAXX100-22, fN : 60HzMDSKAXX100-22, fN : 80HzMDFKAXX100-22, fN : 120HzMDSKAXX100-22, fN : 140HzMDFKAXX112-22, fN : 60HzMDSKAXX112-22, fN : 85HzMDFKAXX112-22, fN : 120HzMDSKAXX112-22, fN : 140HzMDFQAXX100-50, fN : 50HzMDFQAXX100-100, fN :

100HzMDFQAXX112-28, fN : 28HzMDFQAXX112-58, fN : 58HzMDFQAXX132-20, fN : 20HzMDFQAXX132-42, fN : 42HzMDFQAXX112-50, fN : 50HzMDFQAXX112-100, fN :

100HzMDFQAXX132-36, fN : 36HzMDFQAXX132-76, fN : 76Hz

New generation of Lenzeasynchronous servomotorsintegrated temperaturemonitoring via resolver orencoder cable- The temperature

monitoring via resolveror encoder cable isactivated automatically,i.e.:C0583 = 0C0584 = 2C0594 = 0

50 DSVA56-14051 DFVA71-12052 DSVA71-14053 DFVA80-6054 DSVA80-7055 DFVA80-12056 DSVA80-14057 DFVA90-6058 DSVA90-8059 DFVA90-12060 DSVA90-14061 DFVA100-6062 DSVA100-8063 DFVA100-12064 DSVA100-14065 DFVA112-6066 DSVA112-8567 DFVA112-12068 DSVA112-140

DSVAXX056-22, fN : 140HzDFVAXX071-22, fN : 120HzDSVAXX071-22, fN : 140HzDFVAXX080-22, fN : 60HzDSVAXX080-22, fN : 70HzDFVAXX080-22, fN : 120HzDSVAXX080-22, fN : 140HzDFVAXX090-22, fN : 60HzDSVAXX090-22, fN : 80HzDFVAXX090-22, fN : 120HzDSVAXX090-22, fN : 140HzDFVAXX100-22, fN : 60HzDSVAXX100-22, fN : 80HzDFVAXX100-22, fN : 120HzDSVAXX100-22, fN : 140HzDFVAXX112-22, fN : 60HzDSVAXX112-22, fN : 85HzDFVAXX112-22, fN : 120HzDSVAXX112-22, fN : 140Hz

Lenze asynchronous servomotorswithout integratedtemperature monitoring- The temperature

monitoring via resolveror encoder cable isdeactivatedautomatically, i.e.:C0583 = 3C0584 = 3C0594 = 3

Page 141: ba93sugb.pdf

Appendix

11-22 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

108 DSKS36-13-200109 DSKS36-23-200110 DSKS56-23-150111 DSKS56-33-150112 DSKS71-13-150113 DFKS71-13-150114 DSKS71-23-150115 DFKS71-23-150116 DSKS71-33-150117 DFKS71-33-150160 DSKS56-23-190161 DSKS56-33-200162 DFKS71-03-170163 DSKS71-03-165164 DSKS71-13-185165 DFKS71-13-180166 DSKS71-33-180167 DFKS71-33-175

MDSKSXX036-13, fN : 200HzMDSKSXX036-23, fN : 200HzMDSKSXX056-23, fN : 150HzMDSKSXX056-33, fN : 150HzMDSKSXX071-13, fN : 150HzMDFKSXX071-13, fN : 150HzMDSKSXX071-23, fN : 150HzMDFKSXX071-23, fN : 150HzMDSKSXX071-33, fN : 150HzMDFKSXX071-33, fN : 150HzMDSKSXX56-23-190,fN:190HzMDSKSXX56-33-200,fN:200HzMDFKSXX71-03-170,fN:170HzMDSKSXX71-03-165,fN:165HzMDSKSXX71-13-185,fN:185HzMDFKSXX71-13-180,fN:180HzMDSKSXX71-33-180,fN:180HzMDFKSXX71-33-175,fN:175Hz

New generation of Lenzesynchronous servo motorsintegrated temperaturemonitoring via resolver orencoder cable- The temperature

monitoring via resolveror encoder cable isactivated automatically,i.e.:C0583 = 0C0584 = 2C0594 = 0

Page 142: ba93sugb.pdf

Appendix

11-239300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

210 DXRA071-12-50211 DXRA071-22-50212 DXRA080-12-50214 DXRA090-12-50215 DXRA090-32-50216 DXRA100-22-50217 DXRA100-32-50218 DXRA112-12-50219 DXRA132-12-50220 DXRA132-22-50221 DXRA160-12-50222 DXRA160-22-50223 DXRA180-12-50224 DXRA180-22-50

DXRAXX071-12, fd : 50HzDXRAXX071-22, fd : 50HzDXRAXX080-12, fd : 50HzDXRAXX090-12, fd : 50HzDXRAXX090-32, fd : 50HzDXRAXX100-22, fd : 50HzDXRAXX100-32, fd : 50HzDXRAXX112-12, fd : 50HzDXRAXX132-12, fd : 50HzDXRAXX132-22, fd : 50HzDXRAXX160-12, fd : 50HzDXRAXX160-22, fd : 50HzDXRAXX180-12, fd : 50HzDXRAXX180-22, fd : 50Hz

Lenze inverter motor instar connection- The temperature

monitoring via resolveror encoder cable isdeactivatedautomatically, i.e.:C0583 = 3C0584 = 3C0594 = 3

225 30kW-ASM-50226 37kW-ASM-50227 45kW-ASM-50228 55kW-ASM-50229 75kW-ASM-50

250 DXRA071-12-87251 DXRA071-22-87252 DXRA080-12-87254 DXRA090-12-87255 DXRA090-32-87256 DXRA100-22-87257 DXRA100-32-87258 DXRA112-12-87259 DXRA132-12-87260 DXRA132-22-87261 DXRA160-12-87262 DXRA160-22-87263 DXRA180-12-87264 DXRA180-22-87

DXRAXX071-12, fd : 87HzDXRAXX071-22, fd : 87HzDXRAXX080-12, fd : 87HzDXRAXX090-12, fd : 87HzDXRAXX090-32, fd : 87HzDXRAXX100-22, fd : 87HzDXRAXX100-32, fd : 87HzDXRAXX112-12, fd : 87HzDXRAXX132-12, fd : 87HzDXRAXX132-22, fd : 87HzDXRAXX160-12, fd : 87HzDXRAXX160-22, fd : 87HzDXRAXX180-12, fd : 87HzDXRAXX180-22, fd : 87Hz

Lenze inverter motor indelta connection- The temperature

monitoring via resolveror encoder cable isdeactivatedautomatically, i.e.:C0583 = 3C0584 = 3C0594 = 3

265 30kW-ASM-87266 37kW-ASM-87267 45kW-ASM-87268 55kW-ASM-87269 75kW-ASM-87

[C0087] Mot speed * 300 1 rpm 16000 Rated motor speed * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0087 setsC0086 = 0

[C0088] Mot current * 0.5 0.1 A 500.0 Rated motor current * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0088 setsC0086 = 0

Page 143: ba93sugb.pdf

Appendix

11-24 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0089] Mot frequency * 10 1 Hz 1000 Rated motor frequency * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0089 setsC0086 = 0

[C0090] Mot voltage * 50 1 V 500 Rated motor voltage * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0090 setsC0086 = 0

[C0091] Mot cos phi * 0.50 0.01 1.00 Motor cos Ö * depending on C0086- Change of C0086 resets

value to the assigneddefault setting

- Change of C0091 setsC0086 = 0

C0093 Drive ident Controller identification display only0 invalid1 none93xx 93xx Type Lenze servo inverter

y y

C0094 Password 0 0 9999 Password[C0095] Rotor pos adj 0 0 inactive

1 activeRotor position adjustment of asynchronous motorC0058 displays the zeroangle of the rotor

C0095 = 1 starts positionadjustment

[C0096] Password 0 0 no password protec-tion

1 Read protection2 Write protection3 Read/Write protection

Extended password protection

C0099 S/W version x.xx Software version display onlyC0101

12

...15

add Tiradd Tir...add Tir

0.0000.000...0.000

0.000 0.001 s 999.900Additional acceleration timesTir for the main setpoint NSET

Related to the speedchange 0¤nmax.

C010312

...15

add Tifadd Tif...add Tif

0.0000.000...0.000

0.000 0.001 s 999.900Additional decleration timesTif for the main setpoint NSET

Related to the speedchange 0¤nmax.

C0105 QSP Tif 0.000 0.000 0.001 s 999.900 Deceleration time for quickstop (QSP)

Related to the speedchange 0¤nmax.

C010812

FCODE (gain)FCODE (gain)

100.00100.00

-199.99 0.01 % 199.99Freely assignable code forrelative analog signals

C010912

FCODE (offset)FCODE (offset)

0.000.00

-199.99 0.01 % 199.99Freely assignable code forrelative analog signals

Page 144: ba93sugb.pdf

Appendix

11-259300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C011412345

DIGIN polDIGIN polDIGIN polDIGIN polDIGIN pol

00010

0 HIGH active1 LOW active

Terminal polarityX5/E1X5/E2X5/E3X5/E4X5/E5

[C0116]12

...3132

CFG: FDOCFG: FDO...CFG: FDOCFG: FDO

10001000...10001000

see selection list 2FIXED 0FIXED 0...FIXED 0FIXED 0

Signal configuration FDOFDO 0FDO 1...FDO 30FDO 31

Free digital outputs canonly be evaluated whennetworked withautomation interfaces.

[C0117]1234

CFG: DIGOUTCFG: DIGOUTCFG: DIGOUTCFG: DIGOUT

*15000106505005003

see selection list 2DCTRL-TRIPCMP1-OUTDCTRL-RDYMCTRL-MMAX

Signal configuration DIGOUTX5/A1X5/A2X5/A3X5/A4

* depending on C0005

C01181234

DIGOUT polDIGOUT polDIGOUT polDIGOUT pol

1100

0 High active1 Low active

Terminal polarity DIGOUTX5/A1X5/A2X5/A3X5/A4

C0121 OH7 limit 150 45 1 EC 150 Temperature threshold earlywarning motor temperature(OH7 fault)

C0122 OH4 limit 85 45 1 EC 85 Temperature thresholdwarning heat sinktemperature (fault OH4)

C0125 Baud rate 0 0 9600 baud1 4800 baud2 2400 baud3 1200 baud4 19200 baud

LECOM baud rate for 2102module

C0126 MONIT CE0 3 0 Trip2 Warning3 Off

Configuration communicationerror monitoring withautomation interface CE0

C0130 DIS: act Ti active Titimes of NSET - display only0 C12/C131 Ti 12 Ti 2...14 Ti 1415 Ti 15

C0012/C0013 activeT ir1/Tif1 activeT ir2/Tif2 active...T ir14/Tif14 activeT ir15/Tif15 active

y y

C0134 RFG charac 0 0 linear1 S-shaped

linearS-shaped

Ramp characteristic forsetpoint

C0135 Control word 0 1 65535 Control word when networkedwith automation interfaces

Decimal control word- Device evaluates

information 16 bit,binary coded

C0141 FCODE (setval) 0.00 -199.99 0.01 % 199.99 Freely assignable code forrelative analog signals

used as main setpoint inthe configurationc C0005= xxx1

Page 145: ba93sugb.pdf

Appendix

11-26 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0142 Start options 1 Start options is executed:- after mains connection

0 Start lock1 Auto start

0 = Start protection1 = automatic start

- after mains connection- after message (t > 0.5s)- after trip

C0150 Status word 0 1 65535 Status word when networkedwith automation interfaces

Decimal status word- display only- binary interpretation

indicates the bit statesC0151 DIS: FDO (DW) output signals configures with

C0116Hexadecimal signalassignment of the free digitaloutputs.

- display only- binary interpretation

indicates the bit statesC0155 Status word 2 0 1 65535 Status word 2 Extended decimal status

word- display only- binary interpretation

indicates the bit states

[C0156]1234567

CFG: STAT.B0CFG: STAT.B2CFG: STAT.B3CFG: STAT.B4CFG: STAT.B5CFG: STAT.B14CFG: STAT.B15

200050025003505010650505500

see selection list 2PAR*1MCTRL-IMAXMCTRL-MMAXNSET-RFG I= OCMP1-OUTDCTRL-CW/CCWDCTRL-RDY

Configuration of the free bitsof the status word

C01571234567

DIS: STAT.B0DIS: STAT.B2DIS: STAT.B3DIS: STAT.B4DIS: STAT.B5DIS: STAT.B14DIS: STAT.B15

0 1Status of the free bits of thestatus word

display only

C0161 Act trip All fault indications(see chapter 9.3)

momentary fault indications(as under C0168/1)

display only

C0167 Reset failmem 0 0 No reset1 Reset Clears the history buffer

C016812345678

Fail no. actFail no. old1Fail no. old2Fail no. old3Fail no. old4Fail no. old5Fail no. old6Fail no. old7

All fault indications(ihe chapter 9.3)

Faults occurrednow activelastlast but onelast but twolast but threelast but fourlast but fivelast bus six

History buffer- List of fault occurred- display only

Page 146: ba93sugb.pdf

Appendix

11-279300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C016912345678

Failtime actFailtime old1Failtime old2Failtime old3Failtime old4Failtime old5Failtime old6Failtime old7

corresponding mains switch-ontime

Occurrence of the faultsnow activelastlast but onelast but twolast but threelast but fourlast but fivelast but six

History buffer- List of times when the

faults have occurredunder C0168

- related to C0179- display only

C017012345678

Counter actCounter old1Counter old2Counter old3Counter old4Counter old5Counter old6Counter old7

Fault frequencynow activelastlast but onelast but twolast but threelast but fourlast but fivelast but six

History buffer- List of how often the

faults have occurredconsecutively underC0168

- display only

[C0172] 0V reduce 10 0 10 V 100 Threshold to activate thebrake torque reduction beforeOU fault

[C0173] UG limit 1 Adaptation of DC bus voltagethresholds

- check duringcommissioning andd t if0 Mains< 400V+ -B Operation on mains < 400 V

with or without brake unit

gadapt, if necessary

- all drive components inDC bus connections1 Mains= 400V+ -B Operation on 400 V mains

with or without brake unit

DC bus connectionsmust have the samethresholds

2 Mains= 460V+ -B Operation on 460 V mainswith or without brake unit

thresholds

3 Mains= 480V-B Operation on 480 V mainswithout brake unit

4 Mains= 480V+ B Operation on 480 V mainswith brake unit

C0178 Op timer 0 1 s4294967295 Elapsed operating time meter Time when the controllerwas enabled

C0179 Mains timer 0 1 s4294967295 Mains switch-on time meter Time when the mains wasswitched on

C0182 Ti S-shaped 20.00 0.01 s 0.01 s 50.00 s T i time of the S-shaped rampgenerator for NSET

Determines the S-shape- small valuesA

small S rounding- high valuesA

large S rounding

Page 147: ba93sugb.pdf

Appendix

11-28 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0183 Diagnostics Drive diagnostics - display onlyg0 OK101 Init102 Trip103 RFG P-OFF104 IMP Message105 Power off111 BSP C135112 BSP AIF113 BSP CAN121 CINH term 28122 CINH int 1123 CINH int 2124 CINH C135/STP125 CINH AIF126 CINH CAN141 Lock mode

No faultInitialization phaseTRIP activeEmergency stop was releasedMessage active

Operation inhibited

Controller inhibited via X5/28DCTRL-CINH1DCTRL-CINH2STOP key of 9371BBController inhibited via AIFController inhibited via CANRestart protection active

y y- indicates fault or status

information- if several items or fault

or status information areto be shown, theinformation with thesmallest number isdisplayed

142 IMP Power outputs with highresistance

151 QSP ext term152 QSP C135/STP153 QSP AIF154 QSP CAN250 Warning

QSP via MCTRL-QSPQSP via STOP keyQSP via AIFQSP via CANWarning active

C0190 NSET arit 0 0 OUT = C461 C46 + C492 C46 - C493 C46 * C494 C46 / C495 C46/(100 - C49)

Arithmetic block in thefunction block NSET

Connects main setpointC0046 and additionalsetpoint C0049

C0195 BRK1 T act 99.9 0.0 0.1 s 99.999.9 s infinite

Brake engaging time Engaging time of themechanical holding brake(see technical data of thebrake).- after the time elapsed

under C0195, the status”mechanical brakeclosed” is reached

C0196 BRK T release 0.0 0.0 0.1 s 60.0 Brake disengaging time Disengaging time of themechanical holding brake(see technical data of thebrake).- After time has elapsed

under C0195, the status”mechanical brakeclosed” is reached

C0200 S/W Id Software identification display onlyC0201 S/W date Software release date display onlyC0203 Komm.-No. x / xxxx / xxxxx Commission number display onlyC0204 Serial-No. 0 1 65535 Serial number display onlyC0206 Produkt date Production date display onlyC0207 DL info 1 Download-Info 1 display onlyC0208 DL info 2 Download-Info 2 display onlyC0209 DL info 3 Download-Info 3 display only

Page 148: ba93sugb.pdf

Appendix

11-299300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0220 NSET Tir add 0.000 0.000 0.001 s 999.900 Acceleration time Tir of theadditional setpoint for NSET

Related to the speedchange 0¤nmax.

C0221 NSET Tif add 0.000 0.000 0.001 s 999.900 Deceleration time Tif of theadditional setpoint for NSET

Related to the speedchange 0¤nmax.

C0222 PCTRL Vp 1.0 0.1 0.1 500.0 Process controller gain Vp

C0223 PCTRL Tn 400 20 1 ms 9999999999 ms switched off

Process controller integralcomponent Tn

C0224 PCTRL Kd 0.0 0.0 0.1 5.0 Process controller differentialcompconent Kd

C0241 NSET RFG I = O 1.00 0.00 0.01 % 100.00100 % = nmax

Threshold ramp generator formain setpointInput = output

C0244 BRK M set 0.00 -100.00 0.01 % 100.00100 % = value of C0057

Holding torque of the DCinjection brake

C0250 FCODE 1BitC0252 phase offset 0 -2457600001 inc245760000 Phase offset for DFSET Fixed phase offset for

digital frequencyconfiguration- 1 rev. = 65536 inc

C0253 Angle n-trim * -32767 1 inc 32767 Phase trimming for DFSET speed-dependent phasetrimming* depending on C0005,

C0025, C0490- Change of C0005,

C0025, or C0490 resetsC0253 to the defaultsetting

- 1 rev. = 65536 inc- C0253 is reached at

15000 rpm

C0254 Vp angle-CTRL 0.40 0.0000 0.0001 3.9999 V p phase controller in MCTRLC0255 Threshold P03 327680 10 1 inc180000000

0Contouring error limit Contouring error limit for

fault P03- 1 rev. = 65536 inc- Contouring error >

C0255 releases fault”P03”

C0260 MPOT1 high 100.00 -199.99 0.01 % 199.99 Upper limit of motorpotentiometer

mandatory- C0260 > C0261

C0261 MPOT1 low -100.0 -199.99 0.01 % 199.99 Lower limit of motorpotentiometer

mandatory- C0261 < C0260

C0262 MPOT1 Tir 10.0 0.1 0.1 s 6000.0 Motor pot acceleration time Tir Related to change0¤100 %

C0263 MPOT1 Tif 10.0 0.1 0.1 s 6000.0 Motor pot deceleration timeTif

Related to change0¤100 %

C0264 MPOT1 on/off 0 Deactivation function of motorpot

- Function which isexecuted when motor

t i d ti t d i0 No function1 Down to 0%2 Down to C2613 Jump 0%4 Jump to C2615 Up to C260

no changeDeceleration with Tif to 0%Deceleration with Tif to C0261Inhibit with Tif = 0 to 0%Inhibit with Tif = 0 to C0261Acceleration with Tir to C0260

pot is deactivated viathe inputMPOT1-INACTIVE.

Page 149: ba93sugb.pdf

Appendix

11-30 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0265 MPOT1 init 0 Initialization function of motorpot

- Value which isaccepted during mains

it hi d ti t d0 Power off1 C2612 0%

Value during mains failurelower limit of C02610 %

gswitching and activatedmotor pot.

[C0267] see selection list 2 Configuration of the digitalinputs of motor pot MPOT1

12

CFG: UPCFG: DOWN

10001000

FIXED 0FIXED 0

Digital input accelerationDigital input deceleration

[C0268] CFG: INACT1000

see selection list 2FIXED 0

Configuration of the motor potinput MPOT1-INACTIVE

C0269123

DIS: UPDIS: DOWNDIS: INACTIVE

Input signals motorpotentiometer

display only

C0291 SSC override 0 0 1 rpm 16000 Override frequency for thetransition from sensorlesscontrol to controlled operation

C0292 SSC Im set 0.00 0.00 0.01 A 500.00 Motor current setpoint Set approx. 1.0 to 1.1times rated motor currentfor sensorless speedcontrol.

C0293 SSC dynamic 0.00 0.00 0.01 % 199.00 Dynamic constant dynamic motor currentboost

C0294 Vp frq ctrl * 0.0 0.1 99.9 Prpportional gain frequencycontroller

* depending on C0086

C0295 Tn frq ctrl * 2 1 ms 20000 Adjustment time frequencycontroller

* depending on C0086

C0296 Dynamic Const 100 0 0.1 32767 Dynamic constantC0325 Vp2 adapt 1.0 0.1 0.1 500.0 Process controller adaptation

gain (Vp2)

C0326 Vp3 adapt 1.0 0.1 0.1 500.0 Process controller adaptationgain (Vp3)

C0327 Set2 adapt 100.00 0.00 0.01 % 100.00 Process controller adaptationnset2

Set speed threshold of theprocess controlleradaptationmandatory- C0327 > C0328

C0328 Set1 adapt 0.00 0.00 0.01 % 100.00 Process controller adaptationnset1

Set speed threshold of theprocess controlleradaptationmandatory- C0328 < C0327

C0329 Adapt on/off 0 Activate process controlleradaptation

0 no1 Extern Vp2 Set-value3 Ctrl diff

no process controlleradaptationexternal via inputAdaptation via setpointAdaptation via control diffe-

rence

C0332 PCTRL Tir 0.000 0.000 0.001 s 999.900 Process controlleracceleration time Tir

related to setpoint change0¤100 %

Page 150: ba93sugb.pdf

Appendix

11-319300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0333 PCTRL Tif 0.000 0.000 0.001 s 999.900 Process controllerdeceleration time Tir

related to setpoint change0¤100 %

C0336 DIS: act Vp 0.0 0.1 500.0 Process controller momentaryVp

display only

C0337 Bi/unipolar 0 0 bipolar1 unipolar

Process controller rangebipolar/unipolar

C0338 ARIT1 funct 1 0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN24 IN1 / IN25 IN1/(100 - IN2)

Function arithmetic blockARIT1

links inputs IN1 and IN2

[C0339]12

CFG: INCFG: IN

10001000

see selection list 1FIXED 0 %FIXED 0 %

Configuration arithmeticblockARIT1

C034012

DIS: INDIS: IN

Input signals arithmetic blockARIT1

display only

[C0350] CAN address 1 1 1 63 CAN bus node address[C0351] CAN baudrate 0 0 500 kbit/s

1 250 kbit/s2 125 kbit/s3 50 kbit/s4 1000 kbit/s

CAN bus baud rate

[C0352] CAN mst 0 0 Slave1 Master

Install CAN bus masteroperation

C0353123

CAN addr sel1CAN addr sel2CAN addr sel3

000

0 C3501 C354

Source for CAN bus IN/OUTaddresses

C0354123456

IN1 addr2OUT1 addr2IN2 addr2OUT2 addr2IN3 addr2OUT3 addr2

1291257258385386

1 1 512CAN bus IN/OUT nodeaddresses

C0355123456

CAN-IN1 IdCAN-OUT1 IdCAN-IN2 IdCAN-OUT2 IdCAN-IN3 IdCAN-OUT3 Id

0 1 2047CAN bus identifier display only

C03561234

CAN boot upCAN-OUT2 TCAN-OUT3 TCAN delay

30000020

0 1 ms 65000CAN bus time settings

Page 151: ba93sugb.pdf

Appendix

11-32 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0357]123

CE1monit timeCE2monit timeCE3monit time

300030003000

0 1 ms 65000CAN bus monitoring time forINx

C0358 Reset node 0 0 no function1 CAN reset

Install CAN bus reset node

C0359 CAN state 00 Operational1 Pre-Operat2 Warning3 Bus off

CAN bus status: display only

C0360

123456789

101112

Message OUTMessage INMessage OUT1Message OUT2Message OUT3Message POUT1Message POUT2Message IN1Message IN2Message IN3Message PIN1Message PIN2

0 1 65535Telegram counter(number of telegrams)all sentall receivedsent to CAN-OUT1sent to CAN-OUT2sent to CAN-OUT3sent to parameter channel1sent to parameter channel1received from CAN-IN1received from CAN-IN2received from CAN-IN3received from parameterchannel1received from parameterchannel2

display only- for values

> 65535 the countingrestarts with 0

C0361123456789

101112

Load OUTLoad INLoad OUT1Load OUT2Load OUT3Load POUT1Load POUT2Load IN1Load IN2Load IN3Load PIN1Load PIN2

0 1 % 100 CAN bus loadall sentall receivedsent to CAN-OUT1sent to CAN-OUT2sent to CAN-OUT3sent to parameter channel1sent to parameter channel1received from CAN-IN1received from CAN-IN2received from CAN-IN3received from parameterchannel1received from parameterchannel2

- display only- To ensure a perfect

operation, the total busload (all connecteddevices) should be lessthan 80%

C0362 Sync cycle 0 1 ms 30 Time between two synctelegrams on the system bus

display only

C0363 Sync corr 1 1 0.8 ms2 1.6 ms3 2.4 ms4 3.2 ms5 4.0 ms

Correction value for C0362

[C0364] CFG:CAN activ1000

see selection list 2FIXED 0

Activate process dataexternally

Change over frompre-operation to operation

C0365 DIS:CAN activ 0 1 Input signal CAN active display only

Page 152: ba93sugb.pdf

Appendix

11-339300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0366 Sync Response 1 0 no sync response1 sync response

??? CAN

C0367 Sync Rx ID 128 1 1 256 ??? CANC0368 Sync Tx ID 128 1 1 256 ??? CANC0369 Sync Tx Time 0 0 1 65000 ??? CAN

Page 153: ba93sugb.pdf

Appendix

11-34 9300BA0998

Code LCD Possible settings IMPORTANT

Lenze Selection InfoC0400 DIS: OUT -199.99 0,01 % 199.99 Output of AIN1 display only

[C0402] CFG: OFFSET19502

see selection list 1FCODE-26/1

Configuration offset of AIN1

[C0403] CFG: GAIN19504

see selection list 1FCODE-27/1

Configuration gain of AIN1

C040412

DIS: OFFSETDIS: GAIN

-199.99 0.01 % 199.99Input signals of AIN1 display only

C0405 DIS: OUT -199.99 1 % 199.99 Output of AIN2 display only[C0407] CFG: OFFSET

19503see selection list 1FCODE-26/2

Configuration offset of AIN2

[C0408] CFG: GAIN19505

see selection list 1FCODE-27/2

Configuration gain of AIN2

C040912

DIS: OFFSETDIS: GAIN

-199.99 0.01 % 199.99Input signals of AIN2 display only

[C0416] Resolver adj 0 0 1 99999999 Correction of the resolvererror

for Lenze motors- Read resolver error from

the nameplate[C0420] Encoder const 512 256 1 inc/rev 8192 Encoder constant for

encoder input X8 inincrements per revolution

[C0421] Encoder volt 5.00 5.00 0.1V 8.00 Set supply voltage for theencoder used

CAUTION:incorrect input maydestroy the encoder

C0425 DFIN const 3 0 256 inc/rev1 512 inc/rev2 1024 inc/rev3 2048 inc/rev4 4096 inc/rev5 8192 inc/rev6 16384 inc/rev

Constant for digital frequencyinput in increments perrevolution

C0426 DIS: OUT -32767 1 rpm 32767 Output signal of DFIN display onlyC0427 DFIN funktion 0 0 2-phase

1 A puls / B dir2 Puls A or B

Type of the digital frequencysignal0 = Quadrature1 = Pulse / Direction2 = Pulse A / Pulse B

C0429 TP5 delay 0 -32767 1 inc 32767 Dead time compensation forthe TP function of DFSET andDFRFG

[C0431] CFG: IN5001

see selection list 1MCTRL-NACT

Configuration input of AOUT1

[C0432] CFG: OFFSET19512

see selection list 1FCODE-109/1

Configuration offset ofAOUT1

[C0433] CFG: GAIN19510

see selection list 1FCODE-108/1

Configuration gain of AOUT1

C0434123

DIS: INDIS: OFFSETDIS: GAIN

-199.99 0.01 % 199.99Input signals of AOUT1 display only

[C0436] CFG: IN5002

see selection list 1MCTRL-MSET2

Configuration input of AOUT2

Page 154: ba93sugb.pdf

Appendix

11-359300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0437] CFG: OFFSET19513

see selection list 1FCODE-109/2

Configuration offset ofAOUT2

[C0438] CFG: GAIN19511

see selection list 1FCODE-108/2

Configuration gain of AOUT2

C0439123

DIS: INDIS: OFFSETDIS: GAIN

-199.99 0.01 % 199.99Input signals of AOUT2 display only

[C0440] CFG: STATE-BUS 1000 see selection list 2 Configuration state busX5/ST

C0441 DIS: STATE-BUS Monitoring signal State bus display onlyC0443 DIS: DIGIN-OUT 0 1 255 Signals at X5/E1 to X5/E5

decimal valuedisplay only- Binary interpretation

indicates terminalsignals

C04441234

DIS: DIGOUT1DIS: DIGOUT2DIS: DIGOUT3DIS: DIGOUT4

0 1Signals at X5/A1 to X5/A4 display only

[C0450] CFG: NX1000

see selection list 1FIXED 0 %

Configuration analog input ofBRK1

[C0451] CFG: ON1000

see selection list 2FIXED 0

Configuration digital input ofBRK1

[C0452] CFG: SIGN1000

see selection list 1FIXED 0 %

Configuration analog input ofBRK1

C045812

DIS: NXDIS: SIGN

-199.99 0.01 % 199.99Analog input signals of BRK1 display only

C0459 DIS: ON Digital input signal of BRK1 display only

C0464 Customer I/F 0 original1 changed

Status of selected baseconfiguration

display only- Reassignment of

terminals in a baseconfiguration fromC0005 does not changeC0005 and sets C0464= 1

- Adding or removing offunction blocks orchanging the signal flowamong the functionblocks in a baseconfiguration of C0005sets C0005 = 0 andC0464 = 1

Page 155: ba93sugb.pdf

Appendix

11-36 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0465]123456789

10111213141516...

19...

22...

25...

28...

31...

4142...

4950

FB listFB listFB listFB listFB listFB listFB listFB listFB listFB listFB listFB listFB listFB listFB listFB list...FB list...FB list...FB list...FB list...FB list...FB listFB list...FB listFB list

*20005000550010250000565000505005700010650070075025002500020000000

See selection list 5 Processing sequence list offunction blocksContained in the program ofsignal processing (sequencein which the function blocksare processed)

* depending on C0005Change of C0005 loadsassigned processing list

* Valid for C0005 =1000

- After changing thesignal flow adapt theprocessing list in everycase.Otherwise, thedevice may use wrongsignals!

- The function blocksDIGIN, DIGOUT, AIF-IN,CAN-IN, and MCTRL arealways processed anddo not have to beentered in the list.

C0466 CPU T remain Residual process time for theprocessing of function blocks

display only

[C0469] Fct STP key 2 Function of the STOP key ofthe operating module

Function is activated whenpressing the STOP key.

0 inactive1 CINH2 QSP

DeactivatedController inhibitQuick stop

ressing the STOP key.

C04701234

FCODE bit 0-7FCODE bit8-15FCODE bit 16-23FCODE bit 24-31

0000

0 1 255Freely assignable code fordigital signals

The data words C0470and C0471 are in paralleland are identical

C0471 FCODE 32 bit 0 0 1 4294967296 Freely assignable code fordigital signals

The data words C0470and C0471 are in paralleland are identical

Page 156: ba93sugb.pdf

Appendix

11-379300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0472123

...1920

FCODE analogFCODE analogFCODE analog...FCODE analogFCODE analog

0.000.00100.00...0.000.00

-199.99 0.01 % 199.99Freely assignable code forrelative analog signals

C0473123

...9

10

FCODE absFCODE absFCODE abs...FCODE absFCODE abs

110...00

-32767 1 32767Freely assignable code forabsolute analog signals

C047412345

FCODE PHFCODE PHFCODE PHFCODE PHFCODE PH

00000

-2147483648 1 2147483648Freely assignable code forphase signals

1 rev. = 65536 inc

C047512

FCODE DFFCODE DF

00

-16000 1 rpm 16000Freely assignable code forphase difference signals

1 rev. = 65536 inc

[C0490] Feedback pos 0 Feedback system for positioncontroller

- C0490 = 0, 1, 2 can bemixed with C0495 = 0,

0 Resolver1 Encoder TTL2 Encoder sin3 Absolut ST4 Absolut MT

Resolver at X7Encoder TTL at X8sin/cos encoder at X8Absolute value encoder ST atX8Absolute value encoder MTat X8

mixed with C0495 0,1, 2

- C0490 = 3, 4 also setsC0495 to the samevalue

[C0495] Feedback n 0 Feedback system for thespeed controller

- C0495 = 0, 1, 2 can bemixed with C0490 = 0,

0 Resolver1 Encoder TTL2 Encoder sin3 Absolut ST4 Absolut MT

Resolver at X7Encoder TTL at X8sin/cos encoder at X8Absolute value encoder ST atX8Absolute value encoder MTat X8

mixed with C0490 0,1, 2

- C0495 = 3, 4 also setsC0490 to the samevalue

C0497 Nact-filter 2.0 0.0 0.1 ms 50.00 ms switched off

Time constant actual speed

Page 157: ba93sugb.pdf

Appendix

11-38 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0517123456789

101112131415161718...

3132

User menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menuUser menu...User menuUser menu

51.0054.0056.0046.0049.00183.00168.0186.0022.005.0011.0012.0013.00105.0039.0170.0071.000094.003.00

0 1 199900C0051/0 MCTRL-NACTC0054/0 ImotC0056/0 MCTRL-MSET2C0046/0 DIS: NC0049/0 DIS: NADDC0183/0 DiagnosticsC0168/1 Fail no. actC0086/0 Mot typeC0022/0 Imax currentC0005/0 Signal cfgC0011/0 NmaxC0012/0 TirC0013/0 TifC0105/0 QSP TifC0039/1 JOG setpointC0070/0 Vp speed CTRLC0071/0 Tn speed CTRLnot assignednot assignedC0094/0 PasswordC0003/0 Par save

User menu with up to 32entries

- Under the subcodes thenumbers of the desiredcodes are entered.

- The input is done in theformat xxx.yy- xxx: Code number- yy: Subcode for code

- It is not checkedwhether the enteredcode exists.

[C0520] CFG: IN1000

See selection list 4FIXEDPHI-0

Configuration input of DFSET

[C0521] CFG: VP-DIV1000

see selection list 1FIXED 0 %

Configuration gain factornumerator of DFSET

[C0522] CFG: RAT-DIV1000

see selection list 1FIXED 0 %

Configuration gearbox factornumerator of DFSET

[C0523] CFG: A-TRIM1000

see selection list 1FIXED 0 %

Configuration phasetrimming of DFSET

[C0524] CFG: N-TRIM1000

see selection list 1FIXED 0 %

Configuration speedtrimming of DFSET

[C0525] CFG: 0-PULSE1000

see selection list 2FIXED 0

Configuration one-time zeropulse is activation of DFSET

[C0526] CFG: RESET1000

see selection list 2FIXED 0

Configuration resetintegrators of DFSET

[C0527] CFG: SET1000

see selection list 2FIXED 0

Configuration set integratorsof DFSET

C05281 DIS: 0-pulse A -20000000001 inc 200000000

0Phase difference betweentwo zero pulses

display only

2 DIS: Offset Offset of C0523*C0529 +C0252

C0529 Multip offset 1 -20000 1 20000 Offset multiplierC0530 DF evaluation 1 0 with g factor

1 without g factorEvaluation of the setpointintegrator of DFSET(with/without gearbox factor)

Evaluation of the setpointphase integrator of DFSET

C0531 Act 0 div 1 1 1 16384 Actual zero pulse divider ofDFSET

Page 158: ba93sugb.pdf

Appendix

11-399300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0532 0-pulse/TP 1 1 0-pulse2 Touch probe

Selection zero pulse of thefeedback system or touchprobe for DFSET

C0533 Vp denom 1 1 1 32767 Gain factor denominator ofDFSET

C0534 0-pulse fct 0 Zero pulse function of DFSET0 Inactive1 Continuous2 Cont. switch10 Once, fast way11 Once, cw12 Once, ccw13 Once, 2*0-puls

C0535 Set 0 div 1 1 1 16384 Set zero pulse divider ofDFSET

C0536123

DIS: VP-DIVDIS: RAT-DIVDIS: A-TRIM

-32767 1 32767Absolute analog input signalsof DFSET

display only

C0537 DIS: N-TRIM -199.99 0.01 % 199.99 Relative analog input signalof DFSET

display only

C0538123

DIS: 0-PULSEDIS: RESETDIS: SET

Digital input signals of DFSET display only

C0539 DIS: IN -32767 1 rpm 32767 Input signal of DFSET display onlyC0540 Function 2 0 Analog input Analog input

1 PH diff input Phase difference input X9 is inhibited if 0, 1, 2 or3 l d2 Res + int 0 Resolver simulation + zero

pulse

, ,3 was selected

3 Res + ext 0 Resolver simulation withoutzero pulse

4 OUT = DFIN5 OUT = encoder

X9 is output on X10X8 is output on X10

The input signals get again

[C0541] CFG: AN-IN5001

see selection list 1MCTRL-NACT

Configuration analog input ofDFOUT

[C0542] CFG: DF-IN1000

See selection list 4FIXEDPHI 0

Configuration digitalfrequency input of DFOUT

[C0544] CFG: SYN-RDY1000

see selection list 2FIXED 0

Configurationsynchronization signal forthe zero pulse of DFOUT

C0545 PH offset 0 0 1 inc 65535 Phase offset of DFOUT 1 rev. = 65535 incC0546 Min inc/rev 1000 1 1 inc214748364

71 rev. = 65535 inc

C0547 DIS: AN-IN -199.99 0.01 % 199.99 Relative analog input signalof DFOUT

display only

C0548 DIS: SYN-RDY 0 1 Digital input signal of DFOUT display onlyC0549 DIS: DF-IN -32767 1 rpm 32767 Absolute analog input signal

of DFOUTdisplay only

Page 159: ba93sugb.pdf

Appendix

11-40 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C056012345

...1415

Fix setpointFix setpointFix setpointFix setpointFix setpoint...Fix setpointFix setpoint

100.0075.0050.0025.000.00...0.000.00

-199.99 0.01 % 199.99Fixed setpoints of FIXSET1

[C0561] CFG: AIN1000

see selection list 1FIXED 0 %

Configuration analog input ofFIXSET1

[C0562]1234

CFG: INCFG: INCFG: INCFG: IN

1000100010001000

see selection list 2FIXED 0FIXED 0FIXED 0FIXED 0

Configuration digital inputs ofFIXSET1

C0563 DIS: AIN -199.99 0.01 % 199.99 Analog input signal ofFIXSET1

display only

C05641234

DIS: INDIS: INDIS: INDIS: IN

Digital input signals ofFIXSET1

display only

[C0570] CFG: IN1000

see selection list 1FIXED 0 %

Configuration analog input ofS&H1

[C0571] CFG: LOAD1000

see selection list 2FIXED 0

Configuration digital input ofS&H1

C0572 DIS: IN -199.99 0.01 % 199.99 Analog input signal of S&H1 display onlyC0573 DIS: LOAD Digital input signal of S&H1 display onlyC0577 Vp fld weak 3.0 0.00 0.01 ms 15.99 Field weakening controller

gain Vp

C0578 Tn fld weak 10 2.0 0.5 ms 8192.08000 msswitched off

Field weakening controlleradjustment time Tn

C0581 MONIT EEr 0 0 Trip1 Message2 Warning3 Off

Configuration monitoring EEr(external fault)

C0582 MONIT OH4 2 2 Warning3 Off

Configuration monitoringOH4 (heat sink temperature)

C0583 MONIT OH3 * 0 Trip3 Off

Configuration monitoringOH3 (motor temperaturefixed)

* depending on C0086

C0584 MONIT OH7 * 2 Warning3 Off

Configuration monitoringOH7 (motor temperatureadjustable)

* depending on C0086Temperature monitoringvia resolver input

C0585 MONIT OH8 3 0 Trip2 Warning3 Off

Configuration monitoringOH8 (motor temperatureadjustable)

Temperature monitoringvia PTC input

C0586 MONIT SD2 0 0 Trip2 Warning3 Off

Configuration monitoringSD2 (resolver)

Page 160: ba93sugb.pdf

Appendix

11-419300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0587 MONIT SD3 3 0 Trip2 Warning3 Off

Configuration monitoringSD3 (encoder at X9)

C0588 MONIT H10/H11 3 0 Trip3 Off

Configuration monitoringH10 and H11 (thermalsensors in the controller)

C0589 MONIT P03 2 0 Trip2 Warning3 Off

Configuration monitoring P03(contouring error)

C0590 MONIT P13 0 0 Trip2 Warning3 Off

Configuration monitoring P13(phase error)

C0591 MONIT CE1 3 0 Trip2 Warning3 Off

Configuration monitoring CE1(CAN-IN1 fault)

C0592 MONIT CE2 3 0 Trip2 Warning3 Off

Configuration monitoring CE2(CAN-IN2 fault)

C0593 MONIT CE3 3 0 Trip2 Warning3 Off

Configuration monitoring CE3(CAN-IN3 fault)

C0594 MONIT SD6 * 0 Trip2 Warning3 Off

Configuration monitoringSD6 (sensor motortemperature)

* depending on C0086

C0595 MONIT CE4 3 0 Trip2 Warning3 Off

Configuration monitoring CE4(CAN bus off)

C0596 Nmax limit 5500 0 1 rpm 16000 Monitoring: Speed of themachine

C0597 MONIT LP1 3 0 Trip2 Warning3 Off

Configuration monitoringmotor phase failure

C0598 MONIT SD5 3 0 Trip2 Warning3 Off

Configuration monitoringmaster current at X5/1.2 <2mA

C0599 Limit LP 1 5.0 1.0 0.1 10.0 Current limit for motor phasefailure monitoring

C0600 Function 1 0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN24 IN1 / IN25 IN1/(100 - IN2)

Function arithmetic blockARIT2

links inputs IN1 and IN2

[C0601]12

CFG: INCFG: IN

10001000

see selection list 1FIXED 0 %FIXED 0 %

Configuration analog inputsof ARIT2

C060212

DIS: INDIS: IN

-199.99 0.01 % 199.99analog input signals of ARIT2 display only

Page 161: ba93sugb.pdf

Appendix

11-42 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0610]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 1FIXED 0 %FIXED 0 %FIXED 0 %

Configuration analog inputsof addition block ADD1

Adds inputs IN1, IN2 andIN3

C0611123

DIS: INDIS: INDIS: IN

-199.99 0.01 % 199.99analog input signals of ADD1 display only

C0620 DB1 gain 1.00 -10.00 0.01 10.00 Gain dead band componentDB1

C0621 DB1 value 1.00 0.00 0.01 % 100.00 Dead band of DB1[C0622] CFG: IN

1000see selection list 1FIXED 0 %

Configuration analog input ofDB1

C0623 DIS: IN -199.99 0.01 % 199.99 Analog input signal of DB1 display onlyC0630 Max limit 100.0

0-199.99 0.01 % 199.99 Upper limit of limiter LIM1

C0631 Min limit -100.0 -199.99 0.01 % 199.99 Lower limit of limiter LIM1[C0632] CFG: IN

1000see selection list 1FIXED 0 %

Configuration analog input ofLIM1

C0633 DIS: IN -199.99 0.01 % 199.99 Analog input signal of LIM1 display onlyC0640 Delay T 20.00 0.01 0.01 s 50.00 Time constant of the PT1-1

component[C0641] CFG: IN

1000see selection list 1FIXED 0 %

Configuration analog input ofPT1-1

C0642 DIS: IN -199.99 0.01 % 199.99 Analog input signal of PT1-1 display onlyC0650 DT1-1 gain 1.00 -320.00 0.01 320.00 Gain of DT1-1 componentC0651 Delay T 1.00 0.005 0.01 s 5.000 Time constant of DT1-1

[C0652] CFG: IN1000

see selection list 1FIXED 0 %

Configuration analog input ofDT1-1

C0653 Sensibility 1 1 15-bit2 14-bit3 13-bit4 12-bit5 11-bit6 10-bit7 9-bit

Input sensitivity of DT1-1

C0654 DIS: IN -199.99 0.01 % 199.99 Analog input signal of DT1-1 display onlyC0655 Numerator 1 -32767 1 32767 Numerator for CONV5C0656 Denominator 1 1 1 32767 Denominator for CONV5

[C0657] CFG: IN1000

see selection list 1FIXED 0 %

Configuration analog input ofCONV5

C0658 DIS: IN -199.99 0.01 % 199.99 Analog input signal ofCONV5

nur Anzeige

[C0661] CFG: IN1000

see selection list 1FIXED 0 %

Configuration analog inputabsolute-value generatorABS1

C0662 DIS: IN -199.99 0.01 % 199.99 Analog input signal of ABS1 display onlyC0671 RFG1 Tir 0.000 0.000 0.01 s 999.900 Acceleration time Tir of ramp

generator RFG1C0672 RFG1 Tif 0.000 0.000 0.01 s 999.900 Deceleration time Tif of RFG1

[C0673] CFG: IN1000

see selection list 1FIXED 0 %

Configuration analog input ofRFG1

Page 162: ba93sugb.pdf

Appendix

11-439300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0674] CFG: SET1000

see selection list 1FIXED 0 %

Configuration set input ofRFG1

[C0675] CFG: LOAD1000

see selection list 2FIXED 0

Configuration digital input ofRFG1

C067612

DIS: INDIS: SET

-199.99 0.01 % 199.99Analog input signals of RFG1 display only

C0677 DIS: LOAD Digital input signal of RFG1 display onlyC0680 Function 6 1 IN1 = IN 2

2 IN 1 > IN23 IN 1 < IN24 |IN1| = |IN2|5 |IN1| > |IN2|6 |IN1| < |IN2|

Function comparator CMP1 Compares the inputs IN1and IN2

C0681 Hysteresis 1.00 0.00 0.01 % 100.00 % Hysteresis of CMP1C0682 Window 1.00 0.00 0.01 % 100.00 % Window of CMP1

[C0683]12

CFG: INCFG: IN

500119500

see selection list 1MCTRL-NACTFCODE-17

Configuration analog input ofCMP1

C068412

DIS: INDIS: IN

-199.99 0.01 % 199.99Analog input signals ofCMP1

display only

C0685 Function 1 1 IN1 = IN 22 IN 1 > IN23 IN 1 < IN24 |IN1| = |IN2|5 |IN1| > |IN2|6 |IN1| < |IN2|

Function comparator CMP2 Compares the inputs IN1and IN2

C0686 Hysteresis 1.00 0.00 0.01 % 100.00 % Hysteresis of CMP2C0687 Window 1.00 0.00 0.01 % 100.00 % Window of CMP2

[C0688]12

CFG: INCFG: IN

10001000

see selection list 1FIXED 0%FIXED 0%

Configuration analog inputsof CMP2

C068912

DIS: INDIS: IN

-199.99 0.01 % 199.99Analog input signals ofCMP2

display only

C0690 Function 1 1 IN1 = IN 22 IN 1 > IN23 IN 1 < IN24 |IN1| = |IN2|5 |IN1| > |IN2|6 |IN1| < |IN2|

Function comparator CMP3 compares the inputs IN1and IN2

C0691 Hysteresis 1.00 0.00 0.01 % 100.00 % Hysteresis of CMP3C0692 Window 1.00 0.00 0.01 % 100.00 % Window of CMP3

[C0693]12

CFG: INCFG: IN

10001000

see selection list 1FIXED 0%FIXED 0%

Configuration analog inputsof CMP3

C069412

DIS: INDIS: IN

-199.99 0.01 % 199.99Analog input signals ofCMP3

display only

Page 163: ba93sugb.pdf

Appendix

11-44 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0695 Function 2 1 IN 1 < IN22 |IN1| < |IN2|

Function comparator forphase signals PHCMP1

Compares the inputs IN1and IN2

[C0697]12

CFG: INCFG: IN

10001000

See selection list 3FIXED 0INCFIXED 0INC

Configuration phase inputs ofPHCMP1

C069812

DIS: INDIS: IN

-2147483647 1 2147483647Phase input signals ofPHCMP1

display only

[C0700] CFG: IN19523

see selection list 1FCODE-472/3

Configuration input of vonANEG1

C0701 DIS: IN -199.99 0.01 % 199.99 Input signal of ANEG1 display only[C0703] CFG: IN

1000see selection list 1FIXED 0 %

Configuration input of ANEG2

C0704 DIS: IN -199.99 0.01 % 199.99 Input signal ANEG2 display onlyC0710 Function 0 0 Rising trans

1 Falling trans2 Both trans

Function edge evaluationTRANS1

C0711 Pulse T 0.001 0.001 0.001 s 60.000 Pulse time of TRANS1[C0713] CFG: IN

1000see selection list 2FIXED 0

Configuration digital input ofTRANS1

C0714 DIS: IN Digital input signal ofTRANS1

display only

C0715 Function 0 0 Rising trans1 Falling trans2 Both trans

Function edge evaluationTRANS2

C0716 Pulse T 0.001 0.001 0.001 s 60.000 Pulse time of TRANS2[C0718] CFG: IN

1000see selection list 2FIXED 0

Configuration digital input ofTRANS2

C0719 DIS: IN Digital input signal ofTRANS2

display only

C0720 Function 2 0 On delay1 Off delay2 On/Off delay

Function digital delaycomponent DIGDEL1

C0721 Delay T 1.000 0.001 0.001 s 60.000 Delay time of DIGDEL1[C0723] CFG: IN

1000see selection list 2FIXED 0

Configuration digital input ofDIGDEL1

C0724 DIS: IN Digital input signal ofDIGDEL1

display only

C0725 Function 0 0 On delay1 Off delay2 On/Off delay

Function digital delaycomponent DIGDEL2

C0726 Delay T 1.0 0.001 0.001 s 60.000 Delay time of DIGDEL2[C0728] CFG: IN

1000see selection list 2FIXED0

Configuration digital input ofDIGDEL2

C0729 DIS: IN Digital input signal ofDIGDEL2

display only

C0730 Mode 0 0 Start measurement1 Stop measurement

Start / Stop of themeasurement recording ofOSZ

Page 164: ba93sugb.pdf

Appendix

11-459300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0731 Status 0 Measurement comple-ted

1 Measurement active2 Trigger recognized3 Cancel4 Cancel after trigger5 Read memory

current operating state ofOSZ

display only

[C0732]1234

CFG: channel1CFG: channel2CFG: channel3CFG: channel4

1000100010001000

see selection list 1FIXED0%FIXED0%FIXED0%FIXED0%

Configuration analog inputsof OSZ

[C0733]1 CFG: Dig. trigger 1000

see selection list 2FIXED0

Configuration trigger input ofOSZ

C0734 Trigger source 0 0 dig. trigger input1 Channel 12 Channel 23 Channel 34 Channel 4

Selection of the triggersource of OSZ

C0735 Trigger level 0 -32767 1 32767 Set trigger level for channel1 ... 4 of OSZ

C0736 Trigger edge 0 0 LOW/HIGH edge1 HIGH/LOW edge

Selection of the trigger edgeof OSZ

C0737 Trigger delay 0.0 -100.0 0.1 % 999.99 Setting pre and posttriggering of OSZ

C0738 Scanning period 3 3 1 ms4 2 ms5 5 ms6 10 ms7 20 ms8 50 ms9 100 ms10 200 ms11 500 ms12 1 s13 2 s14 5 s15 10 s16 20 s17 50 s18 1 min19 2 min20 5 min21 10 min

Selection of the scanningperiod of OSZ

C0739 Number of channels 4 1 1 4 Number of channels to bemeasured of OSZ

C07401 during start 0 0 1 16383

Determine start point whenreading the data memory ofOSZDeliberate selection of amemory block

2 Enabled/inhibited 0 0 Data reading inhibited1 Data reading enabled

The data memory of OSZmust be enabled for reading

Page 165: ba93sugb.pdf

Appendix

11-46 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C07411234

DIS: VersionDIS: Memory sizeDIS: Data widthDIS: Number ofchannels

OSZSub1 VersionSub2 Memory sizeSub3 Data widthSub4 Number ofchannels

display only

C0742 DIS: Data blocklength

Data block length of OSZ display only

C0743 DIS: Read datablock

Reading an 8 byte data block display only

C0744 Memory size 2048 512 01024 11536 22048 33072 44096 58192 6

Adapt memory depth of themeasurement task

C0749123

DIS: Cancel indexDIS: Index triggerDIS: Index end

Information on saving themeasured values

display only

C0750 Vp denom 16 1 Gain = 12 Gain = 1/24 Gain = 1/48 Gain = 1/816 Gain = 1/1632 Gain = 1/3264 Gain = 1/64128 Gain = 1/128256 Gain = 1/256512 Gain = 1/5121024 Gain = 1/10242048 Gain = 1/20484096 Gain = 1/40968192 Gain = 1/819216384 Gain = 1/16384

Denominator gain of positioncontroller of DFRFG1

C0751 DFRFG1 Tir 1.000 0.001 0.001 s 999.900 Acceleration time Tir ofDFRFG1

C0752 Max speed 3000 1 1 rpm 16000 Maximum make up speed ofDFRFG1

C0753 DFRFG1 QSP 0.000 0.000 0.001 s 999.900 Deceleration time Tif for QSPof DFRFG1

C0754 PH error * 10 1 inc2000000000

Contouring error of DFRFG1 * 20000000001 rev. = 65535 inc

C0755 Syn window 100 0 1 inc 65535 Synchronization window ofDFRFG1

C0756 Offset 0 -1*109 1 inc 1*109 Offset of DFRFG1C0757 Function 0 0 no TP start

1 with TP startFunction of DFRFG1

[C0758] CFG: IN1000

See selection list 4FIXEDPHI-0

Configuration phase input ofDFRFG1

[C0759] CFG: QSP1000

see selection list 2FIXED0

Configuration digital input(triggering QSP) of DFRFG1

Page 166: ba93sugb.pdf

Appendix

11-479300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0760] CFG: STOP1000

see selection list 2FIXED0

Configuration digital input(ramp generator stop) ofDFRFG1

[C0761] CFG: RESET1000

see selection list 2FIXED0

Configuration digital input(reset integrators) ofDFRFG1

C0764123

DIS: QSPDIS: STOPDIS: RESET

Digital input signals ofDFRFG1

display only

C0765 DIS: IN -32767 1 rpm 32767 Absolute analog input signalof DFRFG1

display only

C0766 Speed dir. 1 1 cw / ccw2 cw3 ccw

Preselection of the directionof speed via DFRFG1

[C0770] CFG: D1000

see selection list 2FIXED0

Configuration data input ofFLIP1

[C0771] CFG: CLK1000

see selection list 2FIXED0

Configuration clock input ofFLIP1

[C0772] CFG: CLR1000

see selection list 2FIXED0

Configuration reset input ofFLIP1

C0773123

DIS: DDIS: CLKDIS: CLR

Digital input signals of FLIP1 display only

[C0775] CFG: D1000

see selection list 2FIXED0

Configuration data input ofFLIP2

[C0776] CFG: CLK1000

see selection list 2FIXED0

Configuration clock input ofFLIP2

[C0777] CFG: CLR1000

see selection list 2FIXED0

Configuration reset input ofFLIP2

C0778123

DIS: DDIS: CLKDIS: CLR

Digital input signals of FLIP2 display only

[C0780] CFG: N50

see selection list 1AIN1-OUT

Configuration main setpointinput of NSET

[C0781] CFG: N-INV10251

see selection list 2R/L/Q-R/L

Configuration main setpointinversion of NSET

[C0782] CFG: NADD5650

see selection list 1ASW1-OUT

Configuration additionalsetpoint input of NSET

[C0783] CFG: NADD-INV1000

see selection list 2FIXED0

Configuration additionalsetpoint inversion of NSET

[C0784] CFG: CINH-VAL5001

see selection list 1MCTRL-NACT

Configuration output signalwith controller inhibit ofNSET

[C0785] CFG: SET5000

see selection list 1MCTRL-NSET2

Configuration rampgenerator of NSET

[C0786] CFG: LOAD5001

see selection list 2MCTRL-QSP-OUT

Configuration digital input(load ramp generator) ofNSET

Page 167: ba93sugb.pdf

Appendix

11-48 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0787]1234

CFG: JOG*1CFG: JOG*2CFG: JOG*4CFG: JOG*8

53100010001000

see selection list 2DIGIN3FIXED0FIXED0FIXED0

Configuration JOG selectionand JOG activation of NSET

Binary interpretation

[C0788]1234

CFG: TI*1CFG: TI*2CFG: TI*4CFG: TI*8

1000100010001000

see selection list 2FIXED0FIXED0FIXED0FIXED0

Configuration Ti selectionand Ti activation of NSET

- Binary interpretation- Tir and Tif pairs are

identical

[C0789] CFG: RFG-01000

see selection list 2FIXED0

Configuration digital input(ramp generator 0) of NSET

[C0790] CFG: RFG-STOP1000

see selection list 2FIXED0

Configuration digital input(ramp generator stop) ofNSET

C079812

DIS: CINH-VALDIS: SET

-199.99 0.01 % 199.99Analog input signals of NSET display only

C0799123456789

10111213

DIS: N-INVDIS: NADD-INVDIS: LOADDIS: JOG*1DIS: JOG*2DIS: JOG*4DIS: JOG*8DIS: TI*1DIS: TI*2DIS: TI*4DIS: TI*8DIS RFG-0DIS: RFG-STOP

Digital input signals of NSET display only

[C0800] CFG: SET1000

see selection list 1FIXED0%

Configuration setpoint inputof process controllerPCTRL1

[C0801] CFG: ACT1000

see selection list 1FIXED0%

Configuration actual valueinput of PCTRL1

[C0802] CFG: INFLU1000

see selection list 1FIXED0%

Configuration evaluationinput of PCTRL1

[C0803] CFG: ADAPT1000

see selection list 1FIXED0%

Configuration adaptationinput of PCTRL1

[C0804] CFG: INACT1000

see selection list 2FIXED0

Configuration inactivationinput of PCTRL1

[C0805] CFG: I-OFF1000

see selection list 2FIXED0

Configuration digital input(switch off I-component) ofPCTRL1

C08081234

DIS: SETDIS: ACTDIS: INFLUDIS: ADAPT

-199.99 0.01 % 199.99Analog input signals ofPCTRL1

display only

Page 168: ba93sugb.pdf

Appendix

11-499300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C80912

DIS: INACTDIS: I-OFF

Digital input signals ofPCTRL1

display only

[C0810]12

CFG: INCFG: IN

551000

see selection list 1AIN2-OUTFIXED0%

Configuration analog inputsof analog switch ASW1

[C0811] CFG: SET1000

see selection list 2FIXED0

Configuration digital input ofASW1

C081212

DIS: INDIS: IN

-199.99 0.01 % 199.99Analog input signals ofASW1

display only

C0813 DIS: SET Digital input signal of ASW1 display only

[C0815]12

CFG: INCFG: IN

10001000

see selection list 1FIXED0%FIXED0%

Configuration analog inputsof analog switch ASW2

[C0816] CFG: SET1000

see selection list 2FIXED0

Configuration digital input ofASW2

C081712

DIS: INDIS: IN

-199.99 0.01 % 199.99Analog input signals ofASW2

display only

C0818 DIS: SET Digital input signal of ASW2 display only

[C0820]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe AND element AND1

C0821123

DIS: INDIS: INDIS: IN

Digital input signals of AND1 display only

[C0822]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe AND element AND2

C0823123

DIS: INDIS: INDIS: IN

Digital input signals of AND2 display only

[C0824]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe AND element AND3

C0825123

DIS: INDIS: INDIS: IN

Digital input signals of AND3 display only

Page 169: ba93sugb.pdf

Appendix

11-50 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0826]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe AND element AND4

C0827123

DIS: INDIS: INDIS: IN

Digital input signals of AND4 display only

[C0828]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe AND element AND5

C0829123

DIS: INDIS: INDIS: IN

Digital input signals of AND5 display only

[C0830]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe OR element OR1

C0831123

DIS: INDIS: INDIS: IN

Digital input signals of OR1 display only

[C0832]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe OR element OR2

C0833123

DIS: INDIS: INDIS: IN

Digital input signals of OR2 display only

[C0834]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe OR element OR3

C0835123

DIS: INDIS: INDIS: IN

Digital input signals of OR3 display only

[C0836]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe OR element OR4

C0837123

DIS: INDIS: INDIS: IN

Digital input signals of OR4 display only

[C0838]123

CFG: INCFG: INCFG: IN

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofthe OR element OR5

Page 170: ba93sugb.pdf

Appendix

11-519300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0839123

DIS: INDIS: INDIS: IN

Digital input signals of OR5 display only

[C0840] CFG: IN1000

see selection list 2FIXED0

Configuration digital input ofthe digital NOT elementNOT1

C0841 DIS: IN Digital input signal of NOT1 display only[C0842] CFG: IN

1000see selection list 2FIXED0

Configuration digital input ofthe digital NOT elementNOT2

C0843 DIS: IN Digital input signal of NOT2 display only[C0844] CFG: IN

1000see selection list 2FIXED0

Configuration digital input ofthe digital NOT elementNOT3

C0845 DIS: IN Digital input signal of NOT3 display only[C0846] CFG: IN

1000see selection list 2FIXED0

Configuration digital input ofthe digital NOT elementNOT4

C0847 DIS: IN Digital input signal of NOT4 display only[C0848] CFG: IN

1000see selection list 2FIXED0

Configuration digital input ofthe digital NOT elementNOT5

C0849 DIS: IN Digital input signal of NOT5 display only[C0850]

123

CFG: OUT.W1CFG: OUT.W2CFG: OUT.W3

100010001000

see selection list 1FIXED0%FIXED0%FIXED0%

Configuration process outputwords for automationinterface AIF (X1)

[C0851]1 CFG: OUT.D1 1000

See selection list 3FIXED0INC

Configuration 32-bit phaseinformation

C0852 Type OUT.W2 0 0 analog1 digital 0-152 D1: low phase3 D2: high phase

Configuration process outputword 2 for automationinterface AIF (X1)

C0853 Type OUT.W3 0 0 analog1 digital 16-312 high phase

Configuration process outputword 3 for automationinterface AIF (X1)

C0854 Type OUT.W1 0 0 analog3 D2: low phase

Configuration process outputword 1 for automationinterface AIF (X1)

C0855 DIS: IN (0-15)DIS: IN (16-31)

0 FFFF Process input wordshexadecimal for automationinterface X1

display only

C0856123

DIS: IN.W1DIS: IN.W2DIS: IN.W3

-199.99 0.01% 199.99Process input words decimal display only

100% = 16384

C0857 DIS: IN.D1 -2147483648 1 2147483647 32-bit phase information display onlyC0858

123

DIS: OUT.W1DIS: OUT.W2DIS: OUT.W3

-199.99 0.01 % 199.99Process output words display only

100% = 16384

C0859 DIS: OUT.D1 -2147483648 1 2147483647 32-bit phase information display only

Page 171: ba93sugb.pdf

Appendix

11-52 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0860]123456789

1011

CFG: OUT1.W1CFG: OUT1.W2CFG: OUT1.W3CFG: OUT2.W1CFG: OUT2.W2CFG: OUT2.W3CFG: OUT2.W4CFG: OUT3.W1CFG: OUT3.W2CFG: OUT3.W3CFG: OUT3.W4

10001000100010001000100010001000100010001000

see selection list 1FIXED0%FIXED0%FIXED0%FIXED0%FIXED0%FIXED0%FIXED0%FIXED0%FIXED0%FIXED0%FIXED0%

Configuration process outputwords for system bus outputblocks (CAN)

[C0861]123

CFG: OUT1.D1CFG: OUT2.D1CFG: OUT3.D1

100010001000

See selection list 3FIXED0INCFIXED0INCFIXED0INC

Configuration 32-bit phaseinformation for system busoutput blocks (CAN)

C0863123456

DIS: IN1 dig0DIS: IN1 dig16DIS: IN2 dig0DIS: IN2 dig16DIS: IN3 dig0DIS: IN3 dig16

0 FFFFProcess input wordshexadecimal for system bus(CAN)

display only

C0864123

Type OUT1.W2Type OUT2.W1Type OUT3.W1

000

0 analog sign1 digital 0-152 low phase

Configuration process outputwords for system bus (CAN)

C0865123

Type OUT1.W3Type OUT2.W2Type OUT3.W2

000

0 analog sign1 digital 16-312 high phase

Configuration process outputwords for system bus (CAN)

C0866123456789

1011

DIS: IN1.W1DIS: IN1.W2DIS: IN1.W3DIS: IN2.W1DIS: IN2.W2DIS: IN2.W3DIS: IN2.W4DIS: IN3.W1DIS: IN3.W2DIS: IN3.W3DIS: IN3.W4

-199.99 0.01 % 199.99Process input words forsystem bus (CAN)

display only100% = 16384

C0867123

DIS: IN1.D1DIS: IN2.D1DIS: IN3.D1

-2147483648 1 214748364732-bit phase information forsystem bus (CAN)

display only

Page 172: ba93sugb.pdf

Appendix

11-539300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C0868123456789

1011

DIS: OUT1.W1DIS: OUT1.W2DIS: OUT1.W3DIS: OUT2.W1DIS: OUT2.W2DIS: OUT2.W3DIS: OUT2.W4DIS: OUT3.W1DIS: OUT3.W2DIS: OUT3.W3DIS: OUT3.W4

-199.99 0.01 % 199.99Process output words systembus (CAN)

display only100% = 16384

C0869123

DIS: OUT1.D1DIS: OUT2.D1DIS: OUT3.D1

-2147483648 1 214748364732-bit phase information forsystem bus (CAN)

display only

[C0870]12

CFG: CINHCFG: CINH

10001000

see selection list 2FIXED0FIXED0

Configuration digital inputs(inhibit controller) of DCTRL

[C0871]CFG: TRIP-SET 54

see selection list 2DIGIN 4

Configuration digital input(TRIP-Set) of DCTRL

[C0876]CFG: TRIP-RES 55

see selection list 2DIGIN 5

Configuration digital input(TRIP-Reset) of DCTRL

C08781234

DIS: CINH1DIS: CINH2DIS: TRIP-SETDIS: TRIP-RES

Digital input signals ofDCTRL

display only

C0879123

Reset C135Reset AIFReset CAN

0 no reset1 reset

Reset of control words - C0879 = 1 performsone reset

[C0880]12

CFG: PAR*1CFG: PAR*2

10001000

see selection list 2FIXED0FIXED0

Configuration parameter setselection of DCTRL

[C0881]CFG:PAR-LOAD 1000

see selection list 2FIXED0

Configuration Loadparameter set of DCTRL

C0884123

DIS: PAR*1DIS: PAR*2DIS: PAR-LOAD

Signals for parameter setselection of DCTRL

display only

[C0885]CFG: R 51

see selection list 2DIGIN 1

Configuration digital input(CW rotation) of R/L/Q

[C0886]CFG: L 52

see selection list 2DIGIN 2

Configuration digital input(CCW rotation) of R/L/Q

C088912

DIS: RDIS: L

Digital input signals of R/L/Q display only

[C0890] CFG: N-SET5050

see selection list 1NSET-NOUT

Configuration speed setpointinput motor control MCTRL

[C0891] CFG: M-ADD1000

see selection list 1FIXED0%

Configuration torque setpointinput of MCTRL

Page 173: ba93sugb.pdf

Appendix

11-54 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0892] CFG: LO-M-LIM5700

see selection list 1ANEG1-OUT

Configuration lower torquelimit of MCTRL

[C0893] CFG: HI-M-LIM19523

see selection list 1FCODE-472/3

Configuration upper torquelimit of MCTRL

[C0894] CFG: PHI-SET1000

See selection list 3FIXED0INC

Configuration rotor positionsetpoint of MCTRL

[C0895] CFG: PHI-LIM1006

see selection list 1FIXED100%

Configuration phasecontroller limit of MCTRL

[C0896] CFG: N2-LIM1000

see selection list 1FIXED0%

Configuration 2nd speedlimitation value of MCTRL

[C0897] CFG: PHI-ON1000

see selection list 2FIXED0

Configuration switch-onsignal phase controller ofMCTRL

[C0898] CFG: FLD-WEAK1006

see selection list 1FIXED100%

Configuration signal for fieldweakening of MCTRL

[C0899] CFG: N/M-SWT1000

see selection list 2FIXED0

Configuration change-overbetween speed control andtorque control MCTRL

[C0900] CFG: QSP10250

see selection list 2R/L/Q-QSP

Configuration control signalto activate QSP of MCTRL

[C0901] CFG: I-SET1000

see selection list 1FIXED0%

Configuration LoadI-component of the MCTRLspeed controller

[C0902] CFG: I-LOAD1000

see selection list 2FIXED0

Configuration release signalto load the I-component ofthe MCTRL speed controller

C090612345678

DIS: N-SETDIS: M-ADDDIS: LO-M-LIMDIS: HI-M-LIMDIS: PHI-LIMDIS: N2-LIMDIS: FLD-WEAKDIS: I-SET

-199.99 0.01 % 199.99Analog input signals ofMCTRL

display only

C09071234

DIS: PHI-ONDIS: N/M-SWTDIS: QSPDIS: I-LOAD

Digital input signals ofMCTRL

display only

C0908 DIS: PHI-SET -21474836471 inc2147483647

Set phase signal of MCTRL display only- 1 rev. = 65536 inc

C0909 speed limit 1 1 + /- 175 %2 0 .. + 175 %3 -175 .. 0 %

Speed limitation for theMCTRL speed setpoint

[C0920] CFG: ON1000

see selection list 2FIXED0

Configuration activating inputhoming of REF

[C0921] CFG: MARK1000

see selection list 2FIXED0

Configuration digital homingswitch of REF

[C0922] CFG: PHI-IN1000

See selection list 3FIXED0INC

Configuration phase input ofREF

[C0923] CFG: N-IN1000

see selection list 1FIXED0%

Configuration speed input ofREF

Page 174: ba93sugb.pdf

Appendix

11-559300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0924] CFG: POS-LOAD1000

see selection list 2FIXED0

Configuration of the control”Set position” of REF

[C0925] CFG: ACTPOS-I1000

See selection list 3FIXED0INC

Configuration of the position”Set position” of REF

C09261234

DIS: ACTPOS-IDIS: PHI-INDIS: ACTPOSDIS: TARGET

-21474836471 inc 2147483647

Phase input signals of REF display only

C0927123

DIS: ONDIS: MARKDIS: LOAD

digital input signals of REF display only

C0928 DIS: PHI-IN -21474836471 inc 2147483647

Phase signal (contouringerror) of REF

display only- 1 rev. = 65536 inc

C0929 DIS: N-IN -199.99 0.01 % 199.99 Analog input signal of REF display only[C0930] Gearbox mot 1 1 1 65535 Gearbox factor (numerator)

for REF[C0931] Gearbox enc 1 1 1 65535 Gearbox factor (denominator)

for REFC0932 REF mode 0

0 Mode 01 Mode 16 Mode 67 Mode 78 Mode 89 Mode 920 Mode 2021 Mode 21

Homing mode for REF

C0933 REF trans 00 Rising trans1 Falling trans

Referfence signal edge forREFRising edgefalling edge

C0934 REF offset 0 -21400000001 inc 2140000000

Reference offset for REF

C0935 REF speed 2.0000

0.0001 0.0001 % Nmax 100.0000

Homing speed for REF

C0936 REF Ti 1.00 0.01 0.01 s 990.00 T i time homing of REF - Tir and Tif are identicalC0940 Numerator 1 -32767 1 32767 Numerator for CONV1C0941 Denominator 1 1 1 32767 Denominator for CONV1

[C0942] CFG: IN1000

see selection list 1FIXED0%

Configuration analog inputCONV1

C0943 DIS: IN -199.99 0.01 % 199.99 Relative analog input signalof CONV1

display only

C0945 Numerator 1 -32767 1 32767 Numerator for CONV2C0946 Denominator 1 1 1 32767 Denominator for CONV2

[C0947] CFG: IN1000

see selection list 1FIXED0%

Configuration analog inputCONV2

C0948 DIS: IN -199.99 0.01 % 199.99 Relative analog input signalof CONV2

display only

C0950 Numerator 1 -32767 1 32767 Numerator for CONV3C0951 Denominator 1 1 1 32767 Denominator for CONV3

Page 175: ba93sugb.pdf

Appendix

11-56 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0952] CFG: IN1000

See selection list 4FIXEDPHI0

Configuration analog inputCONV3

C0953 DIS: IN -32767 1 rpm 32767 Absolute analog input signalof CONV3

display only

C0955 Numerator 1 -32767 1 32767 Numerator for CONV4C0956 Denominator 1 1 1 32767 Denominator for CONV4

[C0957] CFG: IN1000

See selection list 4FIXEDPHI0

Configuration analog inputCONV4

C0958 DIS: IN -32767 1 rpm 32767 Absolute analog input signalof CONV4

display only

C0960 Function 11 Function12 Function23 Function3

Characteristic CURVE1-IN

C0961 y0 0.00 0.00 0.01 % 199.99 Ordinate of the pair(x= 0%/y0) of CURVE1

C0962 y1 50.00 0.00 0.01 % 199.99 Ordinate of the pair (x1/y1) ofCURVE1

C0963 y2 75.00 0.00 0.01 % 199.99 Ordinate of the pair (x2/y2) ofCURVE1

C0964 y100 100.00

0.00 0.01 % 199.99 Ordinate of the pair(x= 100%/y100) of CURVE1

C0965 x1 50.00 0.01 0.01 % 100.00 Abscissa of the pair (x1/y1)of CURVE1

C0966 x2 75.00 0.01 0.01 % 99.00 Abscissa of the pair (x2/y2)of CURVE1

[C0967] CFG: IN1000

see selection list 1FIXED0%

Configuration characteristicCURVE1-IN

C0968 DIS: IN -199.99 0.01 % 199.99 Relative analog input signalof CONV1

display only

[C0970] CFG: N-SET1000

see selection list 1FIXED0%

Configuration speed input ofmains failure control MFAIL

Setpoint path

[C0971] CFG: FAULT1000

see selection list 2FIXED0

Configuration input mainsfailure detected of MFAIL

Input for activation

[C0972] CFG: RESET1000

see selection list 2FIXED0

Configuration reset mainsfailure control of MFAIL

[C0973] CFG: ADAPT1000

see selection list 1FIXED0%

Configuration of MFAILAdaptation of the P-gain ofthe voltage controller

[C0974] CFG: CONST1000

see selection list 1FIXED0%

Configuration of MFAILAdaptation of the P-gain ofthe voltage controller

[C0975] CFG: THRESHLD1000

see selection list 1FIXED0%

Configuration of MFAILRestart protection when thevalue falls below the speedthreshold

[C0976] CFG: NACT1000

see selection list 1FIXED0%

Configuration of MFAIL- Comparison value for

threshold function- Start for U2 controller

[C0977] CFG: SET1000

see selection list 1FIXED0%

Configuration speed startvalue for MFAIL

Page 176: ba93sugb.pdf

Appendix

11-579300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

[C0978] CFG: DC-SET1000

see selection list 1FIXED0%

Configuration setpoint DCbus voltage for MFAIL

C0980 MFAIL Vp 0.500 0.001 0.001 31.000 Gain Vp of MFAILC0981 MFAIL Tn 100 20 1 ms 2000 Time constant of MFAILC0982 MFAIL Tir 2.000 0.001 0.001 s 16.000 Acceleration time Tir of

MFAILC0983 Retrigger T 1.000 0.001 0.001 s 60.000C0988

1234567

DIS: N-SETDIS: ADAPTDIS: CONSTDIS: THRESHLDDIS: NACTDIS: SETDIS: DC-SET

-199.99 0.01 % 199.99Analog input signals ofMFAIL

display only

C098912

DIS: FAULTDIS: RESET

Digital input signals of MFAIL display only

[C0990] CFG: IN1000

See selection list 4FIXEDPHI0

Configuration input phaseintegrator PHINT1

[C0991] CFG: RESET1000

see selection list 2FIXED0

Configuration reset input ofPHINT1

C0992 DIS: IN -32767 1 32767 Input signal of PHINT1 display onlyC0993 DIS: RESET Digital input signal of PHINT1 display onlyC0995 Division 1 -31 1 31 Division factor of phase

division PHDIV1[C0996] CFG: IN

1000See selection list 3FIXED0INC

Configuration input phasedivision PHDIV1

C0997 DIS: IN -2147483647 1 2147483647 Input signal of PHDIV1 display onlyC1000 Division 1 0 1 31 Division factor

[C1001] CFG: IN1000

See selection list 3FIXED0INC

Configuration input of CONV-PHA1

C1002 DIS: IN -2147483647 1 2147483647 Input signal ofCONVPHA1

display only

C1010 Function 1 0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN214 IN1 / IN221 IN1 + IN2 (no limit)22 IN1 - IN2 (no limit)

Function of ARITPH1

[C1011]12

CFG: INCFG: IN

10001000

See selection list 3FIXED0INCFIXED0INC

Configuration inputsARITPH1

C101212

DIS: INDIS: IN

-2147483647 1 2147483647 Input signals ARITPH1 display only

[C1030] CFG: IN1000

See selection list 4FIXEDPHI0

Configuration input PHINT2

[C1031] CFG: RESET1000

see selection list 2FIXED0

Configuration reset input ofPHINT2

Page 177: ba93sugb.pdf

Appendix

11-58 9300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

C1032 DIS: IN -32767 1 32767 Input signal of PHINT2 display onlyC1033 DIS: RESET Digital input signal of PHINT2 display onlyC1040 Accelaration 100.0

000.001 0.001 5000.000 Acceleration of SRFG1

C1041 Jerk 0.200 0.001 0.001 999.999 Set jerk of SRFG1[C1042] CFG: IN

1000see selection list 1FIXED0%

Configuration input of SRFG1

[C1043] CFG: SET1000

see selection list 1FIXED0%

Configuration input of SRFG1

[C1044] CFG: LOAD1000

see selection list 2FIXED0

Configuration digital input ofSRFG1

C104512

DIS: INDIS: SET

-199.99 0.01 % 199.99Input signals of SRFG1 display only

C1046 DIS: LOAD Digital input signal of SRFG1 display onlyC1090 Output signal -2147483648 12147483647 Output signal of FEVAN1 display onlyC1091 Code 141 2 1 2000 Code for FEVAN1C1092 Subcode 0 0 1 255 Subcode for FEVAN1C1093 Numerator 1.000

00.0001 0.0001100000.0

000FEVAN1 numerator

C1094 Denomiator 0.0001

0.0001 1 100000.0000

FEVAN1 denominator

C1095 Offset 0 0 11000000000 FEVAN1 offset[C1096] CFG: IN

1000see selection list 1FIXED0%

Configuration analog input ofFEVAN1

[C1097] CFG: LOAD 1000 see selection list 2FIXED0

Configuration digital inputs ofFEVAN1

C1098 DIS: IN -32768 1 32767 Analog input signal of FE-VAN1

display only

C1099 DIS: LOAD Digital input signal of FE-VAN1

display only

C1100 Function 1 1 Return2 Hold

Function of FCNT1

[C1101]12

CFG: LD-VALCFG: CMP-VAL

10001000

see selection list 1FIXED0%FIXED0%

Configuration analog inputsof FCNT1

[C1102]123

CFG: CLKUPCFG: CLKDWNCFG: LOAD

100010001000

see selection list 2FIXED0FIXED0FIXED0

Configuration digital inputs ofFCNT1

C110312

DIS: LD-VALDIS: CMP-VAL

-32768 1 32768Analog input signals ofFCNT1

display only

C1104123

DIS: CLKUPDIS: CLKDWNDIS: LOAD

Digital input signals ofFCNT1

display only

C1120 Sync mode 2 0 off1 CAN sync2 Terminal sync

Function of SYNC1

[C1121] 0 1 ms 13 SYNC1

Page 178: ba93sugb.pdf

Appendix

11-599300BA0998

Code IMPORTANTPossible settingsLCDCode IMPORTANT

InfoSelectionLenze

LCD

1 Sync cycle 2 Definition of the cycle time ofthe sync signals (in the slave)

for SYSTEMBUS only

2 Interpol. cycl 2 Definition of the interpolationtime between the syncsignals (in the slave)

- only for terminal- the interpolation is

restarted with everysync signal

C1122 Sync time 0.460 0.000 0.001 ms 10.000 Phase shift between the CANsync and internal controlprogram cycle

- for SYSTEMBUS only- depending on the baud

rate and bus loadC1123

1 Phaseshift 0-1.000 0.001 ms 1.000 Phase shift between terminal

sync and internal control pro-gram cycle

only for terminal sync

2 Sync Window 0 0.000 0.001 ms 1.000 Window for thesynchronization edge of theterminal sync (LOW/HIGHedge)

- only for terminal sync- activates when the sync

start window is quit

[C1024] CFG: IN11000

See selection list 3FIXED0INC

Configuration input of SYNC1

[C1025] CFG: IN21000

See selection list 3FIXED0INC

Configuration input of SYNC1

[C1026] CFG: IN31000

See selection list 3FIXED0INC

Configuration input of SYNC1

C1027 DIS: IN1 -2147483647 1 2147483647 Input signal of

Page 179: ba93sugb.pdf

Appendix

11-60 9300BA0998

11.4 Selection lists

Selection list 1, analog output signals (L)000050 AIN1-OUT 010000 BRK-M-SET 020101 CAN-IN1.W1000055 AIN2-OUT 015028 UTILIZATION 020102 CAN-IN1.W2000100 DFSET-NOUT 019500 FCODE-17 020103 CAN-IN1.W3001000 FIXED0% 019502 FCODE-26/1 020201 CAN-IN2.W1001006 FIXED100% 019503 FCODE-26/2 020202 CAN-IN2.W2001007 FIXED-100% 019504 FCODE-27/1 020203 CAN-IN2.W3005000 MCTRL-NSET2 019505 FCODE-27/2 020204 CAN-IN2.W4005001 MCTRL-NACT 019506 FCODE-32 020301 CAN-IN3.W1005002 MCTRL-MSET2 019507 FCODE-37 020302 CAN-IN3.W2005003 MCTRL-MACT 019510 FCODE-108/1 020303 CAN-IN3.W3005004 MCTRL-IACT 019511 FCODE-108/2 020304 CAN-IN3.W4005005 MCTRL-DCVOLT 019512 FCODE-109/1 025101 AIF-IN.W1005009 MCTRL-PHI-ACT 019513 FCODE-109/2 025102 AIF-IN.W2005050 NSET-NOUT 019515 FCODE-141 025103 AIF-IN.W3005051 NSET-RFG-I 019521 FCODE-472/1005100 MPOT1-OUT 019522 FCODE-472/2

005150 PCTRL1-OUT 019523 FCODE-472/3005200 REF-N-SET 019524 FCODE-472/4005500 ARIT1-OUT 019525 FCODE-472/5005505 ARIT2-OUT 019526 FCODE-472/6005550 ADD1-OUT 019527 FCODE-472/7005600 RFG1-OUT 019528 FCODE-472/8005610 SRFG1-OUT 019529 FCODE-472/9005611 SRFG1-DIFF 019530 FCODE-472/10005650 ASW1-OUT 019531 FCODE-472/11005655 ASW2-OUT 019532 FCODE-472/12005660 ASW3-OUT 019533 FCODE-472/13005665 ASW4-OUT 019534 FCODE-472/14005700 ANEG1-OUT 019535 FCODE-472/15005705 ANEG2-OUT 019536 FCODE-472/16005750 FIXSET1-OUT 019537 FCODE-472/17005800 LIM1-OUT 019538 FCODE-472/18005850 ABS1-OUT 019539 FCODE-472/19005900 PT1-1-OUT 019540 FCODE-472/20005950 DT1-1-OUT 019551 FCODE-473/1006100 MFAIL-NOUT 019552 FCODE-473/2006150 DB1-OUT 019553 FCODE-473/3006200 CONV1-OUT 019554 FCODE-473/4006205 CONV2-OUT 019555 FCODE-473/5006210 CONV3-OUT 019556 FCODE-473/6006215 CONV4-OUT 019557 FCODE-473/7006230 CONVPHA1-OUT 019558 FCODE-473/8006300 S&H1-OUT 019559 FCODE-473/9006350 CURVE1-OUT 019560 FCODE-473/10006400 FCNT1-OUT006600 SYNC1-OUT3

Page 180: ba93sugb.pdf

Appendix

11-619300BA0998

Selection list 2, digital output signals (P)000051 DIGIN1 010000 BRK1-OUT 015000 DCTRL-TRIP 019500 FCODE-250000052 DIGIN2 010001 BRK1-CINH 015001 DCTRL-MESS 019521 FCODE-471.B0000053 DIGIN3 010002 BRK1-QSP 015002 DCTRL-WARN 019522 FCODE-471.B1000054 DIGIN4 010003 BRK1-M-STORE 015003 DCTRL-FAIL 019523 FCODE-471.B2000055 DIGIN5 010250 R/L/Q-QSP 015010 MONIT-LU 019524 FCODE-471.B3000060 STATE-BUS-O 010251 R/L/Q-R/L 015011 MONIT-OU 019525 FCODE-471.B4000065 DIGIN-CINH 010500 AND1-OUT 015012 MONIT-EEr 019526 FCODE-471.B5000100 DFSET-ACK 010505 AND2-OUT 015013 MONIT-OC1 019527 FCODE-471.B6000500 DCTRL-RDY 010510 AND3-OUT 015014 MONIT-OC2 019528 FCODE-471.B7000501 DCTRL-CINH 010515 AND4-OUT 015015 MONIT-LP1 019529 FCODE-471.B8000502 DCTRL-INIT 010520 AND5-OUT 015016 MONIT-OH 019530 FCODE-471.B9000503 DCTRL-IMP 010525 AND6-OUT 015017 MONIT-OH3 019531 FCODE-471.B10000504 DCTRL-NACT= 0 010530 AND7-OUT 015018 MONIT-OH4 019532 FCODE-471.B11000505 DCTRL-CW/CCW 010550 OR1-OUT 015019 MONIT-OH7 019533 FCODE-471.B12001000 FIXED0 010555 OR2-OUT 015020 MONIT-OH8 019534 FCODE-471.B13001001 FIXED1 010560 OR3-OUT 015021 MONIT-Sd2 019535 FCODE-471.B14002000 DCTRL-PAR*1-O 010565 OR4-OUT 015022 MONIT-Sd3 019536 FCODE-471.B15002001 DCTRL-PAR*2-O 010570 OR5-OUT 015023 MONIT-P03 019537 FCODE-471.B16002002 DCTRL-PARBUSY 010600 NOT1-OUT 015024 MONIT-P13 019538 FCODE-471.B17005001 MCTRL-QSP-OUT 010605 NOT2-OUT 015026 MONIT-CE0 019539 FCODE-471.B18005002 MCTRL-IMAX 010610 NOT3-OUT 015027 MONIT-NMAX 019540 FCODE-471.B19005003 MCTRL-MMAX 010615 NOT4-OUT 015028 MONIT-OC5 019541 FCODE-471.B20005050 NSET-RFG-I= 0 010620 NOT5-OUT 015029 MONIT-SD5 019542 FCODE-471.B21005200 REF-OK 010650 CMP1-OUT 015030 MONIT-SD6 019543 FCODE-471.B22005201 REF-BUSY 010655 CMP2-OUT 015031 MONIT-SD7 019544 FCODE-471.B23006000 DFRFG1-FAIL 010660 CMP3-OUT 015032 MONIT-H07 019545 FCODE-471.B24006001 DFRFG1-SYNC 010680 PHCMP1-OUT 015033 MONIT-H10 019546 FCODE-471.B25006100 MFAIL-STATUS 010685 PHCMP2-OUT 015034 MONIT-H11 019547 FCODE-471.B26006101 MFAIL-I-RESET 010690 PHCMP3-OUT 015040 MONIT-CE1 019548 FCODE-471.B27006400 FCNT1-EQUAL 010700 DIGDEL1-OUT 015041 MONIT-CE2 019549 FCODE-471.B28006600 SYNC1-STAT 010705 DIGDEL2-OUT 015042 MONIT-CE3 019550 FCODE-471.B29

010750 TRANS1-OUT 015043 MONIT-CE4 019551 FCODE-471.B30010755 TRANS2-OUT 019552 FCODE-471.B31010760 TRANS3-OUT 019751 FCODE-135.B0010765 TRANS4-OUT 019752 FCODE-135.B1010900 FLIP1-OUT 019753 FCODE-135.B2010905 FLIP2-OUT 019755 FCODE-135.B4012000 PHINT1-FAIL 019756 FCODE-135.B5012005 PHINT2-FAIL 019757 FCODE-135.B6012010 PHINT3-STAT 019758 FCODE-135.B7013000 FEVAN1-BUSY 019763 FCODE-135.B12013001 FEVAN1-FAIL 019764 FCODE-135.B13013005 FEVAN2-BUSY 019765 FCODE-135.B14013006 FEVAN2-FAIL 019766 FCODE-135.B15014050 STORE1-TP-INH014055 STORE2-TP-INH

Page 181: ba93sugb.pdf

Appendix

11-62 9300BA0998

Selection list 2, digital output signals (P), continued020001 CAN-CTRL.B0 020201 CAN-IN2.B0 020301 CAN-IN3.B0 025001 AIF-CTRL.B0020002 CAN-CTRL.B1 020202 CAN-IN2.B1 020302 CAN-IN3.B1 025002 AIF-CTRL.B1020003 CAN-CTRL.B2 020203 CAN-IN2.B2 020303 CAN-IN3.B2 025003 AIF-CTRL.B2020005 CAN-CTRL.B4 020204 CAN-IN2.B3 020304 CAN-IN3.B3 025005 AIF-CTRL.B4020006 CAN-CTRL.B5 020205 CAN-IN2.B4 020305 CAN-IN3.B4 025006 AIF-CTRL.B5020007 CAN-CTRL.B6 020206 CAN-IN2.B5 020306 CAN-IN3.B5 025007 AIF-CTRL.B6020008 CAN-CTRL.B7 020207 CAN-IN2.B6 020307 CAN-IN3.B6 025008 AIF-CTRL.B7020013 CAN-CTRL.B12 020208 CAN-IN2.B7 020308 CAN-IN3.B7 025013 AIF-CTRL.B12020014 CAN-CTRL.B13 020209 CAN-IN2.B8 020309 CAN-IN3.B8 025014 AIF-CTRL.B13020015 CAN-CTRL.B14 020210 CAN-IN2.B9 020310 CAN-IN3.B9 025015 AIF-CTRL.B14020016 CAN-CTRL.B15 020211 CAN-IN2.B10 020311 CAN-IN3.B10 025016 AIF-CTRL.B15020101 CAN-IN1.B0 020212 CAN.IN2.B11 020312 CAN-IN3.B11 025101 AIF-IN.B0020102 CAN-IN1.B1 020213 CAN-IN2.B12 020313 CAN-IN3.B12 025102 AIF-IN.B1020103 CAN-IN1.B2 020214 CAN-IN2.B13 020314 CAN-IN3.B13 025103 AIF-IN.B2020104 CAN-IN1.B3 020215 CAN-IN2.B14 020315 CAN-IN3.B14 025104 AIF-IN.B3020105 CAN-IN1.B4 020216 CAN-IN2.B15 020316 CAN-IN3.B15 025105 AIF-IN.B4020106 CAN-IN1.B5 020217 CAN-IN2.B16 020317 CAN-IN3.B16 025106 AIF-IN.B5020107 CAN-IN1.B6 020218 CAN-IN2.B17 020318 CAN-IN3.B17 025107 AIF-IN.B6020108 CAN-IN1.B7 020219 CAN-IN2.B18 020319 CAN-IN3.B18 025108 AIF-IN.B7020109 CAN-IN1.B8 020220 CAN-IN2.B19 020320 CAN-IN3.B19 025109 AIF-IN.B8020110 CAN-IN1.B9 020221 CAN-IN2.B20 020321 CAN-IN3.B20 025110 AIF-IN.B9020111 CAN-IN1.B10 020222 CAN-IN2.B21 020322 CAN-IN3.B21 025111 AIF-IN.B10020112 CAN-IN1.B11 020223 CAN-IN2.B22 020323 CAN-IN3.B22 025112 AIF-IN.B11020113 CAN-IN1.B12 020224 CAN-IN2.B23 020324 CAN-IN3.B23 025113 AIF-IN.B12020114 CAN-IN1.B13 020225 CAN-IN2.B24 020325 CAN-IN3.B24 025114 AIF-IN.B13020115 CAN-IN1.B14 020226 CAN-IN2.B25 020326 CAN-IN3.B25 025115 AIF-IN.B14020116 CAN-IN1.B15 020227 CAN-IN2.B26 020327 CAN-IN3.B26 025116 AIF-IN.B15020117 CAN-IN1.B16 020228 CAN-IN2.B27 020328 CAN-IN3.B27 025117 AIF-IN.B16020118 CAN-IN1.B17 020229 CAN-IN2.B28 020329 CAN-IN3.B28 025118 AIF-IN.B17020119 CAN-IN1.B18 020230 CAN-IN2.B29 020330 CAN-IN3.B29 025119 AIF-IN.B18020120 CAN-IN1.B19 020231 CAN-IN2.B30 020331 CAN-IN3.B30 025120 AIF-IN.B19020121 CAN-IN1.B20 020232 CAN-IN2.B31 020332 CAN-IN3.B31 025121 AIF-IN.B20020122 CAN-IN1.B21 025122 AIF-IN.B21020123 CAN-IN1.B22 025123 AIF-IN.B22020124 CAN-IN1.B23 025124 AIF-IN.B23020125 CAN-IN1.B24 025125 AIF-IN.B24020126 CAN-IN1.B25 025126 AIF-IN.B25020127 CAN-IN1.B26 025127 AIF-IN.B26020128 CAN-IN1.B27 025128 AIF-IN.B27020129 CAN-IN1.B28 025129 AIF-IN.B28020130 CAN-IN1.B29 025130 AIF-IN.B29020131 CAN-IN1.B30 025131 AIF-IN.B30020132 CAN-IN1.B31 025132 AIF-IN.B31

Page 182: ba93sugb.pdf

Appendix

11-639300BA0998

Selection list 3,Phase signals (s)

Selection list 4,Phase difference signals (D)

Selection list 5,Function blocks

000100 DFSET-PSET 000050 DFIN-OUT 000000 empty 010000 BRK1000101 DFSET-PSET2 000100 DFSET-POUT 000050 AIN1 010250 R/L/Q001000 FIXED0INC 000250 DFOUT-OUT 000055 AIN2 010500 AND1005000 MCTRL-PHI-ANG 001000 FIXEDPHI-0 000070 AOUT1 010505 AND2005200 REF-PSET 005000 MCTRL-PHI-ACT 000075 AOUT2 010510 AND3005520 ARITPH1-OUT 006000 DFRFG-OUT 000100 DFSET 010515 AND4005580 PHADD1-OUT 006220 CONV5-OUT 000200 DFIN 010520 AND5005581 PHADD1-OUT2 006225 CONV6-OUT 000250 DFOUT 010525 AND6006235 CONVPHPH1-OUT 006230 CONVPHA1-OUT2 005050 NSET 010530 AND7006600 SYNC1-OUT2 006240 CONVPP1-OUT 005100 MPOT1 010550 OR1012000 PHINT1-OUT 006600 SYNC1-OUT1 005150 PCTRL1 010555 OR2012005 PHINT2-OUT 019521 FCODE-475/1 005200 REF 010560 OR3012010 PHINT3-OUT 019522 FCODE-475/2 005500 ARIT1 010565 OR4012050 PHDIV1-OUT 005505 ARIT2 010570 OR5014000 PHDIFF1-OUT 005520 ARITPH1 010600 NOT1014050 STORE1-PHACT 005550 ADD1 010605 NOT2014051 STORE1-PH1 005580 PHADD1 010610 NOT3014052 STORE1-PH2 005600 RFG1 010615 NOT4014053 STORE1-PHDIFF 005610 SRFG1 010620 NOT5014055 STORE2-PHACT 005650 ASW1 010650 CMP1014056 STORE2-PH1 005655 ASW2 010655 CMP2014057 STORE1-PH2 005660 ASW3 010660 CMP3014100 GEARCOMP-OUT 005665 ASW4 010680 PHCMP1019521 FCODE-474/1 005700 ANEG1 010685 PHCMP2019522 FCODE-474/2 005705 ANEG2 010690 PHCMP3019523 FCODE-474/3 005750 FIXSET1 010700 DIGDEL1019524 FCODE-474/4 005800 LIM1 010705 DIGDEL2019525 FCODE-474/5 005850 ABS1 010750 TRANS1020103 CAN-IN1.D1 005900 PT1-1 010755 TRANS2020201 CAN-IN2.D1 005950 DT1-1 010760 TRANS3020301 CAN-IN3.D1 006000 DFRFG1 010765 TRANS4025103 AIF-IN.D1 006100 MFAIL 010900 FLIP1

006150 DB1 010905 FLIP2006200 CONV1 012000 PHINT1006205 CONV2 012005 PHINT2006210 CONV3 012010 PHINT3006215 CONV4 012050 PHDIV1006220 CONV5 013000 FEVAN1006225 CONV6 013005 FEVAN2006230 CONVPHA1 013100 TR006235 CONVPHPH1 014000 PHDIFF1006240 CONVPP1 014050 STORE1006300 S&H1 014055 STORE2006350 CURVE1 014100 GEARCOMP006420 FCNT1 015100 MLP1006600 SYNC1 020000 CAN-OUT

025000 AIF-OUT

Page 183: ba93sugb.pdf

Appendix

11-64 9300BA0998

Selection list 10, error list000000 No fail 000105 H05 trip000011 OC1 trip 000107 H07 trip000012 OC2 trip 000110 H10 trip000015 OC5 trip 000111 H11 trip000022 LUQ trip 000153 P03 trip000032 LP1 trip 000163 P13 trip000050 OH trip 000166 P16 trip000053 OH3 trip 000200 NMAX trip000057 OH7 trip 001020 OU message000058 OH8 trip 001030 LU message000061 CE0 trip 001091 EEr message000062 CE1 trip 002032 LP1 warning000063 CE2 trip 002054 OH4 warning000064 CE3 trip 002057 OH7 warning000065 CE4 trip 002058 OH8 warning000070 U15 trip 002061 CE0 warning000071 CCr trip 002062 CE1 warning000072 Pr1 trip 002063 CE2 warning000073 Pr2 trip 002064 CE3 warning000074 PEr trip 002065 CE4 warning000075 Pr0 trip 002082 Sd2 warning000077 Pr3 trip 002083 Sd3 warning000078 Pr4 trip 002085 Sd5 warning000079 PI trip 002086 Sd6 warning000082 Sd2 trip 002091 EER warning000083 Sd3 trip 002153 P03 warning000085 Sd5 trip 002163 P13 warning000086 Sd6 trip 002166 P16 warning000087 Sd7 trip000091 EEr trip

Page 184: ba93sugb.pdf

Appendix

11-659300BA0998

11.5 Glossary

Term MeaningAIF Automation interface (X1)CAN Controller Area NetworkCE Communauté Européenne (English: European Community)Code For entry and display (access) of parameter values.

Variable addressing according to the format ”code/subcode” (Cxxxx/xx).All variables can be addressed via the code digits.

Contouring error Deviation between momentary position setpoint and actual position. Display for a momentary followingerror under C0908.

Contouring error tolerance If the contouring error reaches a defined following error tolerance, a fault indication is released.Ctrl. enable Controller enableCtrl. inhibit Controller inhibit ( = Controller enable )Fieldbus For data exchange between superimposed control and positioning control, e.g. InterBus-S or

PROFIBUS DPFollowing error monitoring Monitors the momentary following error if the following error tolerance is exceeded and releases a fault

indication, if necessary.FPDA Freely programmable digital outputFPDE Freely programmable digital inputGDC Global Drive Control (PC-program (Windows) for Lenze controllers)InterBus-S Industrial communication standard to DIN E19258JOG Fixed speed or input for fixed speedKTY “Linear” thermal sensor of the motor windingLECOM Lenze CommunicationLEMOC2 PC-program (DOS) for Lenze controllersLU UndervoltageMaster Masters are host systems, e.g. PLC or PC.OU OvervoltagePC Personal ComputerPLC Programmable logic controllerPM Permanent magnetProcess data For instance, setpoints and actual values of controllers which must be exchanged within a minimum of

time. Process data are usually small amounts of data which are to be transmitted cyclically.For PROFIBUS, these data are transmitted in the logic process data channel.

PROFIBUS Communication standard DIN 19245, consisting of part 1, part 2 and part 3PTC PTC thermistor with defined tripping characteristicQSP Quick stopRFG Ramp generatorSlave Bus participant which may only send after the request of the master.Controllers are slaves.SSC Sensorless controlSSI Synchronous serial interfaceTarget position The target which is to be approached by means of a defined travelling profile.TKO Thermostat / normally-closed contact

Page 185: ba93sugb.pdf

Appendix

11-66 9300BA0998

AAccessories, 11-1

Accessory kit, 1-1

Actual value display, 7-16

Additional module, Interbus-S, 3-1

Aggressive gases, 3-1

Application as directed, 1-2

Application examples, Speed control,11-2, 11-5, 11-7, 11-10, 11-12

Assembly, 3-1Variant Cold Plate, 4-5With fixing brackets or rails, 3-2

Automation interface, 4-26

BBrake unit, 4-16

Bus connection, 4-25

CCable cross-sections, 3-6, 4-13

Control cables, 4-19Mains connection, 4-13Motor connection, 4-16

Cable specification, 4-11CANopen, 4-25Chopping frequency, 6-2Circuit diagram, Control connections,4-21Cleaning, 10-1Code table, 11-15Collective screen plate, 4-19Commissioning, 5-1Configuration

Function blocks, 8-4Monitoring, 8-18Predefined configurations, 8-1

ConnectionBrake unit, 4-16Control, Circuit diagram, 4-21Control cables, 4-19Mains, 4-12Motor, 4-14

Connections, Power, 4-12Control cables, 4-19Control connections, 4-19Control terminals, 4-19

Max. permissible cross-sections, for motorConnection, 4-19Overview, 4-19Protection against inverse polarity, 4-19Terminal assignment, 4-19

Controller, 1-1Application as directed, 1-2Assembled as ”Cold Plate”, 4-5Identification, 1-2

Controller protection, 2-2Cooling air, 3-1Current derating, 6-2

Page 186: ba93sugb.pdf

Appendix

11-679300BA0998

D

Definitions, 1-1

Dimensions

Standard devices, 3-2

Variant Cold Plate, 4-5

Display, Actual values, 7-16

Drive system, 1-1

E

Electrical data

200% overcurrent, 3-4

Types 9321 to 9325, 3-3

Types 9326 to 9332, 3-5

EMC

Assembly, 4-33

CE-typical drive system, Installation, 4-33

Filters, 4-33

Grounding, 4-34

Installation, 4-33

Screening, 4-34

Encoder connection, 4-31

FFault indications, 9-4

Reset, 9-7

Feedback signals, 4-29Encoder connection, 4-31Resolver connection, 4-30Temperature monitoring, 4-27

Free space, 3-1

Function blocks, 8-4Configuration code, 8-6Connect, 8-7Display code, 8-6Input name, 8-5Input symbol, 8-5Make connections, 8-9Naming, 8-5Output name, 8-6Output symbol, 8-6Parameterization code, 8-6Remove connections, 8-10Signal types, 8-4

Fuses, 3-6Mains connection, 4-13

GGlobal-Drive-Control, 11-1

Glossary, 11-65

HHistory buffer, 9-2

Assembly, 9-2Working with the, 9-3

Page 187: ba93sugb.pdf

Appendix

11-68 9300BA0998

I

Identification, Controller, 1-2

Information on operation, 6-1

Inputs

analog, 4-20

digital, 4-20

Installation

CE-typical drive system, 4-33Assembly, 4-33Filters, 4-33Grounding, 4-34Screening, 4-34

electrical, 4-8

mechanical, 3-1

Standard assembly, 3-2

Variant Cold Plate, 4-5

Insulation, 4-8

J

Jumper, analog setpoint selection, 4-20

L

Legal regulations, 1-2

Liability, 1-2

MMains conditions, 4-11

Mains connection, 4-12Fuses, 4-13

Mains filters, 3-7Mains types, 4-11Maintenance, 10-1

Manufacturer, 1-2Message, 8-19Messages, Fault, 9-4

Monitor output, 4-20Monitoring, 8-18

Fault display via digital output, 8-22Monitoring functions, 8-20Reactions: Warning, Message, TRIP, 8-18

Motor cable, Screening, 4-14Motor connection, 4-14, 4-15

Motor protection, 4-10

NNotes on operation, 6-1

OOperating conditions, 3-2

Operating level, 7-9Operating module, 7-7

Operating level, 7-9Status indications, 6-1

Operating unitDisplay, 7-7Key functions, 7-8User menu, 7-9

Oscillations, 3-1Outputs

analog, 4-20digital, 4-20

Overspeeds, 2-2

Page 188: ba93sugb.pdf

Appendix

11-699300BA0998

P

Parameterization, 7-1

ParametersChange, 7-10

Copy parameter sets, see Parameter settransfer

Load parameter set, 7-12

Operating module, 7-7

Parameter classes, 7-2

Parameter set transfer, 7-14

Parameterization, 7-7

PC program, 7-1

Structure of the parameter set, 7-2

Ways of parameterization, 7-1

PC program, 7-1Global-Drive-Control, 11-1

Power connections, 4-12Max. permissible cross-sections

for mains connection, 4-13for motor connection, 4-16

Protection against contact, 4-8

Protection against inverse polarity, 4-19

Protection of persons, 2-2

Punching, 4-3

R

Ratings, 3-3200% overcurrent, 3-4

Controllers 9321 to 9325, 3-3

Fuses, cable cross-sections, 3-6

Mains filters, 3-7

Types 9326 to 9332, 3-5

RCCB, 4-8

Reset, Fault indications, 9-7

Residual hazards, 2-2

Resolver connection, 4-30

SSafety information, 2-1

Layout, 2-2Other notes, 2-2Warning of damage to persons, 2-2Warning to damage to material, 2-2

Scope of supply, 1-1

ScreeningControl cable, 4-19EMC, 4-34Motor cable, 4-14

Selection lists, 11-60

Servo inverter, see Controller

Speed control, 11-2, 11-5, 11-7, 11-10,11-12

State bus, 4-24

Switching on the motor side, 4-16

TTechnical data, 3-1

TechnicaldataDimensions, 3-7Electrical data, 3-3Features, 3-1Fuses, cable cross-sections, 3-6General data/operating conditions, 3-2

Temperature monitoring, 4-27

thermal separation, 4-3

Tightening torquesControl terminals, 4-19Power terminals, 4-13, 4-16

Transport, storage, 2-1

TRIP, 8-18

Troubleshooting, 9-1

UUser menu, 7-9

VVariant Cold Plate, Dimensions, 4-5

Vibrations, 3-1

Voltage drop, 4-13

Page 189: ba93sugb.pdf

Appendix

11-70 9300BA0998

WWarning, 8-19

Warranty, 1-2

Waste disposal, 1-2

Page 190: ba93sugb.pdf

Appendix

11-719300BA0998

Page 191: ba93sugb.pdf

Appendix

11-72 9300BA0998