Top Banner
EDB9300UEK 00404602 Operating Instructions Global Drive 9300 cam profiler
179
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ba93ku_gb.pdf

EDB9300UEK00404602

Operating Instructions

Global Drive9300 cam profiler

Page 2: ba93ku_gb.pdf

7KHVH ,QVWUXFWLRQV DUH YDOLG IRU ��;; FRQWUROOHUV YDULDQWV

33.932X- EK 2x. 1x (9321 - 9329)

33.933X- EK 2x. 1x (9330 - 9332)

33.932X- CK 2x. 1x -V003 Cold Plate (9321 - 9328)

Type

Design:Ex = Enclosure IP20Cx = Cold PlatexK = Cam profilerxP = Positioning controllerxR = Register controllerxS = Servo

Hardware level and index

Software level and index

Variant

Explanation

UHYLVHG(GLWLRQ RI� ����������

Page 3: ba93ku_gb.pdf

U V WU V W

PE

Mains connectionand DC connection

Detachable operating modulealternativelyField busses

INTERBUS

System bus (CAN)

Control terminals

Digital frequency input

Encoder input

Resolver input

Digital frequency output

Motor connection

RDY IMP Imax Mmax Fail1

27

62

34

763

A4

ST2

59S

T1A

3A

2A

1

E3

E5

39E

4E

2E

128

GN

DLO

HI

MCTRL - N - ACT

X4

X5

X6

X8

X9

PE

L1 L2 L3 -UG

X10

T1 T2

1

5

5

1

5

1

1

5

Screen connection

1250 rpm

X7

Screen plate motor cables

Screen plate control connections

Screen plate mains connection

+UG

PTC connection

X3

X1

K35.0002

X1 (hidden):Automation interface

Page 4: ba93ku_gb.pdf

Contents

BA9300KS1198 i

1 Preface and general information 1-1. . . . . . . . . . . . . . . . . . . . . . . . . .1.1 About these Operating Instructions ... 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 Terminology used 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.2 Packing list 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3 Legal regulations 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Safety information 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 General safety information 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2 Layout of the safety information 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3 Residual hazards 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Technical data 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 Features 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.2 General data/Application conditions 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3 Rated data 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.1 Types 9321 to 9325 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.2 Types 9321 to 9324 with 200% overcurrent 3-4. . . . . . . . . . . . . .3.3.3 Types 9326 to 9332 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.4 Fuses and cable cross-sections 3-6. . . . . . . . . . . . . . . . . . . . . . . .3.3.5 Mains filter 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4 Dimensions 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Installation 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1 Mechanical installation 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1.1 Important notes 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1.2 Standard assembly with fixing rails or fixing brackets 4-2. . . . . . .4.1.3 Assembly with thermally separated power stage (”push-through

technique”) 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1.4 Assembly of variants 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Electrical installation 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.1 Protection of persons 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.2 Protection of the controller 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.3 Motor protection 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.4 Mains types/conditions 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.5 Interaction with compensation equipment 4-11. . . . . . . . . . . . . . .4.2.6 Specification of the cables used 4-11. . . . . . . . . . . . . . . . . . . . . . . .4.2.7 Power connections 4-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.7.1 Mains connection 4-12. . . . . . . . . . . . . . . . . . . . . . . . .4.2.7.2 Motor connection 4-14. . . . . . . . . . . . . . . . . . . . . . . . .4.2.7.3 Connection of a brake unit 4-16. . . . . . . . . . . . . . . . . .4.2.7.4 DC-bus connection of several drives 4-17. . . . . . . . .

4.2.8 Control connections 4-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.8.1 Control cables 4-19. . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.8.2 Control terminal assignment 4-19. . . . . . . . . . . . . . . .4.2.8.3 Connection diagrams 4-21. . . . . . . . . . . . . . . . . . . . . .

4.2.9 Motor temperature monitoring 4-27. . . . . . . . . . . . . . . . . . . . . . . . .4.2.9.1 User specific characteristic for a PTC resistor 4-29. .

4.2.10 Feedback systems 4-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.3 Installation of a CE-typical drive system 4-33. . . . . . . . . . . . . . . . . . . . . . . . . .

Page 5: ba93ku_gb.pdf

Contents

ii BA9300KS1198

5 Commissioning 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1 Before switching on 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Initial switch-on 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Switch on the controller 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 Switch on PC, start GDC. 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Generation of parameter set 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5.1 Adapt controller to mains 5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5.2 Adapt controller to motor 5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5.3 Enter machine parameters 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Basic cam data 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.7 Cam profile generation 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.7.1 General 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.7.2 Cam profile import 5-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.8 Configuration C0005 = 10000Replacement of a mechanical cam 5-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 During operation 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1 Status indications 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.1 On the operating module 9371 BB 6-1. . . . . . . . . . . . . . . . . . . . .6.1.2 In Global Drive Control 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Information on operation 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.2.1 Switching on the motor side 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . .6.2.2 Controller protection by current derating 6-4. . . . . . . . . . . . . . . . .

7 Parameter setting 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.1 Ways of parameter setting 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.1 Structure of a parameter set 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 6: ba93ku_gb.pdf

Contents

BA9300KS1198 iii

8 Configuration 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.1 Predefined configurations 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.1.1 Working with predefined configurations 8-1. . . . . . . . . . . . . . . . .

8.2 Operating modes 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.2.1 Parameter setting 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.2.2 Control 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.3 Working with function blocks 8-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.1 Signal types 8-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.2 Elements of a function block 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.3 Connection of function blocks 8-6. . . . . . . . . . . . . . . . . . . . . . . . .8.3.4 Entries into the processing table 8-10. . . . . . . . . . . . . . . . . . . . . . . .

8.4 Description of function blocks 8-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.5 Definition by means of an example 8-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.5.1 Normalization 8-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.5.2 Data structures 8-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.6 Description of cam profile generation 8-21. . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.7 Basic configuration 8-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.7.1 Predefined basic configurations 8-23. . . . . . . . . . . . . . . . . . . . . . . .8.7.2 Configuration C0005 = 10000 cam profiler (see chapter 5.8) 8-248.7.3 Configuration C0005 = 11000 welding bar drive 8-24. . . . . . . . . .8.7.4 Configuration C0005 = 12000

Operation with position memory 8-26. . . . . . . . . . . . . . . . . . . . . . . .8.7.5 Basic configuration C0005 = 1xXxx 8-27. . . . . . . . . . . . . . . . . . . . .

8.7.5.1 Configurations 1X0XX: No additional function 8-27. .8.7.5.2 Configurations 1X1XX: Homing function 8-28. . . . . .8.7.5.3 Configurations 1x2xx: Clutch function 8-29. . . . . . . .8.7.5.4 Configurations 1x3xx: Switch points

(cam switching) 8-30. . . . . . . . . . . . . . . . . . . . . . . . . . .8.7.5.5 Configurations 1x8xx: Mark-controlled correction

of the master value 8-31. . . . . . . . . . . . . . . . . . . . . . . .8.7.5.6 Configurations 1x9xx: Mark-controlled correction

of the actual value 8-31. . . . . . . . . . . . . . . . . . . . . . . . .

8.8 Monitoring 8-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.8.1 Reactions 8-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.8.2 Monitoring functions 8-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.8.3 Fault indication via digital output 8-36. . . . . . . . . . . . . . . . . . . . . . .

9 Troubleshooting and fault elimination 9-1. . . . . . . . . . . . . . . . . . . . .9.1 Troubleshooting 9-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.2 Fault analysis with the history buffer 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . .9.2.1 Structure of the history buffer 9-3. . . . . . . . . . . . . . . . . . . . . . . . . .9.2.2 Working with the history buffer 9-5. . . . . . . . . . . . . . . . . . . . . . . . .

9.3 Fault messages 9-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.4 Reset of fault messages 9-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Maintenance 10-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 7: ba93ku_gb.pdf

Contents

iv BA9300KS1198

11 Appendix 11-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.1 Accessories 11-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2 Code table 11-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.3 Selection list for signal connections 11-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.4 Motor selection list 11-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.5 Glossary 11-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.6 Table of keywords 11-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 8: ba93ku_gb.pdf

Preface and general information

BA9300KS1198 1-1

1 Preface and general information

1.1 About these Operating Instructions ...

- These Operating Instructions help with the connection and thecommissioning of the 93xx cam profiler. They include safety notes which youmust observe.

- All persons working on and with 93XX cam profiler must have the OperatingInstrucations available and must observe the information and notes relevantfor their work.

- The Operating Instructions must always be in a complete and perfectlyreadable state.

- Further information on the controller can be obtained from the Catalog andthe Manual.

1.1.1 Terminology used

Term In the following text used for93XX Any cam profiler (types 9321 ... 9332)Controller 93XX cam profilerDrive system Drive system with 93XX cam profiler and other Lenze drive components

1.2 Packing list

Packing list Important- 1 93XX cam profiler- 1 book of Operating Instructions- 1 accessory kit (parts for mechanical and

electrical installation)

After receipt of the delivery, check immediately whether the itemsdelivered match the accompanying papers. Lenze does not acceptany liability for deficiencies claimed subsequently.Claim- visible transport damage immediately to the forwarder.- visible deficiencies/incompleteness immediately to your Lenze

representative.

Page 9: ba93ku_gb.pdf

Preface and general information

1-2 BA9300KS1198

1.3 Legal regulations

Identification Nameplate CE-identification ManufacturerLenze controllers are unambiguouslydesignated by the contents of thenameplate.

Conforms to the EC Low-VoltageDirective

Lenze GmbH &Co KGPostfach 101352D-31763 Hameln

Applicationas directed

The 93XX servo- must only be operated under the conditions prescribed in these Instructions.- are components

- for open and closed loop control of variable speed drives with PM synchronous motors, asynchronous servomotors or asynchronous standard motors.

- for installation in a machine- for assembly with other components to form a machine.

- are electric units for the installation into control cabinets or similar enclosed operating housing.- meet the protection requirements of the EC Low Voltage Directive.- are not machinery in the sense of the EC Machinery Directive.- are not to be used as domestic appliances, but only for industrial purposes.Drive systems with 93XX servo inverters- comply with the EMC Directive if they are installed according to the guidelines of CE-typical drive systems.- can be used

- for operation at public and non-public mains- in industrial as well as residential and commercial premises.

- The user is responsible for the compliance of his application with the EC directives.Any other use shall be deemed as inappropriate!

Liability - The information, data, and notes in these Operating Instructions met the state of the art at the time of printing.Claims on modifications referring to controllers which have already been supplied cannot be derived from theinformation, illustrations, and descriptions.

- The specifications, processes, and circuitry described in these Operating Instructions are for guidance only andmust be adapted to your own specific application. Lenze does not take responsibility for the suitability of theprocess and circuit proposals.

- The specifications in these Instructions describe the product features without guaranteeing them.- Lenze does not accept any liability for damage and operating interference caused by:

- Disregarding the operating instructions- Unauthorized modifications to the controller- Operating errors- Improper working on and with the controller

Warranty - Terms of warranty: see terms of sales and delivery of Lenze GmbH &Co KG.- Warranty claims must be made to Lenze immediately after detecting the deficiency or fault.- The warranty is void in all cases where liability claims cannot be made.

Disposal Material recycle disposepMetal - -Plastic - -Assembled PCBs - -

Page 10: ba93ku_gb.pdf

Safety information

BA9300KS1198 2-1

2 Safety information

2.1 General safety information

Safety and application notes for controllers

(according to: Low-Voltage Directive 73/23/EEC)

1. GeneralDuring operation, drive controllers may have, according to theirtype of protection, live, bare, in some cases also movable orrotating parts as well as hot surfaces.Non-authorized removal of the required cover, inappropriate use,incorrect installation or operation, creates the risk of severe injuryto persons or damage to material assets.Further information can be obtained from the documentation.All operations concerning transport, installation, andcommissioning as well as maintenance must be carried out byqualified, skilled personnel (IEC 364 and CENELEC HD 384 orDIN VDE 0100 and IEC report 664 or DIN VDE 0110 and nationalregulations for the prevention of accidents must be observed).According to this basic safety information qualified skilledpersonnel are persons who are familiar with the erection,assembly, commissioning, and operation of the product and whohave the qualifications necessary for their occupation.2. Application as directedDrive controllers are components which are designed forinstallation in electrical systems or machinery.When installing in machines, commissioning of the drivecontrollers (i.e. the starting of operation as directed) is prohibiteduntil it is proven that the machine corresponds to the regulationsof the EC Directive 89/392/EEC (Machinery Directive); EN 60204must be observed.Commissioning (i.e. starting of operation as directed) is onlyallowed when there is compliance with the EMC Directive(89/336/EEC).The drive controllers meet the requirements of the Low VoltageDirective 73/23/EEC. The standards of the EN 50178/ DIN VDE0160, EN 60439-1/DIN VDE 0660 part 500 and EN60146/DINVDE 0558 are applicable to drive controllers.The technical data and information on the connection conditionsmust be obtained from the nameplate and the documentation andmust be observed in all cases.3. Transport, storageNotes on transport, storage and appropriate handling must beobserved.Climatic conditions must be observed according to prEN 50178.

4. ErectionThe devices must be erected and cooled according to theregulations of the corresponding documentation.The drive controllers must be protected from inappropriate loads.Particularly during transport and handling, components must notbe bent and/or isolating distances must not be changed. Touchingof electronic components and contacts must be avoided.Drive controllers contain electrostatically sensitive componentswhich can easily be damaged by inappropriate handling. Electricalcomponents must not be damaged or destroyed mechanically(health risks are possible!).5. Electrical connectionWhen working on live drive controllers, the valid nationalregulations for the prevention of accidents (e.g. VBG 4) must beobserved.The electrical installation must be carried out according to theappropriate regulations (e.g. cable cross-sections, fuses, PEconnection). More detailed information is included in thedocumentation.Notes concerning the installation in compliance with EMC - suchas screening, grounding, arrangement of filters and laying ofcables - are included in the documentation of the drivecontrollers. These notes must also be observed in all cases fordrive controllers with the CE mark. The compliance with therequired limit values demanded by the EMC legislation is theresponsibility of the manufacturer of the system or machine.6. OperationSystems where drive controllers are installed must be equipped,if necessary, with additional monitoring and protective devicesaccording to the valid safety regulations, e.g. law on technicaltools, regulations for the prevention of accidents, etc.Modifications of the drive controllers by the operating softwareare allowed.After disconnecting the drive controllers from the supply voltage,live parts of the controller and power connections must not betouched immediately, because of possibly charged capacitors. Forthis, observe the corresponding labels on the drive controllers.During operation, all covers and doors must be closed.7. Maintenance and servicingThe manufacturer’s documentation must be observed.This safety information must be kept!

The product-specific safety and application notes in these Operating Instructions must also be observed!

Page 11: ba93ku_gb.pdf

Safety information

2-2 BA9300KS1198

2.2 Layout of the safety information

- All safety information has a uniform layout:

- The icon characterizes the type of danger.

- The signal word characterizes the severity of danger.- The note text describes the danger and gives information how to prevent

dangerous situations.

Signal wordNotes

Icons used Signal wordsWarning ofdamage topersons

Warning ofhazardouselectrical voltage

Danger! Warns of impending dangeU .Consequences if disregarded:Death or severe injuries.

Warning of ageneral danger

Warning! Warns of potential, very hazardous situations.Possible consequences if disregarded:Death or severe injuries.

Caution! Warns of potential, hazardous situations.Possible consequences if disregarded:Light or minor injuries.

Warning ofdamage tomaterial

Stop! Warns of potential damage to material.Possible consequences if disregarded:Damage of the controller/drive system or its environment .

Other notes Note! This note designates general, useful notes.If you observe it, handling of the controller/drive system ismade easier.

2.3 Residual hazards

Protection of persons After mains switch-off, the power terminals U, V, W and +UG, -UG remain live for at least three minutes.- Before working on the controller, check that no voltage is applied to the power terminals.

Controller protection Cyclic connection and disconnection of the controller supply voltage at L1, L2, L3 or +UG, +UG canoverload the input current limitation.- Allow at least 3 minutes between disconnection and reconnection.

Overspeeds Drive systems can reach dangerous overspeeds (e.g. setting high field frequencies for motors andmachines which are not suitable):- The controllers do not offer any protection against these operating conditions. For this, use additional

components.

Page 12: ba93ku_gb.pdf

Technical Data

BA9300KS1198 3-1

3 Technical data

3.1 Features

- Several profiles can be stored

- Cam switch function

- Stretching/compression/offset in Xand Y direction

- Virtual master

- Clutch replacement / overload clutch

- Welding bar control

- Integrated oscilloscope function

- Power range: 370 W to 75 kW- Uniform control module and thus uniform connection for the control cables

over the complete power range.

- Heat sink can be separated- Cooling is possible outside the control cabinet

(push-through technique or “cold plate technique”)

- Direct connection of resolver or encoder feedback- Easy connection because of prefabricated system cables (accessories)- Connecting cables can be plugged

- Integrated angular controller for driftfree standstill

- Digital synchronization system via digital frequency- Setpoint transmission without offset and gain errors- Synchronization of speed and rotor position- Homing function

- User configuration for control functions and input and output signals- Comprehensive function block library- High flexibility in the adaptation to the internal control structure of the

application

- Integrated automation interface- Easy extension of the controller functionality

- System bus for the connection of servo inverters and for the extension ofinput and output terminals

- Approval of standard devices UL 508, File No. 132659 (listed)

- Approval 9371 BB (BAE) UL 508, File No. 132659 (listed)

Page 13: ba93ku_gb.pdf

Technical Data

3-2 BA9300KS1198

3.2 General data/Application conditions

Field ValuesVibration resistance Germanischer Lloyd, general conditions (in preparation)Permissible humidity Humidity class F without condensation

(average relative humidity 85 %)Permissible temperature ranges during transport: -25 �C ¤ +70 �C

during storage of the controller: -25 �C ¤ +55 �Cduring operation of the controller: 0 �C ¤ +40 �C without power derating

+40 �C ¤ +50 �C with power deratingPermissible installation height h h � 1000 m amsl without power derating

1000 m amsl h � 4000 m amsl with power deratingPermissible pollution VDE 0110 part 2 pollution degree 2Noise emission Requirements to EN 50081-2, EN 50082-1, IEC 22G-WG4 (Cv) 21

Limit value class A to EN 55011 (industrial premises) with mains filter ALimit value class B to EN 55022 (residential area) with mains filter B and installation in controlcabinet

Noise immunity Limit values maintained using mains filter.Requirements to EN 50082-2, IEC 22G-WG4 (Cv) 21 .Requirements Standard SeverityESD EN61000-4-2 3, i.e. 8 kV with air discharge

and 6 kV with contact dischargeRF interference(enclosure) EN61000-4-3 3, i.e. 10 V/m; 27 to 1000 MHzBurst EN61000-4-4 3/4, i.e. 2 kV/5 kHzSurge IEC 1000-4-5 3, i.e. 1.2/50 ³s

1 kV phase-phase, 2 kV phase-PEInsulation strength Overvoltage category III to VDE 0110Packing to DIN 4180

- 9321 to 9333: Delivery packingType of protection IP20

IP41 on the heat-sink side for thermal separation (punching)NEMA 1:Protection against contact

Approvals CE: Low-Voltage DirectiveEMC Directive in preparation

UL508: Industrial Control EquipmentUL508C:Power Conversion Equipment

Page 14: ba93ku_gb.pdf

Technical Data

BA9300KS1198 3-3

3.3 Rated data

3.3.1 Types 9321 to 9325

Type EVS9321-EK EVS9322-EK EVS9323-EK EVS9324-EK EVS9325-EKOrder No. EVS9321-EK EVS9322-EK EVS9323-EK EVS9324-EK EVS9325-EK

Type EVS9321-CK EVS9322-CK EVS9323-CK ESV9324-CK ESV9325-CKOrder No. EVS9321-CK EVS9322-CK EVS9323-CK EVS9324-CK EVS9325-CK

Mains voltage Vr [V] 320 Vá0%$ Vr$ 528 Vá0% ; 45 Hz ¤ 65 Hzá0%Alternative DC supply VG [V] 460 Vá0%$ VG$ 740 Vá0%Mains current with mains filterMains current without mainsfilter

Ir [A] 1.52.1

2.53.5

3.95.5

7.0-

12.016.8

Ratings for operation at a mains: 3 AC / 400V / 50Hz/60HzMotor power (4 pole ASM) PN [kW] 0.37 0.75 1.5 3.0 5.5p ( p )

PN [hp] 0.5 1.0 2.0 4.0 7.5Output power U, V, W (8kHz*) Sr8 [kVA] 1.0 1.7 2.7 4.8 9.0Output power +UG, -UG

2) PDC [kW] 2.0 0.75 2.2 0.75 0Output current (8 kHz*) Ir8 [A] 1.5 2.5 3.9 7.0 13.0Output current (16 kHz*) Ir16 [A] 1.1 1.8 2.9 5.2 9.7Max. output current (8 kHz*)1) Imax8 [A] 2.3 3.8 5.9 10.5 19.5Max. output current (16 kHz*)1) Imax16 [A] 1.7 2.7 4.4 7.8 14.6Max. standstill current (8 kHz*) I08 [A] 2.3 3.8 5.9 10.5 19.5Max. standstill current(16 kHz*) I016 [A] 1.7 2.7 4.4 7.8 14.6

Ratings for operation at a mains: 3 AC / 480V / 50Hz/60HzMotor power (4 pole ASM) PN [kW] 0.37 0.75 1.5 3.0 5.5p ( p )

PN [hp] 0.5 1.0 2.0 4.0 7.5Output power U, V, W (8kHz*) S r8 [kVA] 1.2 2.1 3.2 5.8 10.8Output power +UG, -UG

2) PDC [kW] 2.0 0.75 2.2 0.75 0Output current (8 kHz*) Ir8 [A] 1.5 2.5 3.9 7.0 13.0Output current (16 kHz*) Ir16 [A] 1.1 1.8 2.9 5.2 9.7Max. output current (8 kHz*)1) Imax8 [A] 2.3 3.8 5.9 10.5 19.5Max. output current (16 kHz*)1) Imax16 [A] 1.7 2.7 4.4 7.8 14.6Max. standstill current (8 kHz*) I08 [A] 2.3 3.8 5.9 10.5 19.5Max. standstill current(16 kHz*) I016 [A] 1.7 2.7 4.4 7.8 14.6Motor voltage U M [V] 0 - 3 VmainsPower loss (operation with Irx) Ploss [W] 100 110 140 200 260Power derating [%/K]

[%/m]40 �C < Tamb < 55 �C: 2%/K (not UL approved)

1000 m amsl h$ 4000 m amsl: 5%/1000mWeight m [kg] 3.5 3.5 5.0 5.0 7.5

1) The currents apply to a periodical load cycle with 1 minute overcurrent with the current mentioned here and 2minutes base load with 75% Irx

2) When operated under rated load, the controller can supply this power additionally.* Chopping frequency of the inverter (C0018)

Page 15: ba93ku_gb.pdf

Technical Data

3-4 BA9300KS1198

3.3.2 Types 9321 to 9324 with 200% overcurrent

Type EVS9321-EK EVS9322-EK EVS9323-EK EVS9324-EK

Ratings for operation at a mains: 3 AC / 400V / 50Hz/60HzMotor power (4 pole ASM) PN [kW] 0.37 0.75 1.5 3.0p ( p )

PN [hp] 0.5 1.0 2.0 4.0Output power U, V, W (8 kHz) Sr8 [kVA] 1.0 1.7 2.7 4.8Output current (8 kHz) 2) Ir8 [A] 1.5 2.5 3.9 7.0Output current (16 kHz) 2) Ir16 [A] 1.1 1.8 2.9 5.2Max. output current (8 kHz)1) Imax8 [A] 3.0 5.0 7.8 14.0Max. output current (16 kHz)1) Imax16 [A] 2.2 3.6 5.8 10.4Max. standstill current (8 kHz) I08 [A] 3.0 5.0 7.8 14.0Max. standstill current (16 kHz) I016 [A] 2.2 3.6 5.8 10.4

Ratings for operation at a mains: 3 AC / 480V / 50Hz/60HzMotor power (4 pole ASM) PN [kW] 0.37 0.75 1.5 3.0p ( p )

PN [hp] 0.5 1.0 2.0 4.0Output power U, V, W (8 kHz) S r8 [kVA] 1.2 2.1 3.2 5.8Output current (8 kHz) 2) Ir8 [A] 1.5 2.5 3.9 7.0Output current (16 kHz) 2) Ir16 [A] 1.1 1.8 2.9 5.2Max. output current (8 kHz)1) Imax8 [A] 3.0 5.0 7.8 14.0Max. output current (16 kHz)1) Imax16 [A] 2.2 3.6 5.8 10.4Max. standstill current (8 kHz) I08 [A] 3.0 5.0 7.8 14.0Max. standstill current (16 kHz) I016 [A] 2.2 3.6 5.8 10.4

1) The currents apply to a periodical load cycle with 10 seconds overcurrent with the current mentioned here and50 seconds base load with 44 % Irx

Main point forindividualsituations

Settings undercode C0022

Thermalcontinuous

current

Max. current phase Recovery phase

Continuous power Imax% 150 % IrX 100 % IrX 150 % IrX for 60 s 75 % IrX for 120 sPeak power Imax > 150 % IrX 70 % IrX 200 % IrX for 10 s 44 % IrX for 50 s

2) This output current IrX is only valid for a motor current adjustable under C022, which has not exceeded 150%rated current (nameplate).If the maximum current is increased to a value higher than this, the continuous current is automatically reducedto 70% of the original value.

Overcurrent diagram, see chapter 8.8.2For all other data see chapter 3.3.1

Note!The change to Imax > 150% IrX is only possible when the controller is inhibited.

Page 16: ba93ku_gb.pdf

Technical Data

BA9300KS1198 3-5

3.3.3 Types 9326 to 9332

Type EVS9326-EK

EVS9327-EK

EVS9328-EK

EVS9329-EK

EVS9330-EK

EVS9331-EK

EVS9332-EK

Order No. EVS9326-EK EVS9327-EK EVS9328-EK EVS9329-EK EVS9330-EK EVS9331-EK EVS9332-EK

Type EVS9326-CK

EVS9227-CK

EVS9328-CK

Order No. EVS9326-CK EVS9327-CK EVS9328-CK

Mains voltage V r [V] 320 Vá0%$ Vr $ 528 Vá0% ; 45 Hz ¤ 65 Hzá0%Alternative DC supply V G [V] 460 Vá0%$ VG$ 740 Vá0%Mains current with mains filterMains current without mainsfilter

Ir [A] 20.5-

27.043.5

44.0-

53.0-

78.0-

100.0-

135.0-

Ratings for operation at a mains: 3 AC / 400V / 50Hz/60HzMotor power (4 pole ASM) Pr [kW] 11.0 15.0 22.0 30.0 45.0 55.0 75.0p ( p )

Pr [hp] 15.0 20.5 30.0 40.0 60.0 73.5 100.0Output power UVW (8 kHz*) S r8 [kVA] 16.3 22.2 32.6 40.9 61.6 76.2 100.5Output power +UG, -UG

2) PDC [kW] 0 10.0 4.0 0 5.0 0 0Output current (8 kHz*) 1) Ir8 [A] 23.5 32.0 47.0 59.0 89.0 110.0 145.0Output current (16 kHz*) 1) Ir16 [A] 15.3 20.8 30.6 38.0 58.0 70.0 90.0Max. output current (8 kHz*) Imax8 [A] 35.3 48.0 70.5 88.5 133.5 165.0 217.5Max. output current (16 kHz*) Imax16 [A] 23.0 31.2 45.9 57.0 87.0 105.0 135.0Max. standstill current (8 kHz*) I08 [A] 23.5 32.0 47.0 52.0 80.0 110.0 126.0Max. standstill current (16kHz*) I016 [A] 15.3 20.8 30.6 33.0 45.0 70.0 72.0

Ratings for operation at a mains: 3 AC / 480V / 50Hz/60HzMotor power (4 pole ASM) PN [kW] 11.0 18.5 30.0 37.0 45.0 55.0 90.0p ( p )

PN [hp] 15.0 25.0 40.0 49.5 60.0 73.5 120.0Output power UVW (8 kHz*) S r8 [kVA] 18.5 25.0 37.0 46.6 69.8 87.3 104.0Output power +UG, -UG

2) PDC [kW] 0 12.0 4.8 0 6.0 0 6.0Output current (8 kHz*) Ir8 [A] 22.3 30.4 44.7 56.0 84.0 105.0 125.0Output current (16 kHz*) Ir16 [A] 14.5 19.2 28.2 35.0 55.0 65.0 80.0Max. output current (8 kHz*)1) Imax8 [A] 33.5 45.6 67.1 84.0 126.0 157.5 187.5Max. output current (16 kHz*)1) Imax16 [A] 21.8 28.8 42.3 52.5 82.5 97.5 120.0Max. standstill current (8 kHz*) I08 [A] 22.3 30.4 44.7 49.0 72.0 105.0 111.0Max. standstill current (16kHz*) I016 [A] 14.5 19.2 28.2 25.0 36.0 58.0 58.0Motor voltage V M [V] 0 - 3 VmainsPower loss Ploss [W] 360 430 640 810 1100 1470 1960Power derating [%/K]

[%/m]at 40 �C < Tamb < 55 �C: 2.5%/K (not UL approved)

1000 m amsl h$ 4000 m amsl: 5%/1000mWeight m [kg] 7.5 12.5 12.5 12.5 36.5 59.0 59.0

1) The currents apply to a periodical load cycle with 1 minute overcurrent with the current mentioned here and 2minutes base load with 75% Irx .

2) When operated under rated load, the controller can supply this power additionally.* Chopper frequency of the inverter (C0018)

Page 17: ba93ku_gb.pdf

Technical Data

3-6 BA9300KS1198

3.3.4 Fuses and cable cross-sections

Type Mains input L1, L2, L3, PE/motor connection U, V, W Input +UG, -UGyp

Operation without mains filter Operation with mains filter

Fuse E.l.c.b. Cable cross-section2)

Fuse E.l.c.b. Cable cross-section2)

Fuse Cable cross-section2)

VDE UL VDE mm2 AWG VDE UL VDE mm2 AWG mm2 AWG9321 M 6A 5A B 6A 1 17 M 6A 5A B 6A 1 17 6.3A 1 179322 M 6A 5A B 6A 1 17 M 6A 5A B 6A 1 17 6.3A 1 179323 M 10A 10A B 10A 1.5 15 M 10A 10A B 10A 1.5 15 8A 1.5 159324 - - - - - M 10A 10A B 10A 1.5 15 12A 1.5 159325 M 32A 25A B 32A 6 9 M 20A 20A B 20A 4 11 20A 4 119326 - - - - - M 32A 25A B 32A 6 9 40A 6 99327 M 63A 63A - 16 6 35A 35A - 10 7 50A 10 79328 - - - - - 50A 50A - 16 5 80A 16 59329 - - - - - 80A 80A - 25 3 100A 25 39330 - - - - - 100A 100A - 50 0 2 *80A 1) 2 *

162 *5

9331 - - - - - 125A 125 A - 70 2/0 2 *100A1)

2 *25

2 *3

9332 - - - - - 160A 175 A - 95 3/0 3 *80A 1) 3 *16

3 *5

1) The DC bus fuses are connected in parallel2) The valid local regulations must be observed

For operation of the controllers in a UL-approved plant:

- Use only UL-approved fuses and fuse holders:- 500 V to 600 V in mains input (AC)- 700 V in DC-bus voltage (DC)- Tripping characteristic ”H” or ”K5”

- Use UL-approved cables only

Note!UL-approved fuses and fuse holders can be obtained from, e.g. Bussmann orFerraz.

Connection of the motor cables

- The protection of the motor cables is not necessary for functional reasons.

- The data in the table ”operation with mains filter” are applicable.

Page 18: ba93ku_gb.pdf

Technical Data

BA9300KS1198 3-7

3.3.5 Mains filter

Type Rated data (uk £ 6%) Lenze order numberyp

Mains current Inductance for RFI degree A for RFI degree B9321 1.5 A 24 mH EZN3A2400H002 EZN3B2400H0029322 2.5 A 15 mH EZN3A1500H003 EZN3B1500H0039323 4 A 9 mH EZN3A0900H004 EZN3B0900H0049324 7 A 5 mH EZN3A0500H007 EZN3B0500H0079325 13 A 3 mH EZN3A0300H013 EZN3B0300H0139326 24 A 1.5 mH EZN3A0150H024 EZN3B0150H0249327 30 A 1.1 mH EZN3A0110H030 EZN3B0110H0309328 42 A 0.8 mH EZN3A0080H042 EZN3B0080H0429329 60 A 0.54 mH EZN3A0055H060 EZN3B0055H0609330 90 A 0.37 mH EZN3A0037H090 EZN3B0037H0909331 150 A 0.22 mH EZN3A0022H150 EZN3B0022H1509332 150 A 0.22 mH EZN3A0022H150 EZN3B0022H150

The mains filters for RFIdegree B contain additionalRFIsuppression components.

3.4 Dimensions

The dimensions of the controllers depend on the mechanical installation(see chapter 4.1).

Page 19: ba93ku_gb.pdf

Technical Data

3-8 BA9300KS1198

Page 20: ba93ku_gb.pdf

Installation

BA9300KS1198 4-1

4 Installation

4.1 Mechanical installation

4.1.1 Important notes

- Use the controllers only as built-in devices!

- If the cooling air contains pollutants (dust, fluff, grease, aggressive gases):

- Take suitable preventive measures , e.g. separate air duct, installation offilters, regular cleaning, etc.

- Ensure free space!

- You can install several controllers next to each other without free space in acontrol cabinet.

- Ensure unimpeded ventilation of cooling air and outlet of exhaust air!

- Allow a free space of 100 mm at the top and at the bottom.

- Do not exceed the ambient temperature permissible during operation(see chapter 3.2).

- With continuous oscillations or vibrations:

- Check whether shock absorbers are necessary.

Possible mounting positions

- Vertically on the control cabinet back panel with mains connections at thetop:- with enclosed fixing rails or fixing brackets (see chapter 4.1.2).- thermally separated with external heat sink

Push-through technique, see chapter 4.1.3”Cold plate technique” see chapter 4.1.4

Page 21: ba93ku_gb.pdf

Installation

4-2 BA9300KS1198

4.1.2 Standard assembly with fixing rails or fixing brackets

A B C

;

FIG 4-1 Dimensions for assembly with fixing rails/fixing brackets

Type Fig. a b b1 c c1 d d1 e* e1 g k m9321, 9322 A 78 384 350 39 - 365 - 250 230 6.5 30 -9323, 9324 A 97 384 350 48.5 - 365 - 250 230 6.5 30 -9325, 9326 B 135 384 350 21.5 92 365 - 250 230 6.5 30 -9327 - 9329 C 250 402 350 22 206 370 24 250 230 6.5 24 119330 C 340 672 591 28.5 283 624 38 285 265 11 28 189331,9332 C 450 748.5 680 30.5 389 702 38 285 265 11 28 18

* When using an attachable fieldbus module:Observe the free space required for the connection cables

All dimensions in mm

Controllers 9321 to 9326

- Assembly preparation:- Take out fixing rail(s) (accessory kit in the box) and mount them on the

controller housing

Controllers 9327 to 9332

- Remove cover:- Loosen screws (X)- Swing cover to the top and detach- Take accessory kit out of the interior of the controller

- Assembly preparation:- Take out fixing bracket and screws (accessory kit) and mount them on the

controller housing

Page 22: ba93ku_gb.pdf

Installation

BA9300KS1198 4-3

4.1.3 Assembly with thermally separated power stage(”push-through technique”)

The heat sink of the controllers 9321 ... 9326 can be mounted outside the controlcabinet to reduce the heat generated in the control cabinet. For this, you need anassembly frame with seal (can be ordered from Lenze).

- Distribution of the power loss:- Approx. 65% via the separated heat sink (heat sink + blower)- Approx. 35 % inside the controller.

- The enclosure of the separated heat sink (heat sink + blower) is IP41.

- The rated data of the controller is still valid.

Preparation for assembly:

1. Lay the halves of the assembly frame into the slot provided on thecontroller.

2. Push the frame halves together until the ends catch.

3. Slip the seal ring over the heat sink and insert it into the slot provided.

Page 23: ba93ku_gb.pdf

Installation

4-4 BA9300KS1198

c

bd

e

g

Lenze

ca

1

d1

d1

f

b1

FIG 4-2 Dimensions for the assembly with thermally separated power stage

Type a b b1 c c1 d d1 e* f g9321, 9322 112.5 385.5 350 60 95.5 365.5 105.5 250 92 6.59323, 9324 131.5 385.5 350 79 114.5 365.5 105.5 250 92 6.59325, 9226 135 385.5 350 117 137.5 365.5 105.5 250 92 6.5

* When using an attachable fieldbus module:Observe the free space required for the connection cables

Assembly cut-out

Type 9321, 9322 9323, 9324 9325, 9326Height 350 (á3)Width 82 (á3) 101 (á3) 139 (á3)

All dimensions in mm

Page 24: ba93ku_gb.pdf

Installation

BA9300KS1198 4-5

4.1.4 Assembly of variants

Variant EVS932XCK (”Cold plate”)

For installation in a control cabinet with other heat sinks in ”cold plate technique”.

a

bd

g

Lenze

b1

ce

c

a

bd

g

Lenze

b1

c2

a

bd

g

Lenze

b1

c

FIG 4-3 Dimensions of 9321 ... 9326 for the assembly with cold plate technique

Type a b b1 c c1 d e* g93219322 78 381 350 48 - 367 168 6.5

93239324 97 381 350 67 - 367 168 6.5

93259326 135 381 350 105 38 367 168 6.5

* When using an attachable fieldbus module:Observe the free space required for the connection cables

All dimensions in mm

Page 25: ba93ku_gb.pdf

Installation

4-6 BA9300KS1198

a

a1

g

c

c1

e

b1 d b

L*)

FIG 4-4 Dimensions of 9327 und 9328 for the assembly with cold plate technique

Type a a1 b b1 c c1 d e* g93279328 234 250 381 350 110 220 367 171 6.5

* When using an attachable fieldbus module:Observe the free space required for the connection cables

All dimensions in mm

Page 26: ba93ku_gb.pdf

Installation

BA9300KS1198 4-7

- Observe the following points to comply with the technical data:- Ensure sufficient ventilation of the heat sink.- The free space behind the control cabinet back panel must be at least

500 mm.

- If you install several controllers in a control cabinet:- Do not install the controllers on top of each other.

- The cooling path must not exceed the thermal resistances stated in the table:

Controller Cooling path

Type Power to be dissipated Ploss [W] R thmaxheat sink [K/W]9321 80 0.509322 80 0.509323 100 0.409324 155 0.259325 210 0.199326 360 0.109327 410 0.099328 610 0.06

- The temperature of the cold plate must not exceed +85 � C.

- Insertion depth t of the screws into the base plate of the controller:

� PP$ W$ �� PP

- For the bore pattern and surface quality of the heat sink please consult thefactory.

- Apply heat-conductive compound to the cold plate of the controller.

Page 27: ba93ku_gb.pdf

Installation

4-8 BA9300KS1198

4.2 Electrical installation

For information about the installation according to EMC, seechapter 4.3.

4.2.1 Protection of persons

Danger!All power terminals carry voltage up to 3 minutes after mains disconnection.

Labelling of residual-current circuit-breakers Meaning

AC-sensitive residual-current circuit-breaker (RCCB, type AC)

Pulse-current sensitive residual-current circuit breaker (RCCB, type A)

All-current sensitive residual-current circuit breaker (RCCB, type B)

Definition In the following text “RCCB” is used for “residual-current circuit breaker”.

Protection ofpersons andanimals

DIN VDE 0100 with residual-current operated protective devices (RCCB):- The controllers are internally equipped with a mains rectifier. If a short-circuit to frame occurs, a smooth DC

residual current can block the activation of the DC sensitive or pulse-current sensitive RCCBs and thusdestroy the protective function for all units connected. We therefore recommend:- ”pulse-current sensitive RCCB” in systems with 820X controllers (L1/N).- ”all-current sensitive RCCB” in systems with 93XX/821X/822X/824X controllers (L1/L2/L3).

Rated residualcurrent

Please observe the rated residual current for the selection of the RCCB.The RCCB can be activated unnecessarily by- capacitive leakage currents between cable screens (especially with long screened motor cables),- simultaneous connection of several inverters to the mains- application of RFI filters.

Installation The RCCB must only be installed between the supplying mains and the controller.

Note for the use ofall-currentsensitive RCCBs:

- All-current sensitive RCCBs are described for the first time in the European Standard EN 50178 (October1997). The EN 50178 has been harmonized and has been effective since October 1997. This standardreplaces the national standard VDE 0160. All-current sensitive RCCBs are also described in IEC 755.

- RCCBs with a rated residual current of- 30 mA are only suitable for system with 820X controllers.- 300 mA are only suitable for systems with 93XX/821X/822X/824X controllers.

Mains isolation /protection againstcontact

All control inputs and outputs of the controllers are mains isolated. For protection against contact pleaseobserve the information given on the following page.

Replacement ofdefective fuses

Replace defective fuses with the prescribed type only when no voltage is applied.- For single drives, the controller carries a hazardous voltage up to three minutes after mains disconnection.- In DC-bus connection all controller must be inhibited and separated from the mains.

Mainsdisconnection

Make a safety disconnection between the controller and the mains only via a contactor at the input side.- Please observe, that all drives connected to the DC-bus must be inhibited.

Page 28: ba93ku_gb.pdf

Installation

BA9300KS1198 4-9

Insulation

The controllers have an electrical isolation (insulating distance)between the powerterminals and the control terminals as well as to the housing:

- Terminals X1 and X5 have a double basic isolation (double insulatingdistance, safe mains isolation to VDE0160, EN50178). The protectionagainst contact is ensured without any further measures.

Danger!- Terminals X3, X4, X6, X7, X8, X9, X10 have a single basic isolation (single

insulating distance).

- Protection against contact in the event of fault is ensured only by additionalmeasures.

- If an external voltage supply (24 V DC) is used, the controller insulationdepends on the insulation of the voltage source.

reinforced insulation

single basic isolation

FIG 4-5 Basic isolation in the controller

Page 29: ba93ku_gb.pdf

Installation

4-10 BA9300KS1198

4.2.2 Protection of the controller

Stop!The controllers contain electrostatically sensitive components.

- Prior to assembly and service operations, the personnel must be free ofelectrostatic charge:

- Discharge by touching the PE fixing screw or another grounded metal partin the control cabinet.

- Length of the screws for the connection to the screen cable/screen plate forthe types 9327 to 9332: < 12 mm

- Controller protection via external fuses (see chapter 3.3.4).

- Protect unused control inputs and outputs with plugs or covers (included inthe contents of delivery) for the Sub-D inputs.

- Frequent mains switching can overload the internal switch-on currentlimitation. For cyclic mains switching, the controller can be switched on everythree minutes as a maximum.

- 9324, 9326 and 9328 controllers must only be operated with the appropriatemains filter (see chapter 3.3.5).

- In case of condensation, connect the controller to the mains voltage onlyafter the visible humidity has evaporated.

4.2.3 Motor protection

- Complete motor protection according to VDE:- By overcurrent relays or temperature monitoring- Required for group drives

(motors connected in parallel to a controller)- We recommend the use of PTC thermistors or thermostats with PTC

characteristic to monitor the motor temperature.

Stop!As standard Lenze three-phase AC motors are equipped with PTC thermistors.If motors from other manufacturers are used, carry out all steps required for theadaptation to the controller (see chapter 4.2.9).

- When using motors with insulation which is not suitable for inverteroperation:- Please contact your motor supplier. Lenze AC motors are designed for

inverter operation.- With the corresponding parameter setting, the controllers generate field

frequencies up to 600 Hz:- With motors not suited for the application, dangerous overspeeds may

occur and destroy the drive.

Page 30: ba93ku_gb.pdf

Installation

BA9300KS1198 4-11

4.2.4 Mains types/conditions

Please observe the restrictions for each mains type!

Mains Operation of the controllers NotesWith grounded neutral(TT/TN i )

No restrictions - Observe controller ratingsg(TT/TN mains)

g- r.m.s. mains current, see chapter 3.3

With isolated neutral(IT mains)

possible, if the controller is protectedin the event of an earth fault in thesupplying mains.- possible, if appropriate earth fault

detections are available and- the controller is separated from the

mains immediately.

Safe operation in the event of an earth faultat the inverter output cannot be guaranteed.

With grounded phase Operation is only possible with onevariant

Contact Lenze

DC-supply via +UG/-UG The DC voltage must be symmetricalto PE.

The controller will be destroyed whengrounding +U G or -UG.

4.2.5 Interaction with compensation equipment

- The controllers take up a very low fundamental reactive power from thesupplying AC mains. Therefore compensation is not necessary.

- If the controllers are operated at mains with compensation, this equipmentmust be used with chokes.- For this, contact the supplier of the compensation equipment.

4.2.6 Specification of the cables used

- The cables used must comply with the required approvals of the application(eg. UL).

- The prescribed minimum cross-sections of PE conductors must bemaintained in all cases. The cross-section of the PE conductor must be atleast as large as the cross-section of the power connections.

- The screening quality of a cable is determined by- a good screen connection- a low screen resistance

Only use screens with tin-plated or nickel-plated copper braids!Screens of steel braid are not suitable.

- For the overlapping degree of the screen braid:A min. of 70 % to 80 % with an overlapping angle of 90 �

Page 31: ba93ku_gb.pdf

Installation

4-12 BA9300KS1198

4.2.7 Power connections

Controller Preparations for the power connection9321 ... 9326 - Remove the covers of the power connections:

- Unlatch to the front by gentle pressure.- Pull upwards (mains connection) or downwards (motor connection).

9327 ... 9332 - Remove cover:- Loosen screws (X) (see FIG 4-1).- Swing cover to the top and detach.- Take accessory out of the controller.

4.2.7.1 Mains connection

Types 9321 to 9326 Types 9327 to 9332

PE

L1 L2 L3 -UG+UG

s

PE

+UG -UGL1 L2 L3

Correct screen connection with screened cables(required parts in the accessory kit):- Screw sreen plate ➀ on fixing bracket ➁.- Fix screen using cable lugs. Do not use as a strain

relief!- To improve the screen connection: Connect screen

additionally at the stud next to the power connections.

Correct screen connection with screened cables:- Connect the screen with suitable clamp on the

conducting control cabinet mounting plate.- To improve the screen connection: Connect the

screen additionally to the stud next to the powerconnections.

FIG 4-6 Proposal for mains connection

Page 32: ba93ku_gb.pdf

Installation

BA9300KS1198 4-13

- Connect the mains cables to the screw terminals L1, L2, L3.

- Connect cables for brake unit (935X), supply module (934X) or furthercontrollers in the DC bus connection to the screw terminals +UG, -UG at thetop of the controller.

- Max. permissible cable cross sections and tightening torques:

Terminals

TypeMax. permissible

cable cross-sectionsL1, L2, L3, +UG, -UG PE connection

9321 - 9326 4 mm2 1) 0.5 ... 0.6 Nm (4.4 ... 5.3 lbin) 3.4 Nm (30 lbin)9327 - 9329 25 mm2 2) 4 Nm (35 lbin)9330 - 9331 95 mm2 2) 7 Nm (62 lbin)9332 120 mm2 2) 12 Nm (106.2 lbin)

1) with pin-end connector: 6 mm 2

with wire crimp cap 4 mm2

2) with ring cable lug The cross-section is only limited by the cable cut-out in the housing.

Fuses

Fuses and cable cross-sections The specifications in chapter 3.3.4 are recommendations and refer to theapplication- in control cabinets and machines- installation in the cable duct- max. ambient temperature +40 �C.

Selection of the cablecross-section

For selection take into account the voltage drop when being loaded (to DIN18015 part 1:$ 3 %).

Protection of the cables and thecontroller on the AC side (L1,L2, L3)

- by means of standard commercial fuses.- by means of fuses in UL-conform plants must have UL approval.- The rated voltages of the fuses must be dimensioned according to the

mains voltage at the site. The activation characteristic is defined with ”H”or ”K5”.

Protection of the cables and thecontroller on the DC side (+UG,-UG)

- by means of recommended DC fuses.- The fuses/fuse holders recommended by Lenze are UL approved.

For DC group drives or supplyusing a DC source:

Observe the information given in Part F of the Manual.

Connection of a brake unit If the unit is connected to the terminals +UG / -UG, the fuses and cross-sections indicated in chapter 3.3.4 are not valid. These unit-specific datacan be obtained from the technical documentation for the brake unit.

Further information For protection of cables and controllers see chapter ”Accessories”.

Further standards The compliance with other standards (e.g.: VDE 0113, VDE 0289, etc.)remains in the responsibility of the user.

Page 33: ba93ku_gb.pdf

Installation

4-14 BA9300KS1198

4.2.7.2 Motor connectionFor EMC safety reasons we recommend the used of screened motor cables.

Note!Thescreeningof themotorcables isonlyrequired to complywithexistingstandards(e. g. VDE 0160, EN 50178).

Types 9321 to 9326

U V W

PE

U V W

T1 T2

Correct screen connection with screened cables(required parts in the accessory kit):- Screw sreen plate ➀ on fixing bracket ➁.- Fix the screen of the motor cable and thermal

contact. Do not use as a strain relief!- To improve the screen connection: Connect

screens additionally at the stud PE next to themotor connections.

Types 9327 to 9329

PE

T1

T2

U V W

Correct screen connection with screened cables:- Fix the screen of the motor cable and thermal

contact. Do not use as a strain relief!- To improve the screen connection: Connect the

screen additionally to the stud PE next to thecontroller.

Page 34: ba93ku_gb.pdf

Installation

BA9300KS1198 4-15

Types 9330 and 9331

T1

T2

PE

U V W

M5 X 12

- Strain relief by using cable binders ➀.- Correct screen connection with screened

cables:- Apply motor cable screen to the screening

plate using clamp and screws M5x12 ➁.- Connect thermal contact screen to the stud PE

next to the motor connection over a largesurface.

Type 9332

T1

T2

PE

U V W

M5 X 12

M4 X 12

- Strain relief by using cable clamps and screwsM4x12 ➂.- Additional strain relief/fixing can be achieved

by using cable binders ➀.- Correct screen connection with screened

cables:- Apply motor cable screen to the screening

plate using clamp and screws M5x12 ➁.- Connect thermal contact screen to the stud PE

next to the motor connection over a largesurface.

FIG 4-7 Proposal for motor connection

- Observe the max. permissible motor cable length:

Vr = 400 V (+10%) Vr = 480 V (+10%)

Type fchop = 8 kHz fchop = 16 kHz fchop = 8 kHz fchop = 16 kHz9321/9322 up to 50 m up to 45 m up to 50 m up to 25 m9323 - 9332 up to 50 m up to 50 m up to 50 m up to 50 m

Page 35: ba93ku_gb.pdf

Installation

4-16 BA9300KS1198

- Connect the motor cables to the screw terminals U, V, W.

- Observe correct pole connection.- Max. permissible cable cross sections and tightening torques:

Max. permissiblecable cross-sections

Terminal screw tightening torques

TypePower

connections T1, T2 U, V, W PEconnection

Screen/strain relief

T1, T2

9321 - 93260.5 ... 0.6 Nm

(4.4 ... 5.3lbin)

3.4 Nm(30 lbin) -

0.5 ... 0.6 Nm(4.4 ... 5.3 lbin)

9327 - 9329 25 mm2 2) 4 Nm (35 lbin) -9330 - 9331 95 mm2 2) 1.5 mm2 7 Nm (62 lbin) 3.4 Nm (30 lbin)

9332 120 mm2 2) 12 Nm (106.2 lbin)

M4: 1.7 Nm (15lbin)

M5: 3.4 Nm (30lbin)

0.5 ... 0.6 Nm(4.4 ... 5.3 lbin)

1) with pin-end connector: 6 mm 2

with wire crimp cap 4 mm2

2) with ring cable lug The cross-section is only limited by the cable cut-out in the housing.

Note!Switching on the motor side of the controller is permitted for safety switch-off only.

4.2.7.3 Connection of a brake unit

- When connecting a brake unit (brake module with internal brake resistor orbrake chopper with external brake resistor) observe the correspondingOperating Instructions in all cases.

Stop!

- Design the circuit so that, if the temperature monitoring of the brake unit isactivated,

- the controllers are inhibited (X5/28 = LOW).

- the mains is disconnected.

Example, see chapter 4.3 or FIG 4-8.

Page 36: ba93ku_gb.pdf

Installation

BA9300KS1198 4-17

4.2.7.4 DC-bus connection of several drives

Decentralized supply with brake module

K 1

K 1

L 3

N

P E

L 1L 2

U V W

M

3 ~P E

L 1 L 2 L 3

F 1

9 3 2 X - 9 3 3 X

P E + U G - U G

P E

R Bϑ

+ U G - U G

9 3 5 2

P ER B 2R B 1

Z 1

X 1

Z 3

R B

K 1

U V W

M

3 ~P E

L 1 L 2 L 3

9 3 2 X - 9 3 3 X

P E + U G - U G

P E

Z 2

F 7 F 8 F 9 F 1 0

O N

O F F

2 8 A 4P E2 8 A 4

K 1

R F R

P E

X 2K 1

R F R

F 2 F 3 F 4 F 5 F 6

Z 4

K35.0113

FIG 4-8 Decentralized supply with DC-bus connection of several drives

Z1, Z2 Mains filter (for selection see Manual, Part F)Z3 Brake chopperZ4 Brake resistor (for r.m.s. current monitoring see the Manual, Part F)F1...F6 Fuses (see chapter 3.3.4 and chapter 4.2.7.1)F7...F10 DC-bus fuse (see chapter 3.3.4 / 4.2.7.1); fuse holder with/without alarm contactK1 Main contactor

Stop!- Set the DC bus voltage thresholds of controller and brake unit to the same

values.- Controller using C0173- Brake unit with switches S1 and S2

- For current monitoring of the mains supply use a bimetal relay.

Note!Observe the information given in Part F of the Manual and the application report”DC bus connection” for selection and rating of the components.

Page 37: ba93ku_gb.pdf

Installation

4-18 BA9300KS1198

Central supply with supply module

- Observe the corresponding Operating Instructions for installation of a supplymodule.

L 3

N

P E

L 1L 2

L 1 L 2 L 3

9 3 4 1 - 9 3 4 3

P E + U G - U G

K 1

U V W

M3 ~P E

L 1 L 2 L 3

9 3 2 X - 9 3 3 X

P E + U G - U G

P E

U V W

M3 ~P E

L 1 L 2 L 3

9 3 2 X - 9 3 3 X

P E + U G - U G

P E

F 4 F 5 F 6 F 7 F 8 F 9

Z 2

F 1

Z 1

F 2 F 3 F 1

Z 1

F 2 F 3

FIG 4-9 Centralized supply of DC bus connection of several drives.

Z1 Mains filter (for selection see Manual, Part F)Z2 Supply moduleF1...F6 Fuses (see chapter 3.3.4 and chapter 4.2.7.1)F7...F10 DC-bus fuse (see chapter 3.3.4 / 4.2.7.1); fuse holder with/without alarm contactK1 Main contactor

Note!If the power supply of the supply module is not high enough, a parallel supply canbe installed via the mains input of other controllers (see Manual, Part F). Use theappropriate mains filter for controller operation (min. limit value class A).

Page 38: ba93ku_gb.pdf

Installation

BA9300KS1198 4-19

4.2.8 Control connections

4.2.8.1 Control cables

- Connect the control cables to the screw terminals:

Max. permissible cable cross-section Tightening torques1.5 mm2 0.5 ... 0.6 Nm (4.4 ... 5.3 lbin)

- We recommend the unilateral screening of all cables for analogsignals to avoid signal distortion.

- Connect the screens of the control cables- With the screen sheet to the front metal surface (screw length

max. 12 mm).

4.2.8.2 Control terminal assignment

Protection against polarity reversal

- The protection against polarity reversal prevents from wrong connection ofthe internal control inputs. It is however possible to overcome the protectionagainst polarity reversal by applying high force.

Overview

K35.0115

12

762

34

763

A4

ST

59

ST

A3

A2

A1

E3

E5

39

E4

E2

E1

28

GN

DL

OH

I

X5

X6

X4

FIG 4-10 Control connections on the front of the controller

Page 39: ba93ku_gb.pdf

Installation

4-20 BA9300KS1198

Terminal Use(Factory setting is printed in bold)

Level Data

Analoginputs

1, 2 Difference input master voltage(speed main setpoint)

642

531

-10 V to +10 V Resolution:5 mV (11 bit + sign)

Jumper X3Difference input master current 6

42

531

-20 mA to +20 mA Resolution:20 ³A (10 bit + sign)

Jumper X33, 4 Difference input master voltage

(additional speed setpoint)Jumper X3 has noinfluence

-10 V to +10 V Resolution:5 mV (11 bit + sign)

Analogoutputs

62 Monitor 1(Actual speed)

-10 V to +10 V;max. 2 mA

Resolution:20 mV (9 bit + sign)outputs

63 Monitor 2(torque setpoint)

-10 V to +10 V;max. 2 mA

Resolution:20 mV (9 bit + sign)

7 Internal ground, GND - -Digital in-

t28 Controller enable (RFR) HIGH LOW: 0 ¤ +4 Vg

puts E1 freely assignable(remove CW rotation / QSP)

HIGH HIGH: +13 ¤ +30 V

I t t f 24VE2 freely assignable(remove CCW rotation / QSP)

HIGH Input current for 24V:8 mA per input

E3 freely assignable(enable JOG-setpoint 1)

HIGH Reading and writing of the inputs:once per ms (average val e)

E4 freely assignable(TRIP set)

HIGHonce per ms (average value)

E5 freely assignable(reset fault - TRIP-reset)

Signal LOW@HIGH

Digitaloutputs

A1 freely assignable(TRIP)

LOW LOW: 0 ¤ +4 VHIGH: +13 ¤ +30 Vp

A2 freely assignable(nact. < nx)

LOWG 3 30

Output current:50 A t tA3 freely assignable

(RDY)HIGH

pmax. 50mA per output(external resistance at least 480 �at 24 V)

A4 freely assignable(Mmax)

HIGHat 24 V)

Updating of the o tp ts:39 Ground of the digital inputs and outputs -

Updating of the outputs:once per ms

59 Supply input of the control module:24 V external (I > 1A)

-once per ms

Note!If necessary, remove the plug-on module to change the jumper.

Page 40: ba93ku_gb.pdf

Installation

BA9300KS1198 4-21

4.2.8.3 Connection diagrams

Connection of analog signals

Analog signals are connected via the 2 x 4-pole terminal block X6.

Depending on the use of the analog inputs, the jumper of X3 must be setaccordingly.

Connection for external supply voltage

+

1 2 3 4 7 63

100k

100k

100k

X6

GND1 GND1

+

X6

3,3nF

100k

7

U

62

U242R

X3

93XX

= =

GND1

STOP!- The maximum permitted voltage difference between an external

voltage soure and GND1 (terminal X6/7) of the controller is 10 V(common mode).

- The maximum permitted voltage difference between GND1(terminal X6/7) and the PE of the controller is 50 V.

+

1 2 3 4

100k

GND1

+

X6

3,3nF

100k

7

242R

= =

93XX

Limit the voltage difference- by overvoltage clamping components or- by direct connection of the terminal (s) X6/2, X6/4 and X6/7 to

GND1 and PE (see figure).

Connection for internal voltage supply

1 2 3 4 7 63

100k

100k

100k

X6

GND1 GND1

X6

3,3nF

100k

7

U

62

U242R

X3

10k

10k

93XX

GND1

Configuration of the internal voltage supply:- Set a freely assignable analog output (AOUTx) to HIGH level.- For instance, terminal X6/63: Assign FIXED100% to C0436

(see Manual, Commissioning; “Freely assignable digital outputs “).10V are thus applied across terminal X6/63.

Note!Use one of the predefined configurations in C0005 for thisapplication. With C0005 = XX1X (e.g. 1010 for speed control withcontrol via terminals) FIXED100% is automatically assigned to theoutput X6/63 (corresponds to 10 V at the output X6/63).

Page 41: ba93ku_gb.pdf

Installation

4-22 BA9300KS1198

Connection of digital signals

Digital signals are connected via the 2 x 7-pole terminal block X5.

The levels of the digital inputs and outputs are PLC compatible.

Use relays with low-current contacts for switching the signal cables(recommendation: relays with gold contacts).

Connection for external voltage supply

A328 A1 A2 59

_

39

22k 10R

GND 2

+

QSPJOG

RDY|nact| < nx

Imax

3k 3k 3k 3k 3k 3k 3k

50m

A

50m

A

50m

A

50m

A

A4X5

+

_=

=

24V

24V

93XX

GND 2

Ctrl.enable

L

E1 E2 E3 E4 E5

R

Processorboard

TRIP-Set/Reset

TRIP

The external voltage source supplies the digital inputs andoutputs.- If the external voltage supply is also used as an alternative

supply for the control electronics (backup operation in the eventof mains failure):- For this, make the connection illustrated as a broken line.- The external voltage source must be able to drive a

current > 1 A.This ensures that all actual values, even after mainsdisconnection, are still detected and processed.- Connection of the external voltage source:

- Supply voltage at X5/59- External mass at X5/39

STOP!The maximum permitted voltage difference between GND2(terminal X5/39) and the PE of the controller is 50 V.

E5 A1 A2

_

39

+=

93XXLimit the voltage difference- by overvoltage clamping components or- by direct PE connection terminal 38 (see figure).

Connection for internal voltage supply

A328 E1 E2 E3 E4 E5 A1 A2 5939

22k 10R

R L

GND 2

QSP

RDY|nact| < nx

FIXED1

3k 3k 3k 3k 3k 3k 3k

A4

Ctrl.enable

X5

50m

A

50m

A

50m

A

50m

A+

_24V

=

JOG

93XX

Imax

GND 2

Processorboard

TRIP-Set/Reset

Configuration of the internal voltage supply- Set a freely assignable digital output (DIGOUTx) to HIGH level.- For instance terminal X5/A1: Assign C0117/1 with FIXED1.24V

are thus applied across terminal X5/A1.

Note!Use one of the predefined configurations in C0005 for thisapplication. With C0005 = XX1X (e. g. 1010 for speed controlwith control via terminals) FIXED1 is automatically assigned tooutput X5/A1 (corresponds to 24 V at terminal X5/A1).

Page 42: ba93ku_gb.pdf

Installation

BA9300KS1198 4-23

Digital frequency input (X9) / Digital frequency output (X10)

Note!Useprefabricated Lenzecablesfor theconnectionto thedigitalfrequencyinput (X9)or digital frequency output (X10). Otherwise, use cables with twisted pairs andscreened wires (A, A / B, B / Z, Z ) (see connection diagram).

'LJLWDO IUHTXHQF\ RXWSXW ;�� 'LJLWDO IUHTXHQF\ LQSXW ;�Features:- Sub-D female connector, 9-pole- Output frequency: 0 - 500 kHz- Current load per channel: max. 20 mA- Two-track with inverse 5 V signals and zero track- X10 has a different basic setting depending on the selected

configuration (C0005)- Factory setting:

Encoder simulation of the resolver signal- Load capacity:

- In parallel connection max. 3 slaves can be connected.- When PIN 8 (EN) shows a LOW level, the master is initialized

(e.g. if the mains was disconnected). The slave can thusmonitor the master.

Features:- Sub-D male connector, 9-pole- Input frequency: 0 - 500 kHz- Current consumption per channel: max. 6 mA- Two-track with inverse 5 V signals and zero track- Possible input signals:

- Incremental encoder with two 5 V complementary signalsshifted by 90� (TTL encoder).

- Encoder simulation of the master- PIN 8 serves to monitor the cable or the connected controller:

- When this PIN shows a LOW level, the SD3 monitoringresponds.

- If the monitoring is not required, this input can be connectedto +5V.

- The input is disconnected when C0540 = 0, 1, 2 or 3.

123456789

123456789

B

A

A

G N D

Z

Z

e n a b l e

B

B

A

A

G N D

Z

ZL a m pc o n t r o l

B

M a s t e r S l a v e

C a b l e l e n g t h m a x . 5 0 m

9 p o l e S u b - D c o n n e c t o r

X 1 0 X 9

9 p o l e S u b - D m a l e c o n n e c t o r

A

B

F o r C W r o t a t i o n

A

B

Z

Z

0 . 1 4 2 6

0 . 5 2 0

0 . 1 4 2 6

0 . 5 2 0

0 . 1 4 2 6

m m 2 A W G

Pin assignment X10 Pin assignment X91 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9B A A +5 V GND Z Z EN B B A A +5 V GND Z Z LC B

Page 43: ba93ku_gb.pdf

Installation

4-24 BA9300KS1198

State bus (X5/ST)

The state bus is a controller-specific bus system for simple monitoring in a networkof drives:

- Controls all networked drives in a preselected state (see systems manual).

- Up to 20 controllers can be connected.

- Connection of the state bus cables to terminals X5/ST.

Stop!Do not apply an external voltage to terminal X5/ST.

K35.0122

K 1

K 1

L 3

N

P E

L 1

L 2

U V W

L 1 L 2 L 3

9 3 X X - 9 3 X X

P E + U G - U G

P E

K 1

U V W

L 1 L 2 L 3

9 3 X X - 9 3 X X

P E + U G - U G

P E

F 4 F 5 F 4 F 5

O N

O F F

2 8 A 4P E2 8 A 4

K 1

R F R

P E U V W

L 1 L 2 L 3

9 3 X X - 9 3 X X

P E + U G - U G

P E

F 4 F 5

2 8 A 4P ES TS T 3 9S TS T 3 9 S TS T 3 9

K 1

R F R

K 1

R F R

F 1

Z 1

F 2 F 3 F 1

Z 1

F 2 F 3 F 1

Z 1

F 2 F 3

FIG 4-11 Monitoring of a drive network with the state busZ1 Mains filterF1...F5 Fuses (see chapter 3.3.4 and chapter 4.2.7.1)K1 Main contactor

Note!For more detailed information on the the STATE-BUS, application andcommissioning, see the Manual.

Page 44: ba93ku_gb.pdf

Installation

BA9300KS1198 4-25

System bus connection (X4)

K1

K1

L3

N

PE

L1L2

U V W

L1 L2 L3

F1

932X - 933X

PE +UG -UG

PE

Z1

K1

U V W

L1 L2 L3

932X - 933X

PE +UG -UG

PE

Z1

F1

ON

OFF

28 A4PE28 A4

K1

RFR

PE U V W

L1 L2 L3

932X - 933X

PE +UG -UG

PE

Z1

F1

28 A4PE

K1

RFR

K1

RFR

GNDHI LO GNDHI LO

RA2

GNDHI LO

RA1

F2 F3 F2 F3 F2 F3

K35.0123

FIG 4-12 Wiring of the system busRA1, RA2 Bus terminating resistors 120 W (included in the accessory kit)

- Connection via pluggable screw terminals (double terminals can be used).

- Only connect terminals of the same designation.

- Features of the signal cable:

Total cablelength

up to 300 m 300 m to 1000 m

Cable type LIYCY2 x 2 x 0.5 mm2

twisted pair with screeningPair 1: CAN-LOW (LO) and CAN-HIGH (HI)Pair 2: 2*GND

CYPIMF 2 x 2 x 0.5 mm2

twisted pair with screeningPair 1: CAN-LOW (LO) and CAN-HIGH (HI)Pair 2: 2*GND

Cable resistance � 40 �/km � 40 �/kmCapacitance perunit length

� 130 nF/km � 60 nF/km

- Connection of the bus termination resistors:- Resistors with 120 W connected to the first and last bus barticipant.- At the 93XX controller, the resistor can be screwed directly under the

terminals X4/HI und X4/LO.

Page 45: ba93ku_gb.pdf

Installation

4-26 BA9300KS1198

Features:

- CAN-based with bus protocol according to CANopen(CAL-based Communication Profile DS301)

- Bus expansion:- 25 m for max. 1 Mbit/s baud rate- up to 1 km with reduced baud rate

- Extremely reliable data transmission (hamming distance = 6)

- Signal level to ISO 11898

- Up to 63 bus devices are possible

- Access to all Lenze parameters

- Master functions integrated into the controller- Data exchange possible between controllers without participation of a

master system (current ratio control, speed synchronization, etc.)

The following connections of the system bus connection are possible:

- Connection to a decentral terminal extension for digital and analog inputsand outputs

- Connection to a superimposed control (PLC, decentral digital inputs andoutputs, keypad)

- Interconnection of several controllers

Automation interface (X1)

The automation interface (X1) is used for the connection of different plug-onmodules

- Operating module

- Fieldbus modules- RS232, RS485, optical fibre, type 2102 (LECOM-A/B/LI),- INTERBUS, type 2111- PROFIBUS-DP, type 2131

Page 46: ba93ku_gb.pdf

Installation

BA9300KS1198 4-27

4.2.9 Motor temperature monitoring

Selection of thefeedback system

- Temperature sensor KTY- “Linear” temperature sensor in the motor winding (standard for Lenze motors MDXKX and MDXQX)

- Temperature sensor PTC- PTC temperature sensor with defined tripping temperature (see DIN 44081 and DIN 44082)

- Thermal contact TKO- Thermostat/normally closed contact

Other monitorings KTY, PTC and TKO do not offer full protection. To improve the monitoring, Lenze recommends a bimetalrelay.

Alternative monitoring Comperators (CMP1 ... CMP3) monitor and a time element (TRANS1 ... TRANS4) limits the motor current(blocking current) at low speed or if the motor is in standstill.This function can be implemented by the corresponding interconnection of function blocks (see Manual).

Reactions different, depending on the temperature monitoring (see chapter 8.8).

Stop!Do not connect an external voltage to the inputs.

Lenze motors Motors of other manufacturers

MDXKX and MDXQX withthermal contact

with sensor for continuoustemperature detection

with thermalcontact or PTC toDIN 44081/44082

Connection - Resolver input X7:- Pin X7/8 = PTC+

Pin X7/9 = PTC-- Encoder input X8:

- Pin X8/8 = PTC+Pin X8/5 = PTC-

Terminals T1/T2 nextto the terminals U, V,W

- Resolver input X7:- Pin X7/8 = PTC+

Pin X7/9 = PTC-- Encoder input X8:

- Pin X8/8 = PTC+Pin X8/5 = PTC-

Terminals T1/T2 nextto the terminals U, V,W

Faultmessage

(MONIT-)OH3 (MONIT-)OH7 (MONIT-)OH8 (MONIT-)OH3 (MONIT-)OH7 (MONIT-)OH8

Possibleti

The corresponding monitoring and thus the following codes are preset under C0086reactions

- Trip(C0583 = 0)

- OFF(C0583 = 3)

- Warning(C0584 = 2)

- OFF(C0584 = 3)

- Trip (C0585 = 0)- Warning

(C0585 = 2)- OFF (C0585 = 3)

- Trip(C0583 = 0)

- OFF(C0583 = 3)

- Warning(C0584 = 2)

- OFF(C0584 = 3)

- Trip (C0585 = 0)- Warning

(C0585 = 2)- OFF (C0585 = 3)

Point ofrelease

fixed at 150 ° C adjustable45°C ... 150°C(C0121)

fixed, (depending onPTC/thermal contact):PTC:at RJ > 1600 W

fixed at 150 °C adjustable45°C ... 150°C(C0121)

fixed, (depending onPTC/thermal contact):PTC:at RJ > 1600 W

Notes - Monitoring is active in thefactory setting.

- If resolver (X7) and encoder(X8) are operated together:- Connect PTC only to one

connector (X7 or X8)- The PTC connection of the

other connector remainsunconnected

- For further information on theconnection of the temperaturesensor can be obtained fromthe description of the feedbacksystem.

- Deactivatemonitoring via X7 orX8 under C0583=3and C0584=3

- Connection to DIN44081 (seeFIG 4-13).

- We recommend a Ziehl PTC(up to 150 �C): K15301075 ora thermostat.

- Enter characteristic(see chapter 4.2.9.1)

- Deactivate monitoring via X7 orX8 under C0583=3 andC0584=3

- Deactivatemonitoring via X7 orX8 under C0583=3and C0584=3

- Connection to DIN44081(see FIG 4-13).

Page 47: ba93ku_gb.pdf

Installation

4-28 BA9300KS1198

Types 9321 to 9326 Types 9327 and 9330 Internal wiring

U V W

PE

U V W

X10

T1 T2

1

5

PE

T1

T2

U V W

MONIT-OH8T1

T2

7X6

24 V

93xxK350052

ϑ

3,3k

7,4k

2,7k

Types 9330 and 9331 Type 9332

T1

T2

PE

U V W

T1

T2

PE

U V W

FIG 4-13 Connection of a thermal sensor to the terminals T1 and T2 and internal connection

Note!- The pre-cut Lenze system cables for Lenze servo motors provide the

cable for the temperature feedback. The cables are designed for wiringaccording to EMC.

- If you use cables of your own:- Lay cables separated from the motor cables.

Page 48: ba93ku_gb.pdf

Installation

BA9300KS1198 4-29

4.2.9.1 User specific characteristic for a PTC resistorCode Subcode Description

T [ ° C ]

R [ O h m ]

R 2( C 1 1 9 2 / 2 )

T 1( C 1 1 9 1 / 1 )

R 1( C 1 1 9 2 / 1 )

T 2( C 1 1 9 1 / 2 )

a

C1190 0(Control mode 1)

Evaluation of the Lenze standard motor-temperature sensor

T [ ° C ]

R [ O h m ]

R 2( C 1 1 9 2 / 2 )

T 1( C 1 1 9 1 / 1 )

R 1( C 1 1 9 2 / 1 )

T 2( C 1 1 9 1 / 2 )

a 1(Control mode 2)

Evaluation of a user-specific temperature sensor.The operating level is almost in the linear section(a) of the sensor characteristic. The working areais determined by two vertex. Interpolation takesplace between these two points.

T [ ° C ]

R [ O h m ]

R 2( C 1 1 9 2 / 2 )

T 1( C 1 1 9 1 / 1 )

R 1( C 1 1 9 2 / 1 )

T 2( C 1 1 9 1 / 2 )

a

C1191 1 (100 °C) Definition of the temperature vertex assigned to

T [ ° C ]

R [ O h m ]

R 2( C 1 1 9 2 / 2 )

T 1( C 1 1 9 1 / 1 )

R 1( C 1 1 9 2 / 1 )

T 2( C 1 1 9 1 / 2 )

a

C11912 (150 °C)

Definition of the temperature vertex assigned tothe resistances of the sensor.

T [ ° C ]

R [ O h m ]

R 2( C 1 1 9 2 / 2 )

T 1( C 1 1 9 1 / 1 )

R 1( C 1 1 9 2 / 1 )

T 2( C 1 1 9 1 / 2 )

a

C1192 1 (1670 W) Definition of sensor resistancesT [ ° C ]

R [ O h m ]

R 2( C 1 1 9 2 / 2 )

T 1( C 1 1 9 1 / 1 )

R 1( C 1 1 9 2 / 1 )

T 2( C 1 1 9 1 / 2 )

a

C11922 (2225 W)

Definition of sensor resistances

Example of a sensor characteristic for continuoustemperature detection

4.2.10 Feedback systems

Different feedback systems can be connected to the controller:

- Resolver feedback (factory setting)

- Encoder feedback- Incremental encoder TTL- Sin/cos encoder- Sin/cos encoder with serial communication (single turn)- Sin/cos encoder with serial communication (multi turn)

Resolver signal or encoder signal can be output for slaves at the digital frequencyoutput X10.

- Connection as shown in the figures:- Use twisted pair cables and screened pair cables.- Connect the screen at both ends.- Use indicated cable cross-sections.

- The feedback system is activated under C0025.

Sensorless control SSC

The sensorless controller (SSC) should not be used for new drive solutions(C0025 = 1).

Instead, use a vector control EVF 9300 or contact Lenze.

Page 49: ba93ku_gb.pdf

Installation

4-30 BA9300KS1198

Resolver connection (X7)

- In all configurations predefined under C0005, a resolver can be used asfeedback system. An adjustment is not necessary.

Note!Use prefabricated Lenze system cables for resolver connection.

Features:

- 2-pole resolver (V = 10 V, f = 4 kHz)

- Resolver and resolver cable are monitored for open circuit (fault indicationSd2)

+ R E F

- R E F

+ C O S

- C O S

+ S I N

- S I N

R e s o l v e r123456789

+ P T C

- P T C

P T C

X 7

9 p o l e S u b - D f e m a l e c o n n e c t o r

C a b l e l e n g t h m a x . 5 0 m

0 . 1 4 2 6

0 . 5 2 0

m m 2 A W G

FIG 4-14 Resolver connection

Assignment of the female connector (X7)Pin 1 2 3 4 5 6 7 8 9Signal +Ref -Ref GND +COS -COS +SIN -SIN +PTC -PTC

X7/8 and X7/9, see chapter 4.2.9.

Page 50: ba93ku_gb.pdf

Installation

BA9300KS1198 4-31

Encoder connection (X8)

An incremental encoder or a sin/cos encoder can be connected to this input.

Note!Use prefabricated Lenze system cables for encoder connection.

- The encoder supply voltage VCC5_E can be adjusted in the range from 5 V to8 V under C0421- to set the encoder supply- to compensate the voltage drop on the encoder cable, if necessaryDV £ 2 * cable length * resistance/m * Iencoder

Stop!Observe the connection voltage of the encoder system used. If C0421 is set toohigh, the encoder can be destroyed.

B

A

V C C 5 _ E

G N D

Z

Z

+ K T Y

- K T Y

123456789

A

B

S I N

R e f C O S

V c c

G N D

Z / - 4 8 5

Z / + 4 8 5

+ K T Y

- K T Y

C O S

R e f S I N

S I N

C O S

0 , 5 V

0 , 5 V

R e f C O S

R e f S I N

E n c o d e r

X 8

K T Y

9 p o l e S u b - D m a l e c o n n e c t o r

A

B

F o r C W r o t a t i o n

A

B

ZZ

C a b l e l e n g t h m a x . 5 0 m

0 . 1 4 2 6

1 . 0 1 7

0 . 1 4 2 6

m m 2 A W G

∅ = 2 , 5 V

= 2 , 5 V

FIG 4-15 Encoder connection

Page 51: ba93ku_gb.pdf

Installation

4-32 BA9300KS1198

Incremental encoder

Features:

- Incremental encoders with two 5 V complementary signals shifted by 90 �(TTL encoder) can be connected.- The zero track can be connected (as option).

- 9-pole Sub-D female connector

- Input frequency: 0 - 500 kHz

- Current consumption per channel: 6 mA

Assignment of the male connector (X8)Pin 1 2 3 4 5 6 7 8 9Signal B A A VCC5_E GND (-PTC) Z Z +PTC B

X8/8 see chapter 4.2.9.

Sin/cos encoder

Features:

- The following encoders can be connected- sin/cos encoders with a rated voltage from 5 V to 8 V.- sin/cos encoders with a communication interface, type Stegmann

SCS/M70xxx(The initialization time of the controller is increased to approx. 2 seconds).

- 9-pole Sub-D female connector

- Internal resistance Ri = 221 W

- Voltage sine and cosine track: 1 Vss p0.2 V

- Voltage RefSIN and RefCOS: +2.5 V

Note!For drives with track indications assign: sine, sine and cosine, cosine:RefSIN with sine and RefCOS with cosine.

Assignment of the male connector (X8)Pin 1 2 3 4 5 6 7 8 9Signal SIN RefCOS COS VCC5_E GND (-PTC) Z or -RS485 Z or +RS485 +PTC RefSIN

X8/8 see chapter 4.2.9.

Page 52: ba93ku_gb.pdf

Installation

BA9300KS1198 4-33

4.3 Installation of a CE-typical drive system

Generalnotes

- The electromagnetic compatibility of a machine depends on the type of installation and care taken.Please observe:- Assembly- Filters- Screening- Grounding

- For diverging installations, the conformity to the CE EMC Directive requires a check of the machine or systemregarding the EMC limit values. This is for instance valid for- using unscreended cables- the use of group RFI filters instead of assigned RFI filters- Operation without mains filter

- The compliance of the machine application with the EMC Directive is in the responsibility of the user.- If you observe the following measures, you can assume that the machine will operate without any EMC problems

caused by the drive system, and that compliance with the EMC Directive and the EMC law is achieved.- If devices which do not comply with the CE requirement concerning noise immunity EN 50082-2 are operated

close to the controller, these devices may be disturbed electromagnetically by the controllers.Structure - Connect controller, mains choke, and mains filter to the grounded mounting plate with a wire of large a

cross-section as possible:- Mounting plates with conductive surfaces (zinc-coated, stainless steel) allow permanent contact.- Painted plates are not suitable for the installation in accordance with the EMC.

- If you use several mounting plates:- Connect as much surface as possible of the mounting plates (e.g. with copper bands).

- Ensure the separation of motor cable and signal or mains cable.- Do not use the same terminal strip for mains input and motor output.- Cable guides as close as possible to the reference potential.Unguided cables have the same effect as aerials.

Filters - Use mains filters or RFI filters and mains chokes which are assigned to the controller:- RFI filters reduce impermissible high-frequency interference to a permissible value.- Mains chokes reduce low-frequency interferences which depend on the motor cable and its length.- Mains filters combine the functions of mains choke and RFI filter.

Page 53: ba93ku_gb.pdf

Installation

4-34 BA9300KS1198

Screening - Connect the screen of the motor cable to the controller- to the screen connection of the controller.- additionally to the mounting plate with a surface as large as possible.- Recommendation: For the connection, use ground clamps on bare metal mounting surfaces.

- If contactors, motor-protecting switches or terminals are located in the motor cable:- Connect the screens of the connected cables also to the mounting plate, with a surface as large as possible.

- Connect the screen in the motor terminal box or on the motor housing to PE:- Metal glands at the motor terminal box ensure a connection of the screen and the motor housing.

- If the mains cable between mains filter and controller is longer than 300mm:- Screen mains cables.- Connect the screen of the mains cable directly to the inverter and to the mains filter and connect it to the

mounting plate with as large a surface as possible.- Use of a brake chopper:

- Connect the screen of the brake resistor cable directly to the mounting plate, at the brake chopper and the brakeresistor with as large a surface as possible.

- Connect the screen of the cable between controller and brake chopper directly to the mounting plate, at theinverter and the brake chopper with a surface as large as possible.

- Screen the control cables:- Connect both screen ends of the digital control cables.- Connect one screen end of the analog control cables.- Always connect the screens to the screen connection at the controller over the shortest possible distance.

- Application of controllers in residential areas:- To limit the radio interference, use an additional screen damping � 10 dB. This is usually achieved by installation

in enclosed and grounded control cabinets made of metal.Grounding - Ground all metallically conductive components (controller, mains filter, motor filter, mains choke) using suitable

cables connected to a central point (PE bar).- Maintain the minimum cross-sections prescribed in the safety regulations:

- For EMC, not the cable cross-section is important, but the surface and the contact with a cross-section as largeas possible.

Page 54: ba93ku_gb.pdf

Installation

BA9300KS1198 4-35

K1

K1

L3N

PE

L1L2

U V W

M3~

PE PE

L1 L2 L3

K1

F1 ... F3

932X - 933X

+UG -UG +UG-UG

9351A328 E1E2 E3E4E5 A1 A2 5939 A4

+

1 2 3 4 7 63

+

7 62

Z1

-X1

Z2

K1

OFF

ON

RFR

RB

T1 T2

R

X7

F4 F5

K35.0124

PES

PESPES

PES

PES

PES

PES

PES

PES

PES

PE

PE PE

FIG 4-16 Example for wiring in accordance with the EMC regulations:

F1...F5 Fuses (see chapter 3.3.4 and chapter 4.2.7.1)K1 Mains contactorZ1 Mains filter “A” or “B”, see AccessoriesZ2 Brake module, see Accessories-X1 Terminal strip in control cabinetPES RF-screen for large-surface PE connection

(see ”Screening” in this chapter)

Page 55: ba93ku_gb.pdf

Installation

4-36 BA9300KS1198

Page 56: ba93ku_gb.pdf

Commissioning

BA9300KS1198 5-1

5 Commissioning

5.1 Before switching on

Prior to initial switch-on of the controller, check the wiring for completeness,short-circuit and earth fault:

- Power connection:- Supply via terminals L1, L2 and L3 (direct mains connection) or alternatively

via terminals +UG, -UG (DC bus connection, network of drives).

- Motor connection:- In-phase connection to the motor (direction of rotation).

- Feedback system (resolver, incremental encoder, ¤).

- Control terminals:- Controller enable: Terminal X5/28 (reference potential: X5/39).

- Covering the power connections:- Put on cover(s) and fix.

- Keep to the switch-on sequence (chapter 5.2 ff.) !

- The commissioning steps described in chapter 5 refer to the configurationC0005 = 10000. Plese change the factory setting to this configuration!

Note!The signal flow for configuration 10000 is shown in the chapter “Configuration”(see chapter 5.8).

5.2 Initial switch-on

Note!

- Use a PC with the Lenze program “Global Drive Control” (GDC) underWindows for commissioning. The convenient menus include the codes forthe most important settings.

- A communication module type 2102 ”RS232, RS485, optical fibre” (LecomA/B) is required to run the GDC. As alternative you can also use a systembus module (2173) as from GDC version 3.0.

- GDC and the communication module are not included in the deliverypackage of the controller.

- The “Electronic cam profiler” requiresGDC version � 3.6.

Page 57: ba93ku_gb.pdf

Commissioning

5-2 BA9300KS1198

Commissioning described by means of an example

/

�����+]

jn /rn

r 1

Cam profile import

j1

jn r n

j r

j2

j1 r 1r 2

jr

r

j

FIG 5-1 Retrofitting of a mechanical cam

Page 58: ba93ku_gb.pdf

Commissioning

BA9300KS1198 5-3

Thefollowing table lists theprocedure forcommissioning according to theexamplein FIG 5-1.A detailed description of the commissioning can be obtained from the followingchapters.

Section Action detaileddescription in

Switch oncontroller

1.Assign terminal X5/28 (controller enable) to a LOW signal.2.Apply digital terminal signals3.Apply analog input signals4.Switch on mains:

- The controller is ready for operation after approx. 1s.(2 s for drives with sin/cos encoders with serial interface).

Chapter 5.3

Switch on PC Start GDC on the PC- Set the communication parameters for on-line operation in the ”Momentary drive” dialog

box. Confirm with ”OK”.- Select the controller in the ”Assign controller description” dialog box. Confirm with ”OK”.

Chapter 5.4

Generatet t

1.Adapt controller to the mains Chapter 5.5.1parameter set 2.Adapt controller to the motor Chapter 5.5.2

3.Enter machine parameters Chapter 5.5.3Basic cam data 1.Determine the number of profiles required.

2.Enter all required data for cam profiles selected.Chapter 5.6

Cam profilegeneration

1.Open the dialog “Cam profile import”2.Import the cam profile data and transfer them to the controller3.Copy the transferred data to the active data set.

Chapter 5.7

Basicconfiguration

1.Load the basic configuration ’Replacement of a mechanical cam” via the code C0005 =10000. Use the codes listed in the table in chapter 5.8 to adapt the drive to yourapplication.

2.Store the data in the controller.

Chapter 5.8

Page 59: ba93ku_gb.pdf

Commissioning

5-4 BA9300KS1198

5.3 Switch on the controller

1. Assign LOW level to terminal X5/28 (controller enable).

2. Digital inputs:The following terminal signals are to be applied to the digital terminals:

E1 E2 E3 E4 E5L L L H L

3. Analog inputs:X6/E1 and X6/E2: not assigned

X6/E3 and X6/E4: not assigned

4. Switch on mains:- The controller is ready for operation after approx. 1 s.

(2 s for drives with sin/cos encoders with serial interface).

5. Check whether the controller is ready for operation:- If the green LED is flashing:

Controller is ready for operation.- When green LED is off and red LED is blinking:

There is a fault. Before proceeding with commissioning, eliminate the fault(see chapter 9 ’Troubleshooting and fault elimination’).

6. For operation with a fieldbus, module additional settings are necessary(see Operating Instructions for the fieldbus module used).

Page 60: ba93ku_gb.pdf

Commissioning

BA9300KS1198 5-5

5.4 Switch on PC, start GDC.

- Switch on PC.

- Start the GDC program under Windows.

GDC in ”on-line operation”

- The ”Find Lecom A/B drives” dialog box is opened.

- Click on ”Find”. GDC will now search for a controller.

- GDC selects the first controller found.

- GDC tests all baud rates which can be set.

- GDC loads the parameter set description for the connected controller.- If GDC does not find a parameter set description, you are asked which

description you want to load alternatively.

- GDC automatically reads the parameter set from the controller.

GDC in ”Off-line operation”

- You have to select the controller manually.- You can change to ”online operation”. GDC automatically selects a

controller.

- Open the ”Controller” menu in the menu bar and click on ”Select”. Make yourchoice for:- the desired parameter set description.- Baud rate.- Controller address.

5.5 Generation of parameter set

Warning!Do not change any controller settings not mentioned in this chapter.

Proceed systematically when generating a parameter set:

1. Select the basic configuration (use basic configuration 10000).

2. Adapt controller to mains conditions.

3. Adapt controller to motor.

4. Enter machine parameters.

Page 61: ba93ku_gb.pdf

Commissioning

5-6 BA9300KS1198

5.5.1 Adapt controller to mains

432

1

5

grundein

FIG 5-2 ”Basic settings” dialog box

Field Command Function1 Click on field Selection of the configuration “10000”; cam2 Click on field Select value for the actual mains and operating

conditions.

5.5.2 Adapt controller to motor

To achieve an optimum speed-torque characteristic for the drive, it is necessary toenter the nameplate data of the connected motor.

With Lenze motors:

Field Command Function3 Click on field ”motor type (A)”. Select connected motor.4 Click on field ”encoder (B)”. Selected feedback system used.5 Click on field ”master value”. Setting of the master-value incremental encoder

For motors with a resolver, use the eight-digit designation from the motornameplate ”encoder” (as option).

Page 62: ba93ku_gb.pdf

Commissioning

BA9300KS1198 5-7

- For this, change to the parameter menu (see button FIG 5-3) and select the”Motor/feedback system” menu.

3DUDPHWHU PHQX

0RWRU�)HHGEDFN V\VWHPV

0RWRU DGMXVWPHQW

)HHGEDFN V\VWHPV

FIG 5-3 How to find the menus ”Motor setting” and ”Feedback systems”

In the menu ”Feedback systems”:

Field Command FunctionSelect C0416 Resolver fault

Enter value from the motor nameplateSelect C0003 Store data (C0003 = 1).

If you use a motor other than from Lenze:

Change to the menu ”Motor setting” (see FIG 5-3).

In the menu ”motor setting”:

Field Command FunctionSelect C0086 Select a motor wich best matches the motor

used.A list of available motors can be obtained fromchapter 11.4

Select C0006 Operating mode of the motor controlSelect C0022 Apapt Imax to the maximum motor current.Select C0081 Rated motor powerSelect C0084 Stator resistance of the motor (only for very high

demands on the control characteristics).Select C0085 Leakage inductance of the motor (only for very

high demands on the control characteristics).Select C0087 Rated motor speedSelect C0088 Rated motor currentSelect C0089 Rated motor frequencySelect C0090 Rated motor voltageSelect C0091 Motor-cos j.Select C0003 Store data (C0003 = 1).

Page 63: ba93ku_gb.pdf

Commissioning

5-8 BA9300KS1198

5.5.3 Enter machine parameters

4

3

2

1

5

6

7

Field Drive Function1 Enter numerator for the gear ratio of the cam drive2

Cam driveEnter denominator for the gear ratio of the cam drive

3Cam drive

Output feed4 Enter upper speed limit for the cam drive5 Enter numerator for the gear ratio of the cam drive6 Master drive Enter denomintor for the gear ratio of the master drive7

Master driveOutput feed

Note!For a detailed example with terminology see chapter 8.5.

Page 64: ba93ku_gb.pdf

Commissioning

BA9300KS1198 5-9

5.6 Basic cam data

1

2

3 4 5

6

7

8

grunddat

FIG 5-4 Display on screen - basic cam data

Yupper range valueMotion range

Master value cycle length

FIG 5-5 Explanation to fig. 5-4

Field Function Notes1 Determination of the data model relative data model

absolute data model2 Number of profiles 1 ... 83 Determines the length of a profile in X direction Unit: m_units4 Determines the motion range in Ydirection Unit: s_units5 Determines the upper range value of the profile in

YdirectionUnit: s_units

6 Branches to the dialog ’cam import’ See chapter 5.7.27 Starts on-line help8 Back to the previous dialogAll fields not used are not relevant for commissioning. For further information see on-line help.

Page 65: ba93ku_gb.pdf

Commissioning

5-10 BA9300KS1198

Data model evaluation

Data modelRelative model A profile consists of max. 5 sections with equidistant

points. Linear interpolation between the points.Absolute model A profile consists of arbitrarily distributed points. Linear

interpolation between the points.

- Depending on the data model selected and the number of profiles, differentnumbers of points are available:

Data model Number of points available per profile*)

Relative model 256Absolute model 64

*) For the use of 8 different cam profiles

- The field “profile number” of the dialog “basic data” determines the numberof profiles used. It is possible to select between 1, 2, 4 and 8 differentprofiles. The number of points available depends on the settings selected:

Number of profiles Number of points available per profile*1 20482 10244 5128 256

*For the relative data model

Page 66: ba93ku_gb.pdf

Commissioning

BA9300KS1198 5-11

5.7 Cam profile generation

5.7.1 General

Our example shows how to replace the mechanical cam by the LENZEtechnologyvariant “electronic cam”. The external dimension of the ’mechanical cam’ must benumerically described by value pairs. These values must then be stored in thecontroller.

The source data for the numerical description of the cam profile can be generatedin two ways from already existing data:

- Cam profile import

- Mathematical cam profile generation

For this commissioning, cam profile import has been selected, i.e. the sourcedata can be obtained, for instance, from an already existing ASCII file. The file mustcontain X/Y value pairs.(For the description of the mathematical cam profile generation, see chapter 8.6and the Manual).

All commissioning steps, including parameter setting, are carried out using theoperation and parameter setting program “Global Drive Control” (GDC).

Note!Please store all settings for the controller via C0003 to protect them from being lostin the event of mains failure.

Page 67: ba93ku_gb.pdf

Commissioning

5-12 BA9300KS1198

5.7.2 Cam profile import

6

9

7

5

8

2

10

4

31

Kurv_imp

11

FIG 5-6 Dialog “Cam profile import”

Commissioning procedure

1 A name for a file to be imported can be entered directly or...2 ..selected from a disk by using the button “Open”.3 After the selection of a file, a number of details about the data read in is indicated in the middle left

screen area.Indicated are the value pairs (points) and

4 the minimum values in X and Ydirection5 as well as the maximum values in X and Ydirection.6 Select the target profile for the imported data in the upper screen area.7 The data are transferred to the controller.8 After data transmission, they must be accepted for the active data range of the controller (button

“Accept data”). To do this, connect the signal CDATA-LOAD (C1322/7) temporarily to FIXED1; reset toFIXED0 afterwards.

9 The converted data can be stored on a data medium by pressing the button “Save”10 The button “Display profile” leads to the corresponding program dialog.

(See on-line help)11 The button “Check profile” starts the calculation of the profile characteristic and checks whether the

required conditions are met.

Page 68: ba93ku_gb.pdf

Comm

issioning

BA

9300KS

11985-13

5.8C

onfig

uration

C0005

=10000

Rep

lacement

of

am

echanicalcam

K10000_0

2 8

E 1

E 2

E 3

E 4

E 5

A 1

A 2

A 3

A 4

12

34

7

6 26 3

7

X 5 X 5

X 6

X 6

X 1 0X 9

( C S E L 1 )

( C D A T A )

( C C T R L )

( C E R R 1 )

( M C T R L )

( D C T R L )

C 1 4 7 7 / 1

C 0 4 7 2 / 1

( Y S E T 1 )

+x

+x

C 1 4 7 6 / 1C 1 3 0 0 - C 1 3 1 7

C 0 4 7 2 / 2

C 0 4 7 2 / 3

C 1 4 2 0

x

( - 1 )

C 0 4 7 2 / 4

C 1 3 8 0 / 1 , 2

x

C 0 0 2 5

X 7

X 8

C 0 4 2 5

C 0 0 0 6 , C 0 0 1 1 ,C 0 0 2 2 , C 0 0 7 0 ,C 0 0 7 1 , C 0 0 8 6 ,C 0 1 0 5 , C 0 2 5 4

C 0 4 2 0

C 0 4 9 0

C 0 4 9 5

C 1 4 7 7 / 2

C 1 4 7 6 / 1 6

C 4 7 2 / 9

C 4 7 2 / 9

T r i p

C o n t o u r i n g e r r o rR D Y

W a r n i n g

N a c t

M a c t

G N D

C t r l e n a b l e

E v e n t p r o f i l e

P r o f i l e * 1

P r o f i l e * 2

P r o f i l e * 3

T r i p - R e s e t /P r o f i l ea c c e p t a n c e

G N D

R e s o l v e r

E n c o d e r

M a s t e r v a l u e

P r o f i l e s e l e c t i o n

S t r e t c h i n g X - a x i sP r o f i l e d a t a

P r o f i l e c o n t r o l

C o n t o u r i n g e r r o r

M o t o r c o n t r o l

D r i v e c o n t r o l

S t r e t c h i n g Y - a x i s

Page 69: ba93ku_gb.pdf

Commissioning

5-14 BA9300KS1198

Code DescriptionC0005=10000 The configuration C0005=10000 allows an electronical solution for the requirements of a

mechanical cam. In additional, functions like stretching / compression / phase trimming in Xand Ydirection are offered.

- Master valueC0425 Encoder constant of the master value- Cam dataC1300-C1317 The cam profile data are determined by the generation of this data and do not need to be

changed separately.C1420 Determines, which profile is processed when the event input (digital input E1 = LOW level) is

activated.- Contouring error evaluationC1380/1 andC1380/2

Determine the comparison window and hysteresis for the contouring error evaluation.

- AdjustmentC0472/2 Speed precontrol influenceC0472/3 Influence torque precontrolC1477/2 Contouring error limit (in s_units)C0472/4 Reduction factor for contouring error warning;

warning limit C0472/4 x C1477/2- Cam profile influenceC0472/1 Stretching/compression X-axis (100% = no stretching / compression)

C1476/1 Phase trimming in X-directionC1477/1 Phase trimming in Y-directionC1476/16 TOUCH-PROBE position in X-directionC472/9 Stretching/compression of the Y-axisC472/10 Torque limit value

Page 70: ba93ku_gb.pdf

During operation

BA9300KS1198 6-1

6 During operation

6.1 Status indications

6.1.1 On the operating module 9371 BB

Status messages on the operating module

Display on offRDY Ready for operation Initializing or faultIMP Power outputs inhibited Power outputs enabledFAIL Active fault

(TRIP, message or warning)No fault

IMAX Motor current setpoint� C0022 Motor current setpoint C0022M MAX Speed controller within its limitation.

Drive is torque controlled.Drive speed-controlled

Page 71: ba93ku_gb.pdf

During operation

6-2 BA9300KS1198

6.1.2 In Global Drive Control

1. Click on the ”Control” button in the ”Basic settings” dialog box.

2. Click on the ”Diagnostic” button in the ”Control” dialog box.

��

��

��

��

��

��

FIG 6-1 Dialog box ”Diagnostics 9300”

1 Type of fault

2 Actual speed

3 Actual motor voltage

4 Actual motor current

5 Motor torque

6 DC bus voltage

7 Heat sink temperature

8 Motor temperature

9 Controller load

10 Reset fault

11 Time when the supply voltage was applied

12 Time when the controller was enabled

13 Actual fault with time and frequency of the fault

14 Fault history with time and frequency of the fault

15 Reset history buffer

For items 13 ... 15 see also chapter 9.

Page 72: ba93ku_gb.pdf

During operation

BA9300KS1198 6-3

6.2 Information on operation

When operating the controller, please observe the following notes:

6WRS�

- Cyclic connection and disconnection of the supply voltage at L1, L2, L3 or+UG, -UG mgiht overload the internal input current limit:- Allow at least 3 minutes between disconnection and reconnection.

- During mains switching (L1,L2,L3) it is not important whether furthercontrollers are supplied via the DC bus.

6.2.1 Switching on the motor side

- Switching on the motor side of the inverter is permissible for emergencyswitch-off.

- Please note:- Switching while a controller is enabled may cause the fault indication ”0Cx”

(short-circuit/earth fault in operating case x).- For long motor cables and operation of controllers with smaller output

power, leakage currents through interfering cable capacitances may causethe fault indication ”OCx”.

- Switching equipment on the motor side must be dimensioned for DCvoltages (V DC max = 800 V).

Page 73: ba93ku_gb.pdf

During operation

6-4 BA9300KS1198

6.2.2 Controller protection by current derating

Valid for the types 9326 to 9332.

For field frequencies < 5 Hz the controller automatically derates the maximumpermissible output current.

- For operation with chopping frequency = 8 KHz (C0018=1, optimum power):

- The current limit is derated according to the heatsink temperature(see FIG 6-2).

- For operation with chopping frequency = 16 KHz (C0018=2, optimum noise):

- The current limit is always derated to IN16 = I016 .

- For operation with automatic changeover of the chopping frequency(C0018=0):

- Below the threshold, the controller operates with 16 kHz (optimum noise).The function of the current limitation follows the characteristic ”Imax 16KHz” in FIG 6-2.

- If the machine requires a higher torque, for example for acceleration, thecontroller automatically switches to 8 kHz (optimum power). The functionof the current limitation follows the characteristic ”Imax 8 KHz” in FIG 6-2.

K35.0129

| f d | [ H z ]0 5

ϑ K >

8 0 ° C

ϑ K = 60 ° C

ϑ K < 4 0 ° C

I 0 x

1 , 5 * I 0 8

1 , 2 5 * I 0 8

I 0 8

I 0 1 6

I M o t o r

1 , 5 * I N 8 = I m a x a t 8 k H z

I N 1 6 = c h a n g e o v e r t o 8 k H za t C 0 0 1 8 = 0

1 , 5 * I N 8 = I m a x a t 1 6 k H z

FIG 6-2 Current derating function of types 9326 to 9332JK Heat sink temperatureIrx: Rated current at U, V, W depends on the chopper frequencyfd: Field frequency at output U, V, WI0x: Max. standstill current if field frequency = 0 Hz

See also rated data in chapter 3.3

Page 74: ba93ku_gb.pdf

Parameter setting

BA9300KS1198 7-1

7 Parameter setting- The parameter setting of the controller is used to adapt the drive to your

applications.

- The complete parameter set is organised in codes which are consecutivelynumbered and begin with ”C”.(See Code table, chapter 11.2).

- You can save the parameter set of an application.- One parameter set is available.- The parameter sets are factory-set when delivered.

7.1 Ways of parameter setting

There are two ways of changing parameters:

- With the keypad for slight changes of the parameter set.

- With a superimposed host (PC or PLC) via fieldbus modules and operatingprograms (see accessories, chapter 11.1).

Cam profile data cannot be changed via the keypad!

Page 75: ba93ku_gb.pdf

Parameter setting

7-2 BA9300KS1198

7.1.1 Structure of a parameter set

For easy operation menu levels for the 9371BB keypad and the PC programmGLOBAL DRIVE CONTROL lead you quickly to the codes required:

- Main menu- contains submenus- contains the complete code list

- Submenus- contain the codes which are assigned to them

Codes consist of:

- Code level- Codes without subcodes contain one parameter- Codes with subcodes contain several parameters

- Parameter level/operating levelThere are 4 different parameter types:- Absolute values of a physical variable

(e. g. 400 V, 10 s)- Relative values of unit variables

(e. g. 50 % setpoint)- Numbers for certain states

(e. g. 0 = controller inhibited, 1 = controller enabled)- Display values

These values can only be displayed but not changed.(E. g. act. value of the motor current under C0054)

You can modify absolute and relative values in discrete steps.

Page 76: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-1

8 ConfigurationEvery practical application demands certain application-specific configurations(programs).

For this, function blocks are available which can be connected properly for thecorresponding application. The function blocks are connected via codes(see chapter 8.3).

8.1 Predefined configurations

Basic configurations are already defined for standard applications of the controller.Thesebasic configurations can beselected viacodeC0005. Thesignal flow chartsfor the most important basic configurations are listed in the appendix.

8.1.1 Working with predefined configurations

To adapt predefined configurations to your application, proceed as follows:

1. Select basic configuration under C0005.

2. Select operating mode under C0005 (see chapter 8.2).

3. Configure different signal flow chart, if necessary:- Integrate or remove function blocks (see chapter 8.3).- Parameterise function blocks (see chapter 8.3.2- Change configuration of terminals

Note!If the signal flow for the basic configuration is changed, e.g. by adding functionblocks, C0005 is set to ”0”. The message ”COMMON” is displayed.If only theassignment of thecontrol inputs and outputs ischanged, C0005 remainsthe same. Code C0464 indicates an indentification.

Page 77: ba93ku_gb.pdf

Configuration

8-2 BA9300KS1198

8.2 Operating modes

Determine, which interface you want to use for parameter setting or control of thecontroller by choosing an operating mode.

8.2.1 Parameter setting

Parameter setting via

- Communication module (connected to X1)- 2102 (LECOM A/B/LI)- 2111 (INTERBUS)- 2131 (PROFIBUS)

- System bus module (connected to X4)- 2173

- Basically, parameters can be changed by both interfaces.

8.2.2 Control

The controllers are controlled via terminals (X5 and X6), the fieldbus module at X1or the system bus (X4) (see chapter 8.2.1). Mixed modes are also possible.

Note!C0005 contains predefined configurations which allow a very easy change of theoperating mode (see Manual).

Page 78: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-3

8.3 Working with function blocks

You can configure the signal flow in the controller yourself by connecting functionblocks. The controller can thus be easily adapted to diverse applications.

8.3.1 Signal types

Every function block has a number of inputs and outputs for connection.Corresponding to their functions, there are only certain types of signals at theinputs and outputs:

- Quasi analog signals- Symbol: L- Unit: %- Abbreviation: a- Value range: � 16384 = � 100%- Resolution: 16 bit

- Digital signals- Symbol: P- Unit: binary, with HIGH or LOW level- Abbreviation: d- Resolution: 1 bit

- Speed signals

- Symbol: a- Unit: rpm- Abbreviation: phd- Resolution: 16 bit

- Phase signals- Symbol: ?- Unit: Increments- Abbreviation: ph- Resolution: 32 bit

Only the same types of signals can be connected. Thus, the analog output signalofonefunctionblockcanonlybeconnected to theanalog input of theother functionblock. If you try to connect two different signal types, the connection is rejected.

Note!A detailed description of all function blocks can be obtained from the Manual.

Page 79: ba93ku_gb.pdf

Configuration

8-4 BA9300KS1198

8.3.2 Elements of a function block

FCNT1-CLKUPC1102/1

C1102/2

FCNT1-LOADC1102/3

C1104/3

FCNT1-OUT

FCNT1

C1101/1

C1101/2C1103/2

C1103/1

C1104/2

FCNT1-LD-VAL

FCNT1-CLKDWN

C1104/1

C1100

CTRL

FCNT1-CMP-VAL

FCNT1-EQUALInput symbol

Configuration code

Display code

Function

Input name Name of the function block

Output name

Output symbol

Parameter setting code

FIG 8-1 Structure of a FB using the example of FCNT1

Name of the FB

Identifies the FB unambigeously. FBs with the same function are distinguished bya number behind their names.

Every FB is defined by a selection number. The input of the selection number intothe processing table (see chapter 8.3.4)is always required for the calcuation of theFB. The selection numbers are listed in selection list 5 (see chapter 11.3).

Example:

(FCNT1, see FIG 8-1)

- FCNT1 selection number 6400 (selection list 5).

Input symbol

Designates the signal type which is allowed for this output as signal source(see chapter 8.3.1).

Note!Inputs, which are not linked, cannot be configured.

Input name

Consists of the FB name and a designation. Inputs with the function aredistinguished by a number behind their designation.

Page 80: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-5

Configuration code

Configures the input with a signal source (e.g. terminal signal, control code, outputof a FB, ¤). Inputs with identical codes are distinguished by the subcode. Thesubcode is attached to the code (Cxxxx/1).These codes are configured by theirsubcodes.

It is not possible to connect an input with several signal sources.

Display code

Displays thecurrent input value. Inputswith identicalcodesaredistinguished bythesubcode. The subcode is attached to the code (Cxxxx/1). These codes aredisplayed via their subcodes.

Display codes cannot be processed.

Function

Represents the mathematical function as a block diagram. FIG 8-1

Parameter setting code

Adaptation of the function or the behaviour to the application. The settings areexplained and shown in the text and/or the line diagram (see description of the FBin the Manual).

Output symbol

Designates the signal type. Connections with inputs of the same signal type arepossible (see chapter 8.3.1).

Every output is defined by a selection number. The selection numbers are dividedinto selection lists (1 ... 4)accordint to the different signal types (see chapter 11.3).An output is linked to an input by the selection numbers.

Example:

(FCNT1, see FIG 8-1)

- FCNT1-OUT selection number 6400 (analog signal, selection list 1).

- FCNT1-EQUAL selection number 6400 (dgitial signal, selection list 2).

Note!Outputs, which are not linked, cannot be configured.

Output name

Consists of the FB name and a designation. Outputs with the same function aredistinguished by a number behind their designation.

Page 81: ba93ku_gb.pdf

Configuration

8-6 BA9300KS1198

8.3.3 Connection of function blocks

General rules

- Assign a signal source to an input.

- One input can have only one signal source.

- Inputs of different function blocks can have the same signal source.

- You can connect only the same types of signals.

Stop!Existing connections which are not desired must be removed by reconfiguration.Otherwise, the drive cannot perform the desired function.

Note!For visualisation use the parameter setting and operating program GDC.

AND1

&

AND1-IN1

AND1-IN2

AND1-IN3

AND1-OUT

C0821/1

C0821/2

C0821/3

C0820/1

C0820/2

C0820/3

OR1

|1

OR1-IN1

OR1-IN2

OR1-IN3

OR1-OUT

C0831/1

C0831/2

C0831/3

C0830/1

C0830/2

C0830/3

NOT11 NOT1-OUTNOT1-IN

C0841

NOT21 NOT2-OUTNOT2-IN

C0843

C0840

C0842

t0

DIGDEL1-IN

C0724

DIGDEL1-OUT

DIGDEL1C0721C0720

C0723

Connection not possible

Possible connection

X

FIG 8-2 Correct connection of function blocks

Page 82: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-7

Basic procedure

1. Select the configuration code of the function block input which is to bechanged.

2. Determine the source of the input signal for the selected input (e.g. fromthe output of another function block).

3. The function block input is assigned via a menu which contains onlythose signal sources which are of the same type as the function blockinput to be assigned.

4. Select and confirm the signal source.

5. Remove undesired connections, if any.- For this, select the corresponding signal assignment of the input via the

configuration code (e.g. FIXED 0, FIXED 1, FIXED 0%, ...).

6. Repeat 1. to 5. until the desired configuration is set.

7. Save modified configuration in the desired parameter set.

Example

- Condition:- Factory setting

- Task:- Square the analog signal of X6/3, X6/4 and output to X6/62.

- Solution:- You need the function blocks AIN2, ARIT2 and AOUT2.

+ - */ x/(1-y)

C0600

xy

ARIT2

ARIT2-OUTC0602/1

á200%

C0602/2

ARIT2-IN1

ARIT2-IN2

C0601/1

C0601/2

62

AOUT1C434/1

+

+

AOUT1-IN

AOUT1-GAIN

AOUT1-OFFSET

C0434/3

C0434/2

C0431

C0433

C0432

3

4

AIN2

++

AIN2-OUT

AIN2-GAIN

AIN2-OFFSET

C0409/1

C0409/2

C0407

C0408

C0108/1

C0109/1

C0027/2

C0026/2

FIG 8-3 Example of a simple configuration

Page 83: ba93ku_gb.pdf

Configuration

8-8 BA9300KS1198

Make connections

1. Determine the signal source for ARIT2-IN1:- Change to the code level using the arrow keys- Selec C0601/1 using ? or +.- Change to the parameter level using PRG.- Select output AIN2/OUT (selection number 55) using ? or +- Confirm using SH + PRG- Change to the code level again using PRG.

2. Determine signal source for ARIT2-IN2:- Select C0601/2 using ?.- Change to the parameter level using PRG.- Select output AIN2/OUT (selection number 55) using ? or +.- Confirm using SH + PRG- Change to the code level again using PRG.

3. Parameterise ARIT2:- Select C0600 using +.- Change to the parameter level using PRG.- Select multiplication (selection number 3).- Confirm using SH + PRG- Change to the code level again using PRG.

4. Determine signal source for AOUT1:- Select C0431 using +.- Change to the parameter level using PRG.- Select output ARIT2-OUT (selection number 5505).- Confirm using SH + PRG- Change to the code level again using PRG.

5. Enter function block ARIT2 in the processing table:- Select C0465 and subcode 8 using ? .- Change to the parameter level using PRG.- Enter function block ARIT2 (selection number 5505).- Confirm using SH + PRG- Change to the code level again using PRG.- The sequence of the FB processing is thus determined.

Page 84: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-9

Remove connections

- Since a source can have several targets, there may be further signalconnections, which may not be wanted.

- Example:- In the factory setting of the basic configuration C0005 = 1000 (speed

control), ASW1-IN1 and AIN2-OUT are connected.- This connection is not automatically removed by the settings described

above! If you do not want this connection, it must be removed.

+ - */ x/(1-y)

C0600

xy

ARIT2

ARIT2-OUTC0602/1

á200%

C0602/2

ARIT2-IN1

ARIT2-IN2

C0601/1

C0601/2

62

AOUT1C434/1

+

+

AOUT1-IN

AOUT1-GAIN

AOUT1-OFFSET

C0434/3

C0434/2

C0431

C0433

C0432

3

4

AIN2

++

AIN2-OUT

AIN2-GAIN

AIN2-OFFSET

C0409/1

C0409/2

C0407

C0408

C0108/1

C0109/1

C0027/2

C0026/2

ASW1-IN1

C0812/1

1

0

C0812/2

ASW1-SET

ASW1-IN2

ASW1

ASW1-OUT

C0813

C0810/1

C0810/2

C0811FIXED0

FIXED0%NSET-NADD

FIG 8-4 Remove connections in a configuration

6. Remove connection between ASW1-IN1 and AIN2-OUT:- Select C0810/1using ? or +.- Change to the parameter level using PRG.- Select the constant FIXED0% (selection number 1000) using ? or + .- Confirm using SH + PRG- Change to the code level again using PRG.

Now, the connection is removed.

7. Save new configuration, if desired:- If you do not want to lose the modifications after mains disconnection, save

the new signal configuration under C0003 in one of the parameter sets.

Page 85: ba93ku_gb.pdf

Configuration

8-10 BA9300KS1198

8.3.4 Entries into the processing table

The 93XX controller provides a certain time for calculating the processing time ofFBs. Since the type and number of FBs to be used depends on the application andcan vary considerably, not all available FBs are permanently calculated. Aprocessing table is thereforeprovided undercodeC0465, whereonly theFBsusedare listed. This means that the drive system is perfectly matched to the task. Iffurther function blocks are integrated into an existing configuration, they must belisted in the processing table.

Several aspects must be observed:

The number of FBs to be processed is limited

A maximum of 50 FBs can be integrated into a configuration. Every FB requires acertain processing time. Code C0466 displays the residual time for the processingof FBs. If this time has elapsed no further FBs can be integrated.

Entry sequence into the FBs

Normally, the entry sequence under C0465 is arbitrary, but it may be important forapplications with high response. In general, the most favourable sequence isadapted to the signal flow.

Example:

AND1

&

AND1-IN1

AND1-IN2

AND1-IN3

AND1-OUT

C0821/1

C0821/2

C0821/3

C0820/1

C0820/2

C0820/3

AND2

&

AND2-IN1

AND2-IN2

AND2-IN3

AND2-OUT

C0823/1

C0823/2

C0823/3

C0822/1

C0822/2

C0822/3

OR1

≥1

OR1-IN1

OR1-IN2

OR1-IN3

OR1-OUT

C0831/1

C0831/2

C0831/3

C0830/1

C0830/2

C0830/3

E1

E2

E3

E4

E51

0

C0114/1...5

DIGIN DIGIN1

DIGIN2

DIGIN3

DIGIN4

DIGIN5

C0443

A1

A2

A3

A41

0

C0118/1...4

DIGOUTDIGOUT1

DIGOUT2

DIGOUT3

DIGOUT4

C0117/1

C0117/2

C0117/3C0117/4

C0444/4C0444/3C0444/2C0444/1

FIXED0

FIXED1

FIG 8-5 Example of a configuration

Page 86: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-11

Structure of the processing table for the configuration example FIG 8-5:

1. DIGIN does not have to entered into the processing table

2. The first FB is AND1, since it receives its input signals from DIGIN andonly has successors.

3. The second FB is OR1, since its signal source is the output of AND1(predecessor). This means that the output signal in AND1 must begenerated first, before it can be processed in OR1. At the same time,OR1 has a successor.This means that OR1 must be entered in theprocessing table before the successor.

4. The third FB is AND2, since it has a predecessor (see 3.)

5. The entries in C0465 are:- Position 10: AND1 10500- Position 11: OR1 10550- Position 12: AND2 10505

This example was started with position 10, because these positions are notassigned in the default setting.

FBs do not have to be entered consecutively in the processing table. Emptypositions in the processing table are permissible.

Tip!Other FBs can also be entered between the FBs listed in the example.

FBs which do not have to be entered into the processing table

The following signal sources are always executed and do not have to be enteredinto the processing table:

- AIF-IN

- CANx-IN

- DIGIN

- DIGOUT

- FCODE (all free codes)

- MCTRL

- fixed signal sources (FIXED0, FIXED0%, etc.)

Page 87: ba93ku_gb.pdf

Configuration

8-12 BA9300KS1198

Frequent faults in the configuration

Malfunction Cause Remedy

FB does not supply an output signal FB was not entered into the processingtable C0465

Enter FB

FB only supplies constant signals FB was deleted from or overwritten in theprocessing table

Enter FB again, possibly under a differentsubcode (position)

The output signal does not arrive at thefollowing FB

No connection between the functionblocks

Make connection (from the view of thenext FB) by the configuration code (CFG)

FB cannot be entered in the table C0465 Residual process time is too short (seeC0466)

Remove FBs not used (e.g. inputs andoutputs not used)In networked drives, functions may berelocated to other controllers

The controller outputs internally calculatedsignals with a delay

FBs are processed in an incorrect se-quence

Adapt processing table under C0465 tothe signal flow

Page 88: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-13

8.4 Description of function blocks

Table of available function blocks

Function block Description CPU time used in basic configuration C0005p[ms] 1000 10000 11000 12000

ABS1 Absolute value generator 5 - - -

ADD1 Addition block 1 9AIF-OUT Field bus 60 - - - -

AIN1 Analog input X6/1, X6/2 11AIN2 Analog input X6/3, X6/4 29AND1 Logic AND, block1 7AND2 Logic AND, block2AND3 Logic AND, block3AND4 Logic AND, block4

7AND5 Logic AND, block5

7

AND6 Logic AND, block 6AND7 Logic AND, block 7ANEG1 Analog inverter 1 4 - - - -

ANEG2 Analog inverter 2 4AOUT1 Analog output X6/62 13 - - - -

AOUT2 Analog output X6/63 13 - - - -

ARIT1 Arithmetic block 1 12ARIT2 Arithmetic block 2 12ARITPH1 32 bit arithmetic block 15ARITPH2 32 bit arithmetic block 15ARITPH3 32 bit arithmetic block 15ARITPH4 32 bit arithmetic block 15ARITPH5 32 bit arithmetic block 15ARITPH6 32 bit arithmetic block 15ASW1 Analog changeover 1 4 -

ASW2 Analog changeover 2 4ASW3 Analog changeover 3 4ASW4 Analog changeover 4 4BRK Trigger holding brake 17CAN-OUT System bus 60 - - - -

CCTRL Setpoint conditioning 40 - - -

CDATA Cam data conditioning 150 - - -

CERR Contouring error monitoring 20 - - -

CLUTCH Virtual clutch 50CMP1 Comparator 1 15 -

CMP2 Comparator 2 15CMP3 Comparator 3 15CONV1 Conversion 9CONV2 Conversion 9CONV3 Conversion 9CONV4 Conversion 9CONV5 Conversion 9CONV6 Conversion 9

Page 89: ba93ku_gb.pdf

Configuration

8-14 BA9300KS1198

Function block used in basic configuration C0005CPU time[ms]

DescriptionFunction block

1200011000100001000

CPU time[ms]

Description

CONVPHA1 32 bit conversion 6CONVPHD1 Conversion - stretching factor 50CONVPHPH1 32 bit conversion 80CONVPHPHD1 Conversion - phase change into speed 50CONVPP1 32 bit / 16 bit conversion 55CSEL1 Cam profile selection 20 - - -

CURVE1 Characteristic function 15CURVEC1 Characteristic function 90DB1 Dead band 8DCTRL Device control - -

DFIN Digital frequency input 6 - - - -

DFOUT Digital frequency output 38 - - -

DFRFG1 Digital frequency ramp generator 44DFSET Digital frequency processing 93DIGDEL1 Binary delay element 1 10DIGDEL2 Binary delay element 2 10DIGIN Input terminals X5/E1¤X5/E5 - -

DIGOUT Output terminals X5/A1¤X5/A4 - -

DT1-1 Differential element 13FCNT1 Piece counter 11FCODE 108/1 Free control codes - - - - -

FCODE 108/2 - - - -

FCODE 109/1 - - - -

FCODE 109/2 - - - -

FCODE 141FCODE 17 -

FCODE 175FCODE 250FCODE 26/1 - - - -

FCODE 26/2 - - - -

FCODE 27/1 - - - -

FCODE 27/2 - - - -

FCODE 32FCODE 37FCODE 471FCODE 472/1 - - -

FCODE 472/2 - - -

FCODE 472/3 - - - -

FCODE 472/4 - - -

FCODE 472/5FCODE 472/6FCODE 472/7FCODE 472/8FCODE 472/9FCODE 472/10 - - -

FCODE 472/11FCODE 472/12FCODE 472/13

Page 90: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-15

Function block used in basic configuration C0005CPU time[ms]

DescriptionFunction block

1200011000100001000

CPU time[ms]

Description

FCODE 472/14FCODE 472/15FCODE 472/16FCODE 472/17FCODE 472/18FCODE 472/19FCODE 472/20FCODE 473/1FCODE 473/2FCODE 473/3FCODE 473/4FCODE 473/5FCODE 473/6FCODE 473/7FCODE 473/8FCODE 473/9FCODE 473/10FCODE 474/1 -

FCODE 474/2FCODE 474/3FCODE 474/4FCODE 474/5FCODE 474/6FCODE 474/7FCODE 474/8FCODE 474/9FCODE 474/10FCODE 475/1FCODE 475/2FCODE 1476/1 - - -

FCODE 1476/2FCODE 1476/3FCODE 1476/4FCODE 1476/5FCODE 1476/6FCODE 1476/7FCODE 1476/8FCODE 1476/9FCODE 1476/10FCODE 1476/11FCODE 1476/12FCODE 1476/13FCODE 1476/14FCODE 1476/15FCODE 1476/16 - - -

FCODE 1477/1 - -

FCODE 1477/2 - - -

FCODE 1477/3

Page 91: ba93ku_gb.pdf

Configuration

8-16 BA9300KS1198

Function block used in basic configuration C0005CPU time[ms]

DescriptionFunction block

1200011000100001000

CPU time[ms]

Description

FCODE 1477/4FCODE 1477/5FCODE 1477/6FCODE 1477/7FCODE 1477/8FCODE 1477/9FCODE 1477/10FCODE 1477/11FCODE 1477/12FCODE 1477/13FCODE 1477/14FCODE 1477/15FCODE 1477/16FDO -FEVAN1 Free analog input variable 4FEVAN2 Free analog input variable 4FIXSET1 Fixed setpoints 10FLIP1 D-flipflop 1 7FLIP2 D-flipflop 2 7GEARCOMP Gear torsion 1LIM1 Limiter 6MCTRL Servo control - - - - -

MFAIL Mains failure control 44MONIT Monitoring - - - - -

MPOT1 Motor potentiometer 22MSEL1 Master selection 15MSEL2 Master selection 20NOT1 Logic NOT, block1 4 -

NOT2 Logic NOT, block2 4NOT3 Logic NOT, block3 4NOT4 Logic NOT, block4 4NOT5 Logic NOT, block5 4NSET Speed setpoint conditioning 77 -

OR1 Logic OR, block1 -

OR2 Logic OR, block2OR3 Logic OR, block3 7OR4 Logic OR, block4

7

OR5 Logic OR, block5OSZ Oscilloscope function 70PCTRL1 Process controller 63PHADD1 32 bit addition block 10PHCMP1 Comparator 9PHCMP2 Comparator 9PHCMP3 Comparator 9PHDIFF1 32 bit setpoint/act. value comparison 10PHDIV1 Conversion 9PHINT1 Phase integrator 8PHINT2 Phase integrator 8

Page 92: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-17

Function block used in basic configuration C0005CPU time[ms]

DescriptionFunction block

1200011000100001000

CPU time[ms]

Description

PHINT3 Phase integrator 8PSAVE1 Position memory 10 -

PT1-1 First order delay element 9R/L/Q QSP / setpoint inversion 9 -

REFC Homing function 100RFG1 Ramp generator 18RFGPH1 Ramp function generator for phase signals 62S&H1 Sample and Hold 5SELPH1 Long-value selection 6SELPH2 Long-value selection 6SPC1 Switch points 80SPC2 Switch points 130SRFG1 S-shape ramp function generator 15STAT Output of digital status signals -STATE-BUS Control of a drive network -STORE1 Memory 1 35STORE2 Memory 2 20SYNC1 Multi-axis positioning 55SWPHD1 Switch - digital frequency 4SWPHD2 Switch - digital frequency 4TRANS1 Binary signal evaluationTRANS2 Binary signal evaluation

8TRANS3 Binary signal evaluation

8

TRANS4 Binary signal evaluationVMAS Virtual master 50VTPOSC Positioning control (cam profiler) 45WELD1 Welding bar control 20 -

YSET1 Stretching, compression, offset in Ydirection

30 - -

Page 93: ba93ku_gb.pdf

Configuration

8-18 BA9300KS1198

8.5 Definition by means of an example

8.5.1 Normalization

- For normalization, mechanical system variables and encoder systemvariables are input. The units of the master drive (m-units) and the cam drive(s-units) are freely selectable (e.g. mm, pieces, etc.) .

0

,QFUHPHQW����� ,QF��UHY�

0RWRU

(QFRGHU

*HDUER[�

L ���

%HOWIHHG

1R� RI WHHWK� ���UHY�7RRWK SLWFK� �� PP

0DVWHU GULYH

05HVROYHU������ ,QF��UHY�

0RWRU$FW� YDOXH HQFRGHU*HDUER[

L ���

6SLQGOHIHHG

&DP GULYH

56

/HDGVFUHZ SLWFK��� PP�UHY

Page 94: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-19

1305/1

1305/2

1306

1303/1

1305/2

1304

grd_ein

Master drive: belt feed

Unit master value: 1 m_unit (master-unit) = 1 mm

C1303/1 = 5C1303/2 = 1C1304 = 1000 mm/rev. (= 40 teeth x 25 mm per tooth)

The incremental reference is determined by the selection of the master encodersource.

Cam drive: Leadscrew feed

Unit cam drive: s_unit (slave-unit) = 1 mm

C1305/1 = 4C1305/2 = 1C1306 = 10 mm/rev (leadscrew pitch)

The incremental reference is determined by the position feedback system that isselected.

Page 95: ba93ku_gb.pdf

Configuration

8-20 BA9300KS1198

8.5.2 Data structures

The following structure is used in the following chapter:

Master value / master value direction X / Xaxis / Xdirection

Actual value / output / cam profile direction Y / Y axis / Y direction

Point X/Y value pair

Altogether, a maximum of 2048 points is available for cam profile data. Thedistribution depends on the number of cam profiles selected:

Number of profiles Points per profile*1 20482 10244 5128 256

* The selection of the absolute data model can reduce the number of points to a quarter.

In general, two different data models are available. They are selected via GDC.

1. Relative data modelA profile consists of 5 sections with equidistant points per section, i.e.the distance between the points is constant in the Xdirection. Thenumber of points available depends on the number of profiles selected(see table). This data model makes optimum uses the available datarange.

2. Absolute data modelA profile consists of arbitrarily distributed points. This data model is themost flexible one, but can however only be used for import data whichhave been optimised for linear interpolation. The number of pointsavailable is reduced to 25 % because of the memory space required bythe absolute value pairs.

Note!The procedure described in chapters 5ff. refers to the use of the relative datamodel. For further information please refer to the on-line help of the GDC programand the Manual.

Page 96: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-21

8.6 Description of cam profile generation

- Cam profile import- The method has already been described as an example in the chapter

’Commissioning’ (see chapter 5.7.2 ’Cam profile import)The cam profile import enables the use of already existing cam data, e.g.from calculation programs or design data. The ASCII format is supported.The ASCII file must contain X/Y value pairs. For further information see theon-line help of GDC.

- Mathematical cam profile generation- The profile is determined by the input of mathematical functions. The basis

is the 5th order polynomial, the offset sine curve and standstill, which areindicated in the German regulation VDI 2143.

- Graphical cam profile generation (in preparation)

2

1

3

4

5

6

7

8

9

10

11

kurv_ed

FIG 8-6 Dialog “Mathematical profile generation”

Page 97: ba93ku_gb.pdf

Configuration

8-22 BA9300KS1198

Select the profile to be processed in the upper dialog area (1). Depending on thenumber of sections ( 2 ), the corresponding number of possible selections isprovided in the middle dialog (3). Available are:

1. 5th order polynomial

2. offset sine curve

3. standstill and

4. synchronous ranges (import data)

The length of a section is indicated in ( 4 ). The calculation is based on the firstsection starting at X=0 and the last section ending at X=Xmax . Enter the numberof points required for every section under (5). “Standstill” and synchronous rangesare exceptions because the required number of points is automatically selecteddepending on the section length. The number of points for the last section is alsodetermined automatically by the remaining number of points (see basic datadialog).

Note!Observe the number of points available (6).

The input fields assigned to the selected equation are indicated in the lower dialogarea (7). The upper range value of each section is output in the right area of inputfields (8). The profile characteristic is automatically calculated in the background.The status display (9) indicates whether the cam data have been input correctlyornot (e.g. discontinuous profile).

After the calculation, the data can be stored on any data medium (10)transmittedto the controller (11) by using the corresponding buttons.

Note!First processall the profilerwhich areused. Cam profile dataare always transferredas a block. The transmission time is thus approx. 1-2 minutes.Please observe, that the data must be accepted by the active data range of thecontroller (see chapter 5.7.2) after data transmission.If the dataare to be stored after mainsdisconnection, theymust bestored viacodeC0003 after transmission.

Page 98: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-23

8.7 Basic configuration

8.7.1 Predefined basic configurations

Several predefined signal configuration can be loaded by using C0005.The numbers are used according to the following:

C0005 = 1 X X X XControl0 Terminal control1 Control via LECOM A/B/LI3 Control via AIF (INTERBUS,PROFIBUS)5 Control via system bus (CAN)

Terminal supply0 - External supply of control terminals1 - Internal supply of control terminals

Additional functions (see chapter 8.7.5 ff.)0 - None1 - Homing function2 - Clutch function3 - Switch points8 - Mark-controlled correction of the master value9 - Mark-controlled correction of the act. value

Control mode0 - Instead of a mechanical cam*(see chapter 5.8)1 - Welding bar drive*(see chapter 8.7.3)2 - Operation with position storage*(see chapter 8.7.4)

*- Incremental master valueIdentification1 - Cam

Cam data

Before commissioning, the cam data must be generated with Global DriveControland then transmitted to the drive. The following cam profiles are in factory setting.They are effective independently of the basic parameter setting.

Profile 1 Electronic gear (linear position profile)Profile 2 Forward / backward movement with a standstill at the extremity of the motionProfile 3 Forward / backward movement with a standstill at the end of motionProfile 4 Smooth feedProfiles 5 - 8 No motion

Warning!With factory setting the motor must be off load, i.e. it must not be mechanicallyconnected to the machine.

Page 99: ba93ku_gb.pdf

Configuration

8-24

BA

9300KS

1198

8.7.2C

onfig

uration

C0005

=10000

camp

rofiler

(seechapter5.8)

8.7.3C

onfig

uration

C0005

=11000

weld

ingb

ard

rive

11000_0

+

2 8

E 1

E 2

E 3

E 4

E 5

A 1

A 2

A 3

A 4

12

34

7

6 26 3

7

X 5 X 5

X 6

X 6

X 1 0X 9

C u r v e s e l e c t i o n

( C S E L 1 )

S t r e t c h i n g X - a x i sC u r v e d a t a

( C D A T A )

C u r v e c o n t r o l

( C C T R L )

C o n t o u r i n g e r r o r

( C E R R 1 )

M o t o r c o n t r o l

( M C T R L )

T r i p

C o n t o u r i n g e r r o r

R D Y

W e l d i n g t i m ee r r o r

N a c t

M a c t

G N D

C t r l . E n a b l e

E v e n t p r o f i l e

P r o f i l e * 1

P r o f i l e * 2

P r o f i l e * 3

T r i p - R e s e t /C u r v ea c c e p t a n c e

G N D

D r i v e c o n t r o l

( D C T R L )

W e l d i n g t i m ei n f l u e n c e

( W E L D )

+x

C 1 3 0 0 - C 1 3 1 7

C 0 4 7 2 / 2

C 0 4 7 2 / 3

C 1 4 2 0

x

C 0 4 7 2 / 4

C 1 3 8 0 / 1 , 2

x

C 0 0 2 5

R e s o l v e r

E n c o d e r

X 7

X 8

M a s t e rv a l u e C 0 4 2 5

C 0 0 0 6 , C 0 0 1 1 ,C 0 0 2 2 , C 0 0 7 0 ,C 0 0 7 1 , C 0 0 8 6 ,C 0 1 0 5 , C 0 2 5 4

C 0 4 2 0

C 0 4 9 0

C 0 4 9 5

C 1 4 7 7 / 2

C 1 4 7 6 / 1

C 1 4 7 6 / 1 6

C 4 7 4 / 1

C 4 7 3 / 1 0

( - 1 )

Page 100: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-25

Code DescriptionC0005=11000 This configuration enables the operation of a welding bar with variable welding time. The min.

limits of the three phases: closing, welding and opening are monitored. If the value falls belowthese limits, a fault signal will be generated.

- Master valueC0425 Encoder constant for the master valueC1300-C1317 The cam profile data are determined by the generation of this data and do not need to be

changed separately.C1420 Determines which profile is processed when the event input (digital input E1 = LOW level) is

activated.- Contouring error evaluationC1380/1 andC1380/2

Determine the comparison window and hysteresis of the contouring error evaluation

- AdjustmentC0472/2 Speed precontrol influenceC0472/3 Torque precontrol influenceC1477/2 Contouring error limit (in s_units)C0472/4 Reduction factor for contouring error warning, warning limit = C0472/4 x C1477/2Cam profile influenceC1476/1 Phase trimming in X-directionC1476/16 TOUCH-PROBE position in X-directionC0472/9 Stretching/compression of the Y-axisC0472/10 Torque limit valueC0474/1 Welding time setting (incr. 1 ms)

Page 101: ba93ku_gb.pdf

Configuration

8-26

BA

9300KS

1198

8.7.4C

onfig

uration

C0005

=12000

Op

eration

with

po

sition

mem

ory

K12000

+x

2 8

E 1

E 2

E 3

E 4

E 5

A 1

A 2

A 3

A 4

12

34

7

6 26 3

7

X 5 X 5

X 6X 6

X 1 0X 9

C u r v e s e l e c t i o n

( C S E L 1 )

S t r e t c h i n g X - a x i sC u r v e d a t a

( C D A T A )

C u r v e c o n t r o l

( C C T R L )

C o n t o u r i n g e r r o r

( C E R R 1 )

M o t o r c o n t r o l

( M C T R L )

T r i p

C o n t o u r i n g e r r o rR D Y

P o s i t i o n e r r o r

N a c t

M a c t

G N D

C t r l . e n a b l e

E v e n t p r o f i l e

P r o f i l e * 1

P r o f i l e * 2

P r o f i l e * 3

T r i p - R e s e t /C u r v e a c c e p t a n c e

G N D

D r i v e c o n t r o l

( D C T R L )

C 1 4 7 7 / 1

C 0 4 7 2 / 1

S t r e t c h i n g Y - a x i s

( Y S E T 1 )

+x

C 1 4 7 6 / 1C 1 3 0 0 - C 1 3 1 7

C 0 4 7 2 / 2

C 0 4 7 2 / 3

C 1 4 2 0

x

( - 1 )

C 0 4 7 2 / 4

C 1 3 8 0 / 1 , 2

x

C 0 0 2 5

R e s o l v e r

E n c o d e r

X 7

X 8

M a s t e r v a l u eC 0 4 2 5

C 0 0 0 6 , C 0 0 1 1 ,C 0 0 2 2 , C 0 0 7 0 ,C 0 0 7 1 , C 0 0 8 6 ,C 0 1 0 5 , C 0 2 5 4

C 0 4 2 0

C 0 4 9 0

C 0 4 9 5

C 1 4 7 7 / 2

P o s i t i o n m e m o r y

( P S A V E )

C 1 4 3 0 / 1 , 2C 1 4 3 1

S i n e - c o s i n e -a b s o l u t e v a l u e e n c o d e r

D C T R L

P S A V E

C 1 4 7 6 / 1 6

C 0 4 7 4 / 1

C 0 4 7 4 / 1

An

incremental

encodershould

notbe

usedas

afeedback

systemw

iththis

configuration.

Page 102: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-27

Code DescriptionC0005=12000 With this configuration and when using an absolute feedback system (resolver or sin/cos

absolute value encoder) the position value of the motor shaft can be stored when switching offthe mains. After reconnection, the actual values are compared with the stored values.

- Master valueC0425 Encoder constant of the master value- Cam dataC1300-C1317 The cam profile data are determined by the generation of this data and do not need to be

changed separately.C1420 Determines, which profile is processed when the event input (digital input E1 = LOW level) is

activated.- Contouring error evaluationC1380/1 andC1380/2

Determine the comparison window and hysteresis of the contouring error evaluation

- AdjustmentC0472/2 Speed precontrol influenceC0472/3 Torque precontrol influenceC1477/2 Contouring error limit (in s_units)C0472/4 Reduction factor for contouring error warning, warning limit = C0472/4 x C1477/2- Cam profile influenceC1472/1 Stretching/compression X-axis (100% = no stretching / compression)C1476/1 Phase trimming in X-directionC1477/1 Phase trimming in Y-direction- Position memoryC1430/1.2 Tolerance window of the comparison functionsC1431 Determination of the values to be stored (master and/or actual value)C1476/16 TOUCH-PROBE position in X-directionC472/9 Stretching/compression of the Y-axisC472/10 Torque limit value

8.7.5 Basic configuration C0005 = 1xXxx

8.7.5.1 Configurations 1X0XX: No additional functionThe signal flow corresponds to the basic functions describes in chapters X.1 - X.3.

Page 103: ba93ku_gb.pdf

Configuration

8-28 BA9300KS1198

8.7.5.2 Configurations 1X1XX: Homing function

C o n t o u r i n g e r r o r

( C E R R 1 )

M o t o r c o n t r o l

( M C T R L )

C 0 4 7 2 / 2

C 0 4 7 2 / 3 ( - 1 )

C 0 4 7 2 / 4

C 1 3 8 0 / 1 , 2

C 0 0 0 6 , C 0 0 1 1 ,C 0 0 2 2 , C 0 0 7 0 ,C 0 0 7 1 , C 0 0 8 6 ,C 0 1 0 5 , C 0 2 5 4

C 1 4 7 7 / 2

C u r v e c o n t r o l

( C C T R L )

x

x

S t a r t h o m i n g

H o m i n g l a b e l

C 1 4 7 7 / 5

( R E F C )

H o m i n g f u n c t i o n

FIG 7-1 Signal-flow chart section with homing function

Digital term. X5 Analog term. X6Input Function Input FunctionTerminal 28 Ctrl. enable Terminals 1, 2E1 Event profile Terminals 3, 4E2 Profile *1E3 Start homingE4 Homing labelE5 Trip reset / profile acceptance

Output Function Output FunctionA1 Trip Terminal 62 Actual speedA2 Contouring error Terminal 63 Actual torque valueA3 RDYA4 Homing O.K.

Additionally relevant codes:C1477/5 Home position

Parameters of the FB REFC:C0011 Max. speed nmax

Page 104: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-29

8.7.5.3 Configurations 1x2xx: Clutch function

C o n t o u r i n g e r r o r

( C E R R 1 )

M o t o r c o n t r o l

( M C T R L )

C 0 4 7 2 / 2

C 0 4 7 2 / 3 ( - 1 )

C 0 4 7 2 / 4

C 1 3 8 0 / 1 , 2

C 0 0 0 6 , C 0 0 1 1 ,C 0 0 2 2 , C 0 0 7 0 ,C 0 0 7 1 , C 0 0 8 6 ,C 0 1 0 5 , C 0 2 5 4

C 1 4 7 7 / 2

C u r v e c o n t r o l

( C C T R L )

x

x

E n g a g ec l u t c h

O v e r l o a dl i m i t v a l u e

C 1 4 7 7 / 5

C l u t c h f u n c t i o n

( C L U T C H )

FIG 7-2 Signal-flow chart section with clutch function

Digital term. X5 Analog term. X6Input Function Input FunctionTerminal 28 Ctrl. enable Terminals 1, 2E1 Event profile Terminals 3, 4E2 Profile *1E3 Profile *2E4 Engage clutchE5 Trip reset / profile acceptance

Output Function Output FunctionA1 Trip Terminal 62 Actual speedA2 Contouring error Terminal 63 Actual torque valueA3 RDYA4 Clutch open

Additionally relevant codes:C1477/5 Home position

Parameters of the FB Clutch:C1410 Clutch modeC1411 Max. speedC1412/1 Open time rampC1412/2 Ramp profile generatorC1412/3 Time delay overloadC1413 Catch hysteresis

Page 105: ba93ku_gb.pdf

Configuration

8-30 BA9300KS1198

8.7.5.4 Configurations 1x3xx: Switch points (cam switching)

C o n t o u r i n g e r r r o r

( C E R R 1 )

M o t o r c o n t r o l

( M C T R L )

( - 1 )

C 0 4 7 2 / 4

C 1 3 8 0 / 1 , 2

C 0 0 0 6 , C 0 0 1 1 ,C 0 0 2 2 , C 0 0 7 0 ,C 0 0 7 1 , C 0 0 8 6 ,C 0 1 0 5 , C 0 2 5 4

C 1 4 7 7 / 2

S w i t c h p o i n t s

( S P C )

FIG 7-3 Signal-flow chart section with switch points

Digital term. X5 Analog term. X6Input Function Input FunctionTerminal 28 Ctrl. enable Terminals 1, 2E1 Event profile Terminals 3, 4E2 Profile *1E3 Profile *2E4 Profile *4E5 Trip reset / profile acceptance

Output Function Output FunctionA1 Trip Terminal 62 Actual speedA2 Contouring error Terminal 63 Actual torque valueA3 RDYA4 Switch point 1

Additionally relevant codes:C1476/x or C1477/x can be used as switch point values

Parameters of the FB SPC1 / SPC2:C1645 SPC1 modeC1655 SPC2 modeC1657/1 ... 4 SPC2 dead timeC1658 SPC2 HysteresisC1659 Filtering

Page 106: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-31

8.7.5.5 Configurations 1x8xx: Mark-controlled correction of themaster value

Changed terminal assignmentE1 EventE2 Profile *1E3 Profile *2E4 Trip reset / profile acceptanceE5 TOUCH-PROBE signal input

C1476/16 TOUCH-PROBE position X

8.7.5.6 Configurations 1x9xx: Mark-controlled correction of theactual value

Changed terminal assignmentE1 EventE2 Profile *1E3 Profile *2E4 TOUCH-PROBE signal input: XE5 TOUCH-PROBE / profile acceptance: Y

C1477/16 TOUCH-PROBE position : Y

Page 107: ba93ku_gb.pdf

Configuration

8-32 BA9300KS1198

8.8 Monitoring

Various monitoring functions protect the drive from impermissible operatingconditions.

If a monitoring function is activated,

- the corresponding preset reaction is triggered (see chapter 8.8.1).

- a digital output is set, if it is assigned to the corresponding reaction.

- the fault identification is entered in position 1 in the history buffer (see chapter9.2).

8.8.1 Reactions

The controller can react to interference in four different ways:

- TRIP (highest priority)

- Message

- Warning

- OFF=no reaction (lowest priority)

It is possible to predetermine the controller reactions for someoperating faults (seechapter 8.8.2).

TRIP

Status indications of the operating module in case of TRIPRDY IMP FAILP 3 3

3 : on P : off ★ : blinking

Drive behaviour:

- Switches the power outputs U, V, W to a high resistance until TRIP is reset

- The drive is idling (no control!).

- After TRIP reset (see chapter 9.4) the drive moves to its setpoint along theset ramps.

Page 108: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-33

Message

Status indications of the operating module in the event of a messageRDY IMP FAILP 3 3

3 : on P : off ★ : blinking

Drive behaviour:

- Switches the power outputs U, V, W to a high resistance as long as the faultis active.

- Short-term fault $ 0.5 s:- The drive is idling (no control!), as long as the fault is active.- If the fault is eliminated, the drive moves to its setpoint with maximum

torque.

- long-term fault � 0.5 s- The drive is idling (no control!) as long as the fault is active- Homing points are lost- If the fault is elminated, the drive moves to its setpoint along the set ramps.

Danger!The drive restarts automatically after the fault has been eliminated.

Warning

Status indication of the operating module in the event of a warningRDY IMP FAIL3 P 3

3 : on P : off ★ : blinking

Drive behaviour:

- The drive operates under control.

OFF

- No reaction to operating faults! Monitoring is deactivated.

Stop!If monitoring functions are deactivated, the drive can be destroyed.

Page 109: ba93ku_gb.pdf

Configuration

8-34 BA9300KS1198

8.8.2 Monitoring functionsOverview of the fault sources detected by the controller and the correspondingreactions.

Fault indication Possible reactions

Display LECOM Meaning T M W off CodeCCr T: 71 System fault - - - - -CDE T: 220 Data error - - - - -CDE W: 2221 Data error warning - - - - -CE0 T: 61

W: 2061Communication error (AIF) T - T - C0126

CE1 T: 62W: 2062

Communication error at the process data input objectCAN-IN1 (time monitoring can be set under C0357/1)

T - T - C0591

CE2 T: 63W: 2063

Communication error at the process data input objectCAN-IN2 (time monitoring can be set under C0357/2)

T - T - C0592

CE3 T: 64W: 2064

Communication error at the process data input objectCAN-IN3 (time monitoring can be set under C0357/3)

T - T - C0593

CE4 T: 65W: 2065

BUS-OFF state (many communication errors occurred) T - T - C0595

EEr T: 91W: 2091M: 1091

External monitoring - T T T C0581

H05 T: 105 Internal fault - - - - -H07 T: 107 Internal fault - - - - -H10 T: 110

W: 2110Sensor fault: heat sink temperature - - - T C0588

H11 T: 111W: 2111

Sensor fault: indoor temperature - - - T

LP1 T: 32 Motor phase failure detection (function block must be en-tered in C0465)

T - T - C0597

LU M: 1030 Undervoltage - - - - -NMAX T: 200 Maximum speed exceeded (C0596) - - - - -OC1 T: 11 Short-circuit - - - - -OC2 T: 12 Earth fault - - - - -OC5 T: 15 I x t overload - - - - -OH T: 50 Heat sink temperature 1 (max. permissible, fixed) - - - - -OH3 T: 53 Motor temperature 1 (max. permissible, fixed) - - - T C0583OH4 W: 2054 Heat sink temperature 2 (adjustable; C0122) - - - T C0582OH7 W: 2057 Motor temperature 2 (can be set; code: C0121) - - - T C0584OH8 T: 58

W: 2058Motor temperature (fixed) via inputs T1/T2 T - T* - C0585

OU M: 1020 Overvoltage on the DC bus - - - - -P03 T: 153

W: 2153Contouring error T - - T C0589

P13 T: 163W: 2163

Phase overflow - - T T C0590

P16 T: 166W: 2166

Sync error T - T T C1290/1

PEr T: 74 Program error - - - - -PI T: 79 Fault during initialization - - - - -PR0 T: 75 General fault in parameter sets - - - - -PR1 T: 72 Fault in parameter set 1 - - - - -PR2 T: 73 Fault in parameter set 2 - - - - -PR3 T: 77 Fault in parameter set 3 - - - - -

Page 110: ba93ku_gb.pdf

Configuration

BA9300KS1198 8-35

Fault indication Possible reactions

Display CodeoffWMTMeaningLECOMPR4 T: 78 Fault in parameter set 4 - - - - -Sd2 T: 82

W: 2082Resolver fault - - T* T C0586

Sd3 T: 83W: 2083

Encoder fault at X9 PIN 8 T - T* - C0587

Sd5 T: 85W: 2085

Encoder fault at X6/1 X6/2 (C0034 = 1) T - T - C0598

Sd6 T: 86W:2086

Sensor fault: motor temperature (X7 or X8) - - T T C0594

Sd7 T: 87 Fault in the absolute value encoder at X8 T - - - C0025

T: TRIP M: Message W: Warning -: Lenze T: possible -: not possibleT*: possible, but the motor can be destroyed if the fault is not removed immediately.

Note!The information in the column ”LECOM” is read from C0168/x, if the history bufferis accessed via a fieldbus module.

Overcurrent diagram for fault message ”OC5”

200%

150%

100%

70%

10s 60s 120s 180s

Time

Controller output current *

Ixt - diagram (100% load)

for C0022$ 150 Irx70% thermal continuous current

for C0022� 150% Irx

* rated controller current 100%

x depends on the chopper frequency of the inverter

100% thermal continuous current

K35.0151

FIG 8-7 Max. permissible overcurrent depending on the time

Page 111: ba93ku_gb.pdf

Configuration

8-36 BA9300KS1198

8.8.3 Fault indication via digital output

In the function block DIGOUT the fault messages TRIP, message and warning canbe assigned to the digital outputs (e. g. terminals X5/A1¤X5/A4).

Display TRIP or Message or Warning individually (individual indication):

1. Select digital output in the code level under C0117 and subcode.

2. Assign TRIP or Message or Warning in the parameter level.

Display TRIP, Message, Warning collectively (collective indication):

1. Assign TRIP, message and warning to an OR-element.

2. Select digital output in the code level under C0117 and subcode.

3. Assign output of the OR-element in the parameter level.

Display monitoring functions individually:

1. Select digital output in the code level under C0117 and subcode.

2. Assign monitoring function (e.g. MONIT-OH7).

Page 112: ba93ku_gb.pdf

Troubleshooting and fault elimination

BA9300KS1198 9-1

9 Troubleshooting and fault elimination- Operational faults are indicated immediately via the display elements or the

status information (chapter 9.1).

- Faults can be analysed using the history buffer (chapter 9.2) and the list inchapter 9.3.

- The list in chapter 9.3 gives information on how to eliminate faults.

9.1 Troubleshooting

Display on the controller

Tow LEDs on the front of the controller indicate the controller status.

LED green LED red Check

3 P Controller enabled; no fault

★ P C0183; evtl. C0168/1

P ★ C0168/1

3 : on P : off ★ : blinking

Display in Global Drive Control

- Open ”Dialog Diagnostics” in the parameter menu by a double click.

FIG 8-8 Dialog box ”Diagnostics 9300”

- The dialog box ”Diagnostics 9300” indicates the controller state.

Page 113: ba93ku_gb.pdf

Troubleshooting and fault elimination

9-2 BA9300KS1198

Display at the operating module

Status indications in the display indicate the controller status.

FAIL = 3 : TRIP or Meldung or Warnung is active

FAIL RDY IMP Check

P 3 P Controller enabled; no fault

3 P 3 C0168/1

P P 3 C0183

P 3 3 C0183

3 3 P C0168/1

3 3 3 C0168/1

3 : on P : off

Display via the LECOM status word C0150

Four bits of the status word indicate the controller state.

Bit 7Ctrl. enable

Bit 12Warning

Bit 13Message

Bit 15Ready foroperation

Check

1 0 0 1 C0183

1 1 1 0 C0168/1

0 1 0 1 C0168/1

1 0 1 1 C0168/1

0 1 0 1 C0168/1

Page 114: ba93ku_gb.pdf

Troubleshooting and fault elimination

BA9300KS1198 9-3

9.2 Fault analysis with the history buffer

- The history buffer is used to trace faults.

- Fault messages are stored in the history buffer in the order of their ocurrence.

- Open ”Dialog Diagnostics” in the parameter menu by a double click.

)HOG � )HOG � )HOG �

FIG 8-9 Dialog box ”Diagnostics 9300”

9.2.1 Structure of the history buffer

- The history buffer provides 8 memory locations. The fields under ”faulthistory” show the memory locations 2 to 7.

- The fields under ”Actual fault” show memory location 1. It containsinformation on the active fault.- The first memory location is written only after the elimination or

acknowledgement of the active fault. This entry eliminates the last faultfrom the history buffer so that it can no longer be read.

- The history buffer provides three information units for every fault occurred.The fields under ”Actual fault” and ”Fault history” have the following meaning:- Field 1: Fault recognition and reaction- Field 2: Instant of fault- Field 3: Frequency of fault

Page 115: ba93ku_gb.pdf

Troubleshooting and fault elimination

9-4 BA9300KS1198

The following table shows the assignment of information and codes.

Code and information to be retrieved Memory location

C0168 C0169 C0170 Subcode1 Active fault2 History buffer location 1

Freq ency of the 3 History buffer location 2

Fault recognition Time of the lastFrequency of theimmediately 4 History buffer location 3Fault recognition

and reactionTime of the lastoccurrence

immediatelyfollowing 5 History buffer location 4goccurrence 6 History buffer location 5

7 History buffer location 68 History buffer location 7

Page 116: ba93ku_gb.pdf

Troubleshooting and fault elimination

BA9300KS1198 9-5

9.2.2 Working with the history buffer

- Open ”Dialog Diagnostics” in the parameter menu by a double click.

)HOG � )HOG � )HOG �

FIG 8-10 Dialog box ”Diagnostics 9300”

Fault recognition and reaction (field 1)

- Contains the fault recognition for every memory location and the reaction tothe fault.- e.g. ”OH3 TRIP”- With a fieldbus, the faults are indicated by a fault number (see chapter 9.3,

column 2).

Please note:

- For faults occuring at the same time with different reactions:- Only the fault of which the reaction has highest priority is input in the

memory. (Priority = TRIP � message � warning � FAIL-QSP).

- For faults occuring at the same time and with the same reaction(e.g. 2 messages):- Only the fault which occured first is input.

Page 117: ba93ku_gb.pdf

Troubleshooting and fault elimination

9-6 BA9300KS1198

)HOG � )HOG � )HOG �

FIG 8-11 Dialog box ”Diagnostics 9300”

Time (field 2)

- Contains the times when the faults occurred- e.g. ”1234567 s”- Reference time is the mains switch-on time (see FIG 8-11, field top right).

Please note:

- If a fault is immediately followed by another several times, only the time of thelast occurrence is stored.

Frequency (field 3)

- Contains the frequency of a fault immediately followed by the same fault.Thetime of the last occurrence is stored.

Reset fault

- Click on the ”TRIP reset” button.

Delete history buffer

- This function is possible only when no fault is active.

- Click on the ”fault memory reset” button.

Page 118: ba93ku_gb.pdf

Troubleshooting and fault elimination

BA9300KS1198 9-7

9.3 Fault messages

1RWH�If the fault indication is requested byafieldbus, the fault indication is represented bya fault number (C0168/x). See column 2 and the footnote at the end of this table.

Display Fault-No.2)

Fault Cause Remedy

--- --- No fault - -CCr 71 System fault Strong interference on control cables

Ground or earth loops in the wiringScreen the control cablesPE wiring (see chapter 4.3 ”Installation ofa CE-typical drive system”)

CDE 220 Data error Attempt to accept faulty data New data transfer2221 Data error warning The checksum of the data transferred is

not correctNew data transfer and check

CE0 61 Communication error Interference during transmission of controlcommands via automation interface X1

Plug in automation module firmly, boltdown, if necessary

CE1 62 Communication error atthe process data inputobject CAN_IN_1

CAN_IN_1 object receives faulty data orcommunication is interrupted

Check cable at X4Check transmitterIncrease monitoring time under C0357/1if necessary

CE2 63 Communication error atthe process data inputobject CAN_IN_2

CAN_IN_2 object receives faulty data orcommunication is interrupted

Check cable at X4Check transmitterIncrease monitoring time under C0357/2if necessary

CE3 64 Communication error atthe process data inputobject CAN_IN_3

CAN_IN_3 object receives faulty data orcommunication is interrupted

Check cable at X4Check transmitterIncrease monitoring time under C0357/3if necessary

CE4 65 BUS-OFF state Controller has received too many incorrecttelegrams by system bus X4 and hasdisconnected from the bus

Check wiringCheck bus terminator (if any)Check screen contact of the cablesCheck PE connectionCheck bus load:Reduce baud rate (observe cable length)

EEr 91 External fault (TRIP-Set) A digital input assigned to the TRIP-Setfunction has been activated.

Check external encoder

H05 105 Internal fault Contact LenzeH07 107 Incorrect power stage During initialization of the controller, an

incorrect power stage was detectedContact Lenze

H10 110 Sensor fault heat sinktemperature

Sensor of the heat sink temperaturedetection indicates undefined values

Contact Lenze

H11 111 Senso fault indorrtemperature

Sensor of indoor temperature detectionindicates undefined values

Contact Lenze

LP1 32 Motor phase failure A current-carrying motor phase has failed Check motor;Check supply cables

The current limit is set too low Set a higher current limit under C0599This monitoring is not suitable for:- Synchronous servo motors- at field frequencies > 480 Hz

Deactivate monitoring with C0597= 3

LU 30 Undervoltage DC bus voltage is smaller than the valuefixed under C0173

Check mains voltageCheck supply cable

Page 119: ba93ku_gb.pdf

Troubleshooting and fault elimination

9-8 BA9300KS1198

Display RemedyCauseFaultFault-No.2)

N MAX 200 Max. plant speedexceeded (C0596)

Active load (e.g. for hoists) too highDrive is not speed-controlled, torqueexcessively limited.

Check drive dimensioning.Increase torque limit if necessary.

OC1 11 Short-circuit Short-circuit.Excessive capacitive charging current ofthe motor cable.

Find out cause of short-circuit; checkcable.Use motor cable which is shorter or oflower capacitance.

OC2 12 Earth fault One of the motor phases has earthcontact.Excessive capacitive charging current ofthe motor cable.

Check motor; check cable.Use motor cable which is shorter or oflower capacitance.

OC5 15 I x t overload Frequent and too long acceleration withovercurrentContinuous overload with Imotor > 1.05 xIrx.

Check drive dimensioning.

OH 50Heat sink temperature ishigher than the value setin the controller

Ambient temperatureT amb > 40 �C or 50 �C.

Allow controller to cool and ensure betterventilation.Check ambient temperature in the controlcabinet.

in the controllerHeat sink very dirty.Incorrect mounting position.

Clean heat sinkChange mounting position.

OH3 1) 53Heat sink temperature ishigher than the value set

Motor too hot because of excessivecurrent or frequent and too longacceleration

Check drive dimensioning.

OH3 ) 53 higher than the value setin the controller No PTC connected. Connect PTC or switch-off monitoring

(C0583=3).

OH4 54Heat sink temperature ishigher than the value set

Ambient temperatureT amb > 40 �C or 50 �C.

Allow controller to cool and ensure betterventilation.Check ambient temperature in the controlcabinet.OH4 54 higher than the value set

under C0122. Heat sink very dirty. Clean heat sinkunder C0122.Incorrect mounting position. Change mounting position.Value set under C0122 was too low. Enter higher value.

OH7 1) 57Motor temperature ishigher than the val e set

Motor too hot because of excessivecurrent or frequent and too longacceleration

Check drive dimensioning.

OH7 1) 57 higher than the value setunder C0121. No PTC connected. Connect PTC or switch-off monitoring

(C0584=3).Value set under C0121 was too low. Enter higher value.

OH8 58PTC at terminals T1, T2indicates motor over-

Motor too hot because of excessivecurrent or frequent and too longacceleration

Check drive dimensioning.

OH8 58 indicates motor overheat. Terminals T1, T2 are not assigned. Connect PTC or thermal contact or switch

off monitoring (C0585=3).OU 20 Overvoltage Excessive brake energy (DC bus voltage

higher than set under C0173).Use brake module or energy recoverymodule.

P01 151 Limit switch negative Negative limit switch was reached. Control drive in positive direction. Checkterminal connection X5/E2.

P02 152 Positive limit switch Positive limit switch was reached. Control drive in negative direction. Checkterminal connection X5/E1.

P03 153 Contouring error

Phase difference between set and actualposition is larger than the contouring errorlimit set under C0255.

Extend contouring error limit under C0255Switch off the monitoring if necessary(C0589 = 3).P03 153 Contouring error

Drive cannot follow the digital frequency(I max limit).

Check drive dimensioning.

Page 120: ba93ku_gb.pdf

Troubleshooting and fault elimination

BA9300KS1198 9-9

Display RemedyCauseFaultFault-No.2)

P04 154 Negative position limit Negative position limit (C1224) was notreached.

Find out why the value was not reached(e.g. ”incorrect” position targets, setfunction position value) and adjust thenegative position limit (C1224) ifnecessary.

P05 155 Positive position limit Positive position limit (C1223) wasexceeded.

Find out why the value was exceeded(e.g. ”incorrect” position targets, setfunction position value) and adjust thepositive position limit (C1223) ifnecessary.

P06 156 No reference The homing point is unknown. Forabsolute positioning no homing wasperformed before the first positioning.

Perform one of the following functionsand restart:- Manual homing.- Start homing in the program.- Set reference.

P07 157 PS Absolute modeinstead of relative mode.

An absolute PS (C1311) was performedduring relative positioning (position modeC1210).

Perform one of the following functionsand restart:- Change from absolute PS to relative PS.- Change position mode.

P08 158 Actual offset out ofrange.

Actual home offset (C1226) out of positionlimits.Fault of the program function ”Setposition value”.

Adjust position limits if necessary, orcheck whether program function ”Setposition value” is to be applied.

P09 159 Impermissibleprogramming

Impermissible programming Check position program:- After a PS with final speed a PS with

positioning has to follow; waiting forinput is not permissible.

P12 162 Encoder range The range of the absolute encoder wasexceeded.

Return drive by manual positioning. Checkposition limits and adjustment of theencoder. The absolute encoder has to bedimensioned and mounted such that itsrange is not exceeded over the completepositioning range.

P13 163 Phase overflow Phase controller limit reachedDrive cannot follow the digital frequency(Imax limit).

Enable driveCheck drive dimensioning

P14 164 Contouring error The drive cannot follow the set-value.Contouring error is larger than limit valuein C1218/1.

- Increase current limit C0022 (observemax. motor current).

- Reduce acceleration.- Check drive dimensioning.- Increase limit value under C1218.

P15 ? Contouring error The drive cannot follow the set-value.Contouring error is higher than limit valuein C1218/2.

- Increase current limit C0022 (observemax. motor current).

- Reduce acceleration.- Check drive dimensioning.- Increase limit value under C1218.

Sync telegram from master (PLC) is out oftime pattern. *

Set C1121 (Sync cycle) to thetransmission cycle of the master (PLC).

Transmission error of a

Sync telegram of master (PLC) is notreceived. *

- Check communication channel.- Check baud rate, controller address.

P16 166Transmission error of asynch telegram on thesystem bus.

Controller enable (RFR) too soon. Enable controller with delay. The requireddelay depends on the time between thesynch telegrams.

* C0362 shows the time between twosynch telegrams (C0362 = 0,communication interrupted).

Page 121: ba93ku_gb.pdf

Troubleshooting and fault elimination

9-10 BA9300KS1198

Display RemedyCauseFaultFault-No.2)

P17 167 TP control error Simultaneous use of the TP input bydifferent function blocks (e.g. FB DFSETand POS).A conflict occurs.

Configure another TP input for FB POS(not possible for DFSET) or switch offmonitoring under C0580.

PEr 74 Program interference A fault in the program was detected. Send controller with data (on diskette) toLenze.

PI 79 Initializing error A fault was detected during transfer ofparameter set between the controllersParameter set does not match controller.

Correct parameter set.

PR0PR1

7572

Parameter set error Fault when loading a parameter set.CAUTION:The factory setting loaded automatically.

Set the required parameters and storethem under C0003.For PRO the supply voltage must beswitched off additionally.

Sd2 82 Resolver fault Resolver cable interrupted. Check the resolver cable for open circuitCheck resolver.or switch off monitoring (C0586 = 3).

Sd3 83 Encoder fault at X9/8 Cable interrupted.Input X9 PIN 8 not assigned.

Check cable for open circuit.Assign input X9 PIN 8 with 5V or switchoff monitoring (C0587 = 3).

Sd5 85 Master current sourcedefective

Master current at X6/1 X6/2 < 2mA. Check cable for open circuit.Check master current source.

Sd6 86 Sensor fault Encoder of the motor temperaturedetection at X7 or X8 indicates indefinitevalues.

Check supply cable for firm connection.Switch off monitoring with C0594 = 3, ifnecessary.

Sd7 87 Encoder fault Absolute encoder with RS485 interfacedoes not transmit data.

Check supply cable.Check encoder.Check voltage supply C0421.No Stegmann encoder connected.

1) Temperature detection via resolver or incremental encoder.

2) Displayed value = {Fault No.} + 0 TRIP= {Fault No.} + 1000 Message= {Fault No.} + 2000 Warning= {Fault No.} + 4000 FAIL-QSP

Page 122: ba93ku_gb.pdf

Troubleshooting and fault elimination

BA9300KS1198 9-11

9.4 Reset of fault messages

TRIP

- After eliminating the fault, the pulse inhibit is only reset afteracknowledgement of TRIP.

- Acknowledge TRIP by:- Global Drive Control:

Click on the ”TRIP reset” button in the dialog box ”Diagnostics 9300”(see chapter 9.2.2).

- Keypad 9371 BB:Press STOP key.Then press RUN to enable the controller again.

- Fieldbus module: Set C0043 = 0- Control word C0135- Terminal X5/E5- Control word AIF- Control word system bus (CAN)

Note!If a TRIP source is still active, TRIP cannot be reset.

Message

- After eliminating the fault, the pulse inhibit is reset automatically.

Warning!After eliminating the fault, the drive starts automatically.

Page 123: ba93ku_gb.pdf

Troubleshooting and fault elimination

9-12 BA9300KS1198

FAIL-QSP

- After eliminating the fault, the pulse inhibit is only reset afteracknowledgement of TRIP.

- Acknowledge TRIP by:- Global Drive Control:

Click on the ”TRIP reset” button in the dialog box ”Diagnostics 9300”(see chapter 9.2.2).

- Bedienmodul 9371 BB:Press STOP key.Then press RUN to enable the controller again.

- Fieldbus module: Set C0043 = 0- Control word C0135- Terminal X5/E5- Control word AIF- Control word system bus (CAN)

Note!If a TRIP source is still active, TRIP cannot be reset.

Message

- After eliminating the fault, the pulse inhibit is reset automatically.

Page 124: ba93ku_gb.pdf

Maintenance

BA9300KS1198 10-1

10 Maintenance- The controller is free of maintenance if the prescribed conditions of operation

are observed (see chapter 3.2).

- If the ambient air is polluted, the air vents of the controller may be obstructed.Check the air vents periodically (depending on the degree of pollutionapprox.Therefore, check the air vents in regular intervals (according to thedegree of pollution approx. every four weeks):- Free the obstructed air vents using a vacuum cleaner.

6WRS�Do not use sharp or pointed tools such as knives or screwdrivers to clean the airvents.

Page 125: ba93ku_gb.pdf

Maintenance

10-2 BA9300KS1198

Page 126: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-1

11 Appendix

11.1 Accessories

For controllers, Lenze offers the following accessories:

- Mains filter - Brake modules, brake choppers- Fuses - Brake resistors- Fuse holders - Regenerative power supply units- System cable for resolver - Fieldbus modules- System cable for digital frequency

connection

A PC can be connected to the controller via the fieldbus module LECOMA/B(RS232, RS485 or fibreoptics). TheGlobalDriveControl (GDC)PC program allowsa simple programming of the controller.

Global Drive Control (GDC) PC program

The program runs under Windows and is supplied with drivers for LECOMA/B(RS232, RS485 or fibre optics).

Further functions of the PC program:

- Process signal visualization - System bus-I/O extension- Diagnostics and troubleshooting - Hand terminal 9372- Commissioning assistance - PC interface for system bus

communication 9373

Page 127: ba93ku_gb.pdf

Appendix

11-2 BA9300KS1198

11.2 Code table

How to read the code table:

Column Abbreviation MeaningCode C0039

12¤

1415

Code C0039Subcode 1 of code C0039Subcode 2 of code C0039¤

Subcode 14 of code C0039Subcode 15 of code C0039

[C0005] Parameter value of the code can only be modified when controller is inhibitedLCD CFG:

DIS:Configured value is indicated on the LCD of the keypadOnly displayAll others are: parameter values

Lenze Factory setting of the code* The column “Important” contains further information

Selection 1{1 %}99

Minimum value{smallest step/unit}maximum value

IMPORTANT

Code LCD Possible settings ImportantCode LCDLenze Selection

Important

ABS[C0661] CFG: IN 1000 FIXED 0 % @ Selection list 1 Analog input absolute-value generator

C0662 DIS: C0661 -199.99 {0.01 %} 199.99 Display of C0661ADD

[C0610]123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0% @ Selection list 1 Adds inputs IN1, IN2 and IN3

C0611 DIS: C0610/1 ... 3 -199.99 {0.01 %} 199.99AIF

C01363 DIS: CTRLWORD Control word in AIF-IN

C0151 DIS: FDO (DW) Output signals configured with C0116 Hexadecimal signal assignment of thefree digital outputs.l Binary interpretation indicates the

bit states[C0850]

123

CFG: OUT.W1CFG: OUT.W2CFG: OUT.W3

1000 FIXED 0 % @ Selection list 1 Configuration process output words forautomation interface AIF (X1)

[C0851] CFG: OUT.D1 1000 FIXED 0INC @ Selection list 3 Configuration 32-bit phase information

C0852 Type OUT.W2 0 0 Analog signal1 Digital 0-152 Low phase3 High phase

Configuration process output word 2for automation interface AIF (X1)

C0853 Type OUT.W3 0 0 Analog signal1 Digital 16-312 High phase

Configuration process output word 3for automation interface AIF

C0854 Type OUT.W1 0 0 Analog signal3 D2: Low phase

Configuration process output word 1for automation interface AIF (X1)

C0855 DIS: IN (0-15)DIS: IN (16-31)

Bit 00 {1} Bit 15 Process input words hexadecimal forautomation interface X1

C0856123

DIS: IN.W1DIS: IN.W2DIS: IN.W3

-199.99 {0.01%} 199.99 Process input words decimalDisplay: 100% = 16384

C0857 DIS: IN.D1 -2147483648 {1} 2147483647 32 bit phase information

Page 128: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-3

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0858123

DIS: OUT.W1DIS: OUT.W2DIS: OUT.W3

-199.99 {0.01 %} 199.99 Process output wordsDisplay: 100% = 16384

C0859 DIS: OUT.D1 -2147483648 {1} 2147483647 32-bit phase information[C1195] CFG: OUT.D2

1000@ Selection list 3

FIXED0INCInput phase signal AIF-OUT

C1196 DIS: OUT.D2 -2147483647 {1} 2147483647 Input signal of AIF-OUTC1197 DIS: IN.D2 Input signal of AIF-IN

AINC0034 Mst current 0 0 -10 V ... + 10 V

1 +4 mA ... +20 mA2 -20 mA ... +20 mA

Selection: Master voltage/mastercurrent for set-value input

C0400 DIS: OUT -199.99 {0.01 %} 199.99 Output of AIN1[C0402] CFG: OFFSET

19502@ Selection list 1

FCODE-26/1Configuration offset of AIN1

[C0403] CFG: GAIN19504

@ Selection list 1FCODE-27/1

Configuration gain of AIN1

C040412

DIS: OFFSETDIS: GAIN

-199.99 {0.01 %} 199.99 Input signals of AIN1

C0405 DIS: OUT -199.99 {1 %} 199.99 Output of AIN2[C0407] CFG: OFFSET

19503@ Selection list 1

FCODE-26/2Configuration offset of AIN2

[C0408] CFG: GAIN19505

@ Selection list 1FCODE-27/2

Configuration gain of AIN2

C040912

DIS: OFFSETDIS: GAIN

-199.99 {0.01 %} 199.99 Input signals of AIN2

AND[C0820]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs AND1

C0821 DIS: C082 Display of C0820[C0822]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs AND2

C0823 DIS: C0822 Display of C0822[C0824]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs AND3

C0825 DIS: C0824 Display of C0824[C0826]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs AND4

C0827 DIS: C0826 Display of C0826[C0828]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs AND5

C0829 DIS: C0828 Display of C0828[C1175]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs AND6

C1176 DIS: C1175 Display of C1175

Page 129: ba93ku_gb.pdf

Appendix

11-4 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C1178]123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs AND7

C1179 DIS: C1178 Display of C1178ANEG

[C0700] CFG: IN 19523 FCODE-472/3 @ Selection list 1 Input ANEG1C0701 DIS: C0700 -199.99 {0.01 %} 199.99 Display of C0700

[C0703] CFG: IN 1000 FIXED 0 % @ Selection list 1 Input ANEG2C0704 DIS: C0703 -199.99 {0.01 %} 199.99 Display of C0703

AOUT[C0431] CFG: IN 5001 MCTRL-NACT @ Selection list 1 Input AOUT1[C0432] CFG: OFFSET 19512 FCODE-109/1 @ Selection list 1 Offset AOUT1[C0433] CFG: GAIN 19510 FCODE-108/1 @ Selection list 1 Gain AOUT1

C0434123

DIS: C0431DIS: C0432DIS: C0433

-199.99 {0.01 %} 199.99 Display of C0431 ... C0433

[C0436] CFG: IN 5002 MCTRL-MSET2 @ Selection list 1 Input AOUT2[C0437] CFG: OFFSET 19513 FCODE-109/2 @ Selection list 1 Offset AOUT2[C0438] CFG: GAIN 19511 FCODE-108/2 @ Selection list 1 Gain AOUT2

C0439123

DIS: C0436DIS: C0437DIS: C0438

-199.99 {0.01 %} 199.99 Display of C0436 ... C0438

ARITC0338 ARIT1 funct 1 0 {1} 5 ARIT1 function

0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN24 IN1 / IN25 IN1/(100% -IN2)

[C0339]12

CFG: IN1CFG: IN2

1000 FIXED 0 % @ Selection list 1 Configuration arithmetic block ARIT1

C0340 DIS: C0339 Display of C0339C0600 ARIT2 funct 1 0 {1} 5 ARIT2 function

0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN24 IN1 / IN25 IN1/(100% -IN2)

[C0601]12

CFG: INCFG: IN

1000 FIXED 0 % @ Selection list 1 Analog inputs of ARIT2

C0602 DIS: C0602 -199.99 {0.01 %} 199.99 Display of C0601ARITPH

C1010 Function 1 0 / 1 / 2 / 3 / 13 / 14 / 21 / 22 Function of ARITPH10 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN2 / 230

13 IN1 * IN214 IN1 / IN221 IN1 + IN2 (no limit)22 IN1 - IN2 (no limit)

[C1011]12

CFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Inputs ARITPH1

Page 130: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-5

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C1012 DIS: C1011 -2147483647 {1} 2147483647 Display of C1011C1020 ARITPH2 funct 1 0 / 1 / 2 / 3 / 13 / 14 / 21 / 22 ARITPH2 function

0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN2 / 230

13 IN1 * IN214 IN1 / IN221 IN1 + IN2 (no limit)22 IN1 - IN2 (no limit)

[C1021]12

CFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Inputs ARITPH2

C1022 DIS: C1021 -2147483647 {1} 2147483647 Display of C1021C1025 ARITPH3 funct 1 0 / 1 / 2 / 3 / 13 / 14 / 21 / 22 ARITPH3 function

0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN2 / 230

13 IN1 * IN214 IN1 / IN221 IN1 + IN2 (no limit)22 IN1 - IN2 (no limit)

[C1026]12

CFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Inputs ARITPH3

C1027 DIS: C1026 -2147483647 {1} 2147483647 Display of C1026C1550 ARITPH4 funct 1 0 / 1 / 2 / 3 / 13 / 14 / 21 / 22 ARITPH4 function

0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN2 / 230

13 IN1 * IN214 IN1 / IN221 IN1 + IN2 (no limit)22 IN1 - IN2 (no limit)

[C1551]12

CFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Inputs ARITPH4

C1552 DIS: C1551 -2147483647 {1} 2147483647 Display of C1551C1555 ARITPH5 funct 1 0 / 1 / 2 / 3 / 13 / 14 / 21 / 22 ARITPH5 function

0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN2 / 230

13 IN1 * IN214 IN1 / IN221 IN1 + IN2 (no limit)22 IN1 - IN2 (no limit)

[C1556]12

CFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Inputs ARITPH5

C1557 DIS: C1556 -2147483647 {1} 2147483647 Display of C1556C1560 ARITPH6 funct 1 0 / 1 / 2 / 3 / 13 / 14 / 21 / 22 ARITPH6 function

0 OUT = IN11 IN1 + IN22 IN1 - IN23 IN1 * IN2 / 230

13 IN1 * IN214 IN1 / IN221 IN1 + IN2 (no limit)22 IN1 - IN2 (no limit)

Page 131: ba93ku_gb.pdf

Appendix

11-6 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C1561]12

CFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Inputs ARITPH6

C1562 DIS: C1561 -2147483647 {1} 2147483647 Display of C1561ASW

[C0810]12

CFG: INCFG: IN

551000

@ Selection list 1AIN2-OUTFIXED0%

Analog inputs ASW1

[C0811] CFG: SET 1000 FIXED0 @ Selection list 2 Digital input ASW1C0812 DIS: C0810 -199.99 {0.01 %} 199.99 Display of C0810C0813 DIS: C0811 Display of C0811

[C0815]12

CFG: INCFG: IN

10001000

FIXED0% @ Selection list 1 Analog input ASW2

[C0816] CFG: SET 1000 FIXED0 @ Selection list 2 Digital input ASW2C0817 DIS: C0817 -199.99 {0.01%} 199.99 Display of C0817C0818 DIS: C0816 Display of C0816

[C1160]12

CFG: INCFG: IN

1000 FIXED0% @ Selection list 1 Analog inputs ASW3

[C1161] CFG: SET 1000 FIXED0 @ Selection list 2 Digital input ASW3C1162 DIS: C1160 -199.99 {0.01 %} 199.99 Display of C1160C1163 DIS: C1161 Display of C1161

[C1165]12

CFG: INCFG: IN

1000 FIXED0% @ Selection list 1 Analog inputs ASW4

[C1166] CFG: SET 1000 FIXED0 @ Selection list 2 Digital input ASW4C1167 DIS: C1165 -199.99 {0.01 %} 199.99 Display of C1165C1168 DIS: C1166 Display of C1166

BRKC0195 BRK1 T act 99.9 0.0 {0.1 s} 99.9 Brake closing time

Engagement time of the mechanical holdingbrakel after the time elapsed under C0195, the

status ”mechanical brake closed” is reachedC0196 BRK T release 0.0 0.0 {0.1 s} 60.0 Brake opening time

Disengagement time of the mechanical holdingbrake (Technical data of brakes)l after the time has elapsed under C0196, the

stattus ”mechancial brake open” is reached.C0244 BRK M set 0.00 -100.00 {0.01 %} 100.00 Holding torque of the DC injection

brake100 % = value of C0057

[C0450] CFG: NX 1000 FIXED 0 % @ Selection list 1 Configuration analog input of BRK1[C0451] CFG: ON 1000 FIXED 0 @ Selection list 2 Digital input of BRK1[C0452] CFG: SIGN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of BRK1

C045812

DIS: C0450DIS: C0452

-199.99 {0.01 %} 199.99 Display ofC0450C0452

C0459 DIS: C0451 Display of C0451CAN-IN

C0136123

DIS: CTRLWORDDIS: CTRLWORDDIS: CTRLWORD

Control word in DCTRLControl word in CAN-IN1Control word in AIF-IN

Page 132: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-7

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0863123456

DIS: IN1 dig0DIS: IN1 dig16DIS: IN2 dig0DIS: IN2 dig16DIS:IN3 dig0DIS:IN3 dig16

000000

0 1 Display parameterDIS: IN1 (0-15)DIS: CAN-IN1 (digital 1-16)

C0866123456789

1011

DIS: IN1.W1DIS: IN1.W2DIS: IN1.W3DIS: IN2.W1DIS: IN2.W2DIS: IN2.W3DIS: IN2.W4DIS: IN3.W1DIS: IN3.W2DIS: IN3.W3DIS: IN3.W4

-31-,-36-,-51-

-32768.00 {0.01%} 32767.00 Display parameterDIS: CAN-IN1.W1 (analog)

C086712345

DIS: IN1.D1DIS: IN2.D1DIS: IN3.D1DIS: IN2.D2DIS: IN3.D2

00000

Display parameterDIS: CAN-IN1.D1 (phase)

CAN-OUTC0151 DIS: FDO (DW) output signals configured with C0116 Hexadecimal signal assignment of the free

digital outputs.l binary interpretation indicates the bit states

C0353123

CAN addr sel1CAN addr sel2CAN addr sel3

000

0 {1} 1 Source for CAN bus IN/OUT addresses0 C3501 C354

C0354246

CAN OUT1 addr2CAN OUT2 addr2CAN OUT3 addr2

129258386

1 {1} 513 CAN-Bus OUT node addresses 2

C0355246

CAN-OUT1 IdCAN-OUT2 IdCAN-OUT3 Id

0 {1} 2047 CAN bus identifier

C035623

CAN-OUT2 TCAN-OUT3 T

00

0 {1 ms} 65000 CAN bus time settings

[C0860]123456789

1011

CFG: OUT1.W1CFG: OUT1.W2CFG: OUT1.W3CFG: OUT2.W1CFG: OUT2.W2CFG: OUT2.W3CFG: OUT2.W4CFG: OUT3.W1CFG: OUT3.W2CFG: OUT3.W3CFG: OUT3.W4

50011000100010001000100010001000100010001000

@ Selection list 1

[C0861]123

CFG: OUT1.D1CFG: OUT2.D1CFG: OUT3.D1

1000 @ Selection list 3

Page 133: ba93ku_gb.pdf

Appendix

11-8 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0868123456789

1011

DIS: OUT1.W1DIS: OUT1.W2DIS: OUT1.W3DIS: OUT2.W1DIS: OUT2.W2DIS: OUT2.W3DIS: OUT2.W4DIS: OUT3.W1DIS: OUT3.W2DIS: OUT3.W3DIS: OUT3.W4

-199.99 {0.01%} 199.99

C0869123

DIS: OUT1.D1DIS: OUT2.D1DIS: OUT3.D1

0 -2147483648/ {1} 2147483647 Display: CAN OUT1/OUT2.Dx (phase)

CCTRLC0430

4 TP4 delay 0.2180.000 {0.001ms} 2.000

TP1 delayC1340

12

CFG: NREDCFG: MRED

1000 FIXED 0% @ Selection list 1 1: Gain for speed setpoint precontrol2: Gain for torque setpoint precontrol

C1341 DIS: C1340 -199.99 {0.01%} 199.99 Display of C1340C1342

12345

CFG: RESETCFG: TPINCFG: N2-SETCFG: TPIN/E4CFG: SUB-Y-END

1000 FIXED 0 @ Selection list 2 1: HIGH: Set phase = act. phase-> CCTRL-POUT = 02: External mark to set the position3: HIGH = Input -NSET2 active4: Selection: Input TPING term. X5/E4(TOUCH-PROBE initiator)5: Acceptance for profile end

C1343 DIS: C1342 Display of C1342C1344

12

CFG: Y-ENDCFG: TP-POS

1000 FIXED0 INC @ Selection list 3 Upper range value of the profile (only requiredfor touch probe)

C1345 DIS: C1344 Display of C1344C1346

12

CFG: INCFG: NSET2

1000 FIXEDPHI-0 INC @ Selection list 4 1:Input for main setpoint2:Input for alternative setpoint (2. setpoint)

C1347 DIS: C1346 Display of C1346CDATA

C1300 8 1/ ... /8 Display of number of profiles usedC1301

1..8

0 ... 2048 Display of points in profile 1/ .. /8.Depends on the number of profiles selected.

C130312

1 1 {1} 65535 Gearbox factor1 Master value numerator2 Master value denominator

C1304 1.0000 0.0001 {0.0001 units/rev.} 214000.0000 Output feed constant - master valueC1305

12

1 1 {1} 65535 Gearbox factor1: Act. value numerator2: Act. value denominator

C1306 1.0000 0.0001 {0.0001 units/rev.} 214000.0000 Output feed constant - act. valueC1309 10 1 {1 inc.} 18ô108 Window for zero crossing of the

master valueC1311 0.0 0 {1} 7 Start profile for cyclic cam profile processing

0 = 1. profile, 1 = 2. profile, ...Input CDATA-CYCLE must be on ’H’. Is internallylimited to a profile.

C1312 0.0 0 {1} 7 Reach of cam profile processingAnother x profiles (starting with C1311) will beprocessed

C1314 0 0 CW rotation1 CCW rotation

Direction of rotation - master value

Page 134: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-9

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C13151..8

DIS:Clock pulse length of the master valueProfile 1 .. 8

C13161..8

DIS:Y upper range value of profile (1...8)

C132023

CFG: XFACTCFG: SEL

10061000

FIXED 0 % @ Selection list 12: Factor (stretch./compr.)+100% = no compression/stretching,> 100% = compression,< 100% = stretching3: Profile selection, 0 = profile 0 (1. profile)

C132123

DIS: XFACTDIS: SEL

C132212345678

CFG: CYCLECFG: RESETCFG: REL-SELCFG: XRESETCFG: X-TPCFG: HOLDCFG: LOADCFG: X-TP/E5

1000 FIXED 0 @ Selection list 2 Auto. cam profile processing1.HIGH = Profiles (C1311 and C1312) are

cyclically processed.2.HIGH, if CDATA-CYCLE = LOW, the input

CDATA-SEL is immediately evaluated; ifCDATA-CYCLE = HIGH, the profile fromC1311 will be processed.

3.HIGH, feed function active4.HIGH, sets master value integrator to 05.HIGH, sets master value integrator to

TP-POS, if input X-TP/E5 = LOW6. HIGH, inhibits cam profile processing, input

has priority7.Transition LOW@H: activates the later

loaded or new profiles8.Selection of TP initiator:

LOW= Initiator at X-TPHIGH = Connect initiator to term. X5/E5

C1323 DIS:C1323 Display of C1323C1324

234

CFG: XINCFG: XOFFSCFG: TP-POS

1000100019616

@Selection list 3FIXED0 INCFIXED0 INCFCODE 1476/16

2: Input for the master value position ifC1332 = 13: Input for offset in X direction(only if C1332 = 0)4: TP position of the master value

C1325 DIS: C1324 Display of C1324C1326 CFG: DFIN 1000 FIXEDPHI-0 @ Selection list 3 Input for digital frequency if C1332 = 0C1327 DIS: C1326 Display of C1326C1332 Selection of

master value0 0 {1} 1 Selection of master value

0 = CDATA-DFIN (dig. frequency, internal master)1 = CDATA-XIN (external selection of X position)

C1333 DIS: actualX position

Display of the actual X position

C1334 DIS: actualY position

Display of the actual Y position

CERRC1380

12

ERR ?WARN

10 10 {1 inc} 18000000001: Hysteresis fault signal output-ERR2: Hysteresis fault signal output-WARN

C1384 CFG: WFAC 1000 @ Selection list 1FIXED0

Reduction factor for CERR1-WARN:+100% = no reduction< 100% = reduction> 100% = increase

C1385 DIS: C1384 Display of C1384

Page 135: ba93ku_gb.pdf

Appendix

11-10 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C1386 CFG: DISABLE 1000 @ Selection list 1FIXED0%

HIGH sets CERR1-WARN and CERR1-EER = 0

C1387 DIS: C1386 Display of C1386C1388

12

CFG: PHI-INCFG: LIM

1000 @ Selection list 4FIXED0INC

1: Input2: Threshold, absolute value is generated frominput value

C1389 DIS: C1388 Display of C1388CLUTCH

C1410 Clutch mode 0 0 {1} 3 0 directly engaged1 to open position2 to target position3 latch at set position

C1411 Max. speed 200.00 1 {0.0000 rpm} 16000.0000C1412

12

3

Open time rampRamp profile ge-neratorTime delay over-load

1.0 0.010 {0.010 s} 130.000

C1413 Catch hysteresis 163 5 {1 inc} 18ô108

C141412

CFG: MLIMCFG: MACT

1000 FIXED 0% @ Selection list 1 1. 1: Threshold for monitoring “overload”2. 2: Act. value for monitoring “overload”

C1415 DIS: C1414 Display of C1414C1416

12

CFG: CLOSECFG: OL-DET

1000 FIXED 0 @ Selection list 2 1. HIGH = engage clutchLOW = disengage clutch

2. HIGH = activate overload monitoringC1417 DIS: C1416 Display of C1416C1418

12

CFG: PHI-SETCFG: PHI-ACT

1000 FIXED0 INC @ Selection list 31. Set drive position2. Act. drive position

C1419 DIS: C1418 Display of C1418CMP

C0680 Function 6 1 {1} 6 Function comparator CMP1, compares inputsIN1 and IN21 IN1 = IN 22 IN 1 > IN23 IN 1 < IN24 |IN1| = |IN2|5 |IN1| > |IN2|6 |IN1| < |IN2|

C0681 Hysteresis 1.00 0.00 {0.01 %} 100.00 % Hysteresis of CMP1C0682 Window 1.00 0.00 {0.01 %} 100.00 % Window of CMP1

[C0683]12

CFG: INCFG: IN

500119500

@ Selection list 1MCTRL-NACTFCODE-17

Configuration analog inputs of CMP1

C0684 DIS: C0683 -199.99 {0.01 %} 199.99 Display of C0683C0685 Function 00001 1 {1} 6 CMP2 Comparison function

1 IN1 = IN22 IN1 > IN23 IN1 < IN24 |IN1| = |IN2|5 |IN1| > |IN2|6 |IN1| < |IN2|

C0686 Hysteresis 1.00 0.00 {0.01 %} 100.00 CMP2 HysteresisC0687 Window 1.00 0.00 {0.01 %} 100.00 CMP2 window

[C0688]12

CFG: INCFG: IN

1000 FIXED 0% @ Selection list 1 Configuration analog inputs of CMP2

C0689 DIS: C0688 -199.99 {0.01 %} 199.99 Display of C0688

Page 136: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-11

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0690 Function 1 1 {1} 6 Comparator CMP3, compares inputs IN1 and IN21 IN1 = IN 22 IN 1 > IN23 IN 1 < IN24 |IN1| = |IN2|5 |IN1| > |IN2|6 |IN1| < |IN2|

C0691 Hysteresis 1.00 0.00 {0.01 %} 100.00 % Hysteresis of CMP3C0692 Window 1.00 0.00 {0.01 %} 100.00 % Window of CMP3

[C0693]12

CFG: INCFG: IN

1000 FIXED 0% @ Selection list 1 Configuration analog inputs of CMP3

C0694 DIS: C0693 -199.99 {0.01 %} 199.99 Display of C0693CONV

C0655 Numerator 1 -32767 {1} 32767 CONV5 NumeratorC0656 Denominator 1 1 {1} 32767 CONV5 Denominator

[C0657] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of CONV5C0658 DIS: C0657 -199.99 {0.01 %} 199.99 Display of C0657C0940 Numerator 1 -32767 {1} 32767 CONV1 NumeratorC0941 Denomitator 1 1 {1} 32767 CONV1 Denominator

[C0942] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input CONV1C0943 DIS: C0942 -199.99 {0.01 %} 199.99 Display of C0942C0945 Numerator 1 -32767 {1} 32767 CONV2 NumeratorC0946 Denominator 1 1 {1} 32767 CONV2 Denominator

[C0947] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input CONV2C0948 DIS: C0947 -199.99 {0.01 %} 199.99 Display of C0947C0950 Numerator 1 -32767 {1} 32767 CONV3 NumeratorC0951 Denominator 1 1 {1} 32767 CONV3 Denominator

[C0952] CFG: IN 1000 FIXEDPHI0 @ Selection list 4 Configuration analog input CONV3C0953 DIS: C0952 -32767 {1 rpm} 32767 Display of C0952C0955 Numerator 1 -32767 {1} 32767 CONV4 NumeratorC0956 Denominator 1 1 {1} 32767 CONV4 Denominator

[C0957] CFG: IN 1000 FIXEDPHI0 @ Selection list 4 Configuration analog input CONV4C0958 DIS: C0957 -32767 {1 rpm} 32767 Display of C0957C1170 Numerator 1 -32767 {1} 32767 Numerator for CONV6C1171 Denominator 1 1 {1} 32767 Denominator for CONV6

[C1172] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of CONV6C1173 DIS: C1172 -199.99 {0.01 %} 199.99 Display of C1172

CONVAD[C1580] CFG: IN 1000 FIXED0% @ Selection list 1 CONVAD1

C1581 DIS: C1580 0 -32768 {1} 32767 Display of C1580[C1582] CFG: IN 1000 FIXED0% @ Selection list 1 CONVAD2

C1583 DIS: C1582 0 -32768 {1} 32767 Display of C1582CONVPHA

C1000 Division 1 0 {1} 31 Partial factor[C1001] CFG: IN 1000 FIXED0INC @ Selection list 3 Configuration input of CONVPHA1

C1002 DIS: C1001 -2147483647 {1} 2147483647 Display of C1001CONVPHD

C1480 Encoder constant 512 10 {1} 32767C1486

12

CFG: NOMCFG: DEN

1952119522

@ Selection list 3FCODE-474/1FCODE-474/2

1. Stretching factor numerator, input limited to�1000000

2. Stretching factor denominator, input limitedto +1 to +200000000

C1487 DIS: C1486 Display of C1486C1488 CFG: IN 1000 FIXEDPHI-0 @ Selection list 4 Input in rpmC1489 DIS: C1488 Display of C1488

CONVPHPH[C1240]

12

CFG: NUMCFG: DEN

1000 FIXED0% @ Selection list 1

[C1241] CFG: ACT 1000 FIXED0 @ Selection list 2[C1242] CFG: IN 1000 FIXED0INC @ Selection list 3

Page 137: ba93ku_gb.pdf

Appendix

11-12 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C124512

DIS: NUMDIS: DEN

-199.99 {0.01 %} 1999.99

C1246 DIS: C1241 Display of C1241C1247 DIS: C1242 -2147483647 {1} 2147483647 Display of C1242

CONVPHPHDC1450 CFG: IN 1000 FIXED0INC @ Selection list 3 Phase inputC1451 DIS: C1450 Display of C1450C1452 Numerator 1 -32767 {1} 32767C1453 Denominator 1 1 {1} 32767

CONVPP[C1250] CFG: IN 1000 FIXEDPHI-0 @ Selection list 4[C1251]

12

CFG: NUMCFG: DEN

1000 FIXED0INC @ Selection list 3

C1253 DIS: C1250 -32767 {1 rpm } 32767C1254 DIS: C1251 -2147483647 {1} 2147483647 Display of C1251

CSELC1420 Emergency off

profile0 0 {1} 7

142412345

CFG: CAM*1CFG: CAM*2CFG: CAM*4CFG: LOADCFG: EVENT

1000 FIXED 0 @ Selection list 21. Selection bit 02. Selection bit 13. Selection bit 24. Acceptance signal = LOW -> HIGH transition5. Event profile

1425 DIS: C1424 Display of C1424CURVE

C0960 Function 1 1 {1} 3 Function1 Characteristic 12 Characteristic 23 Characteristic 3

C0961 y0 0.00 0.00 {0.01 %} 199.99C0962 y1 50.00 0.00 {0.01 %} 199.99C0963 y2 75.00 0.00 {0.01 %} 199.99C0964 y100 100.00 0.00 {0.01 %} 199.99C0965 x1 50.00 0.01 {0.01 %} 100.00C0966 x2 75.00 0.01 {0.01 %} 100.00

[C0967] CFG: IN 1000 FIXED0% @ Selection list 1 Characteristic CURVE1-INC0968 DIS: C0967 -199.99 {0.01 %} 199.99 Display of C0967

CURVECC1310 Cam profile selec-

tion0 0 {1} 7

C1320 CFG: AIN 1000 FIXED0% @ Selection list 1C1321 DIS: C1320 Display of C1320C1322

910

CFG: HOLDCFG: SEL-IN

1000 FIXED 0 @ Selection list 2 9: HIGH = Outputs AOUT and OUT arestored; DFOUT = 010: Selection input AING IN

LOW = AINHIGH = IN

C1323 DIS: C1322 Display of C1322C1324 CFG: IN 1000 FIXED0INC @ Selection list 3C1325 DIS: C1324 Display of C1324

DBC0620 DB1 gain 1.00 -10.00 {0.01} 10.00 Gain dead band component DB1C0621 DB1 value 1.00 0.00 {0.01 %} 100.00 Dead band of DB1

[C0622] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of DB1C0623 DIS: C0622 -199.99 {0.01 %} 199.99 Display of C0622

DCTRLC0040 Ctrl enable 1 0 {1} 1 Controller inhibit

0: “write”, controls the code1: “read”, reads the controller status

Page 138: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-13

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0042 DIS: QSP 0 {1} 1 Quick stop status0 QSP inactive1 QSP active

C0135 Control word 0 0 {1} 65535 Control wordController control word for LECOM-A/B/LI oroperating module.

C0136 DIS: C0135 Display of C0135C0142 Start options 1 0 {1} 1 Start conditions are executed:

l after mains connectionl after message (t > 0.5s)l after trip0 Start lock1 Autostart

[C0870]12

CFG: CINH1CFG: CINH2

1000 FIXED0 @ Selection list 2 Digital inputs (inhibit controller)

[C0871] CFG: TRIP-SET 54 DIGIN 4 @ Selection list 2 Digital input (TRIP set) of DCTRL[C0876] CFG: TRIP-RES 55 DIGIN 5 @ Selection list 2 Digital input (TRIP reset) of DCTRL

C08781234

DIS: C0870/1DIS: C0870/2DIS: C0871DIS: C0876

Display ofC0870 /1 /2C0871C0876

C0879123

Reset C135Reset AIFReset CAN

0 0 {1} 1 Reset control words0 no reset1 reset

DFINC0425 DFIN const 3 0 {1} 6 DF input; increment of the digital frequency

input0 256 inc/rev1 512 inc/rev2 1024 inc/rev3 2048 inc/rev4 4096 inc/rev5 8192 inc/rev6 16384 inc/rev

C0426 DIS: OUT -32767 {1 rpm} 32767 Output signal of DFINC0427 DFIN function 0 0 {1} 2 Type of the digital frequency signal

0 2 phases1 A pulse / B dir2 Pulse A or B

C0429 TP5 delay 0 -32767 {1 inc} 32767 TP5 delayC0430

1234

TP1 delayTP2 delayTP3 delayTP4 delay

0.218 0.000 {0.001ms} 2.000 TPx delay

DFOUTC0030 DFOUT const 3 0 {1 inc/rev} 6 Constant for the digital frequency

output in increments per revolution0 2561 5122 10243 20484 40965 81926 16384

C04301234

TP1 delayTP2 delayTP3 delayTP4 delay

0.2180.2180.2180.218

0.000 {0.001ms} 2.000 TPx delay

Page 139: ba93ku_gb.pdf

Appendix

11-14 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C0540] Function 1 0 {1} 5 Function of the encoder outputs0 Analog input1 PH diff input2 RES+int 03 RES+ext 04 X10 = X95 X10 = X8

[C0541] CFG: AN-IN 5001 MCTRL-NACT @ Selection list 1 Of the analog input of DFOUT[C0542] CFG: DF-IN 1000 FIXEDPHI 0 @ Selection list 4 Configuration of the dig. frequency

input[C0544] CFG: SYN-RDY 1000 FIXED 0 @ Selection list 2 Synchronisation signal for the zero

pulseC0545 Phase offset 0 0 {1 inc} 65535C0547 DIS: C0541 -199.99 {0.01 %} 199.99 Display of C0541C0548 DIS: C0544 0 1 Display of C0544C0549 DIS: C0542 -32767 {1 rpm} 32767 Display of C0542C1799 DFOUT fmax (kHz) 1250 20 {1} 1250

DFRFGC0430

5 TP5 delay0.218 0.000 {0.001ms} 2.000 TP5 delay

C0750 Vp denom 16 1 / 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1024 /2048 / 4096 / 8192 / 16384

Vp denominator position (denominator of theposition controller gain)1 Vp = 12 Vp = 1/24 Vp = 1/48 Vp = 1/816 Vp = 1/1632 Vp = 1/3264 Vp = 1/64128 Vp = 1/128256 Vp = 1/256512 Vp = 1/5121024 Vp = 1/10242048 Vp = 1/20484096 Vp = 1/40968192 Vp = 1/819216384 Vp = 1/16384

C0751 DFRFG1 Tir 1.000 0.000 {0.001s} 999.900 DFRFG1 Tir (acceleration time)C0752 Max speed 3000 1 {1 rpm} 16000 Max. speed; here: max. make-up speedC0753 DFRFG1 QSP 0.000 0.000 {0.001s} 999.900 QSP-Tif, deceleration time when deceleration

ramp is activatedC0754 PH error 2.10 9 10 {1} 2.10 9 DFRFG1 contouring errorC0755 Syn window 100 0 {1 inc} 65535 Synchronization windowC0756 Offset 0 -1.10 9 {1 inc} /1.10 9 OffsetC0757 Function 0 0/1 0 No TP start

1 With TP start[C0758] CFG: IN 1000 FIXEDPHI-0 @ Selection list 4 Configuration phase input[C0759] CFG: QSP 1000 FIXED0 @ Selection list 2 Digital input (control QSP)[C0760] CFG: STOP 1000 FIXED0 @ Selection list 2 Digital input (ramp function generator

stop)[C0761] CFG: RESET 1000 FIXED0 @ Selection list 2 Digital input (reset integrators)

C0764123

DIS: C0759DIS: C0760DIS: C0761

Display ofC0759C0760C0761

C0765 DIS: C0758 -32767 {1 rpm} 32767 Display of C0758C0766 Direction of

rotation1 1 {1} 3 1 Direction of rotation CW/CCW

2 CW rotation3 CCW rotation

DFSETC0033 Gearbox denom 1 1 {1} 32767 Gearbox factor (denominator) for

DFSET

Page 140: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-15

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0252 phase offset 0 -245760000 {1 inc} 245760000 Phase offset for DFSETFixed phase offset for digital frequencyconfigurationl 1 rev. = 65536 inc

C0253 phase n-trim * -32767 {1 inc} 32767 speed-dependent phase trimmingÈ depending on C0005, C0025, C0490l Change of C0005, C0025, or C0490 resets

C0253 to the factory settingl 1 rev. = 65536 incl C0253 is reached at 15000 rpm

C0255 Threshold P03 327680 10 {1 inc} 1800000000 Contouring error limit for fault P03l 1 rev. = 65536 incl Contouring error > C0255 sets trip ”P03”

C04301234

TP1 delayTP2 delayTP3 delayTP4 delay

0.2180.2180.2180.218

0.000 {0.001 ms} 2.000 TP1 delay

[C0520] CFG: IN 1000 FIXEDPHI-0 @ Selection list 4 Configuration input[C0521] CFG: VP-DIV 1000 FIXED 0 % @ Selection list 1 Configuration gain factor numerator[C0522] CFG: RAT-DIV 1000 FIXED 0 % @ Selection list 1 Configuration gear factor numerator[C0523] CFG: A-TRIM 1000 FIXED 0 % @ Selection list 1 Configuration phase trimming[C0524] CFG: N-TRIM 1000 FIXED 0 % @ Selection list 1 Speed trimming of DFSET[C0525] CFG: 0-PULSE 1000 FIXED 0 @ Selection list 2 Configuration one-time zero pulse activation[C0526] CFG: RESET 1000 FIXED0 @ Selection list 2 CFG: DFSET-RESET

Reset integrators[C0527] CFG: SET 1000 FIXED 0 @ Selection list 2 Configuration - set integrators

C052812

DIS:0-pulse ADIS: Offset

0 -2.10 9 {1} 2.10 9 Display parameterZero pulse phase difference

C0529 Multip offset 1 -20000 {1} 20000 Offset multiplierC0530 DF evaluation 0 0 {1} 1 Evaluation of the digital frequency

0 with factor1 no factor

C0531 Act 0 div 1 1 {1} 16384 Actual zero pulse dividerC0532 0-pulse/TP 1 1 {1} 2 Selection of zero pulse or touch probe

1 0-pulse2 Touch probe

C0533 Vp denom 1 1 {1} 32767 Gain factor denominatorC0534 0 pulse fct 0 0 {1} 13 DFSET zero pulse function

0 Inactive1 Continuous2 Cont. switch10 Once,fast way11 Once, CW12 Once, CCW13 Once,2*0-pulse

C0535 Set 0 div 1 1 {1} 16384 DFSET set zero pulse dividerC0536

123

DIS: VP-DIVDIS: RAT-DIVDIS: A-TRIM

-32767 {1} 32767 Absolute analog input signals

C0537 DIS: N-TRIM -199.99 {0.01 %} 199.99 Relative analog input signalC0538

123

DIS: 0-PULSEDIS: RESETDIS: SET

digital input signals

C0539 DIS: IN -32767 {1 rpm} 32767 Input signalC0546 Min inc/rev 1000 -245760000 {1inc} 245760000 Min. incr. per rev.C1255 CFG: N-TRIM2 1000 @ Selection list 4 CFG: DFSET-N-TRIM2C1258 DIS: C1255 0 -32767 {1 rpm} 32767 Display of C1255

Page 141: ba93ku_gb.pdf

Appendix

11-16 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

DIGDELC0720 Function 2 0 {1} 2 Selection of the function

0 On delay1 Off delay2 On/Off delay

C0721 Delay T 1.000 0.001 {0.001 s} 60.000 Delay time DIGDEL1[C0723] CFG: IN 1000 FIXED 0 @ Selection list 2 Digital input of DIGDEL1

C0724 DIS: C0723 Display of C0723C0725 Function 2 0 {1} 2 Selection of the function

0 ON delay1 OFF delay2 ON/OFF delay

C0726 Delay T 1.000 0.001 {0.001 s} 60.000 Delay time DIGDEL2[C0728] CFG: IN 1000 FIXED0 @ Selection list 2 Digital input

C0729 DIS: C0728 Display of C0728DIGIN

C011412345

DIGIN polDIGIN polDIGIN polDIGIN polDIGIN pol

00010

0 {1} 1 Terminal polarity0:HIGH active; 1: LOW active1 X5/E12 X5/E23 X5/E34 X5/E45 X5/E5

C0443 DIS: DIGIN-OUT 0 {1} 255 Signals at X5/E1 to X5/E5, decimal valuel Binary interpretation indicates terminal

signalsDIGOUT

[C0117]1234

CFG: DIGOUT1CFG: DIGOUT2CFG: DIGOUT3CFG: DIGOUT4

*15000106505005003

@ Selection list 2DCTRL-TRIPCMP1-OUTDCTRL-RDYMCTRL-MMAX

Signal configuration DIGOUTÈ depending on C00051 X5/A12 X5/A23 X5/A34 X5/A4

C01181234

DIGOUT polDIGOUT polDIGOUT polDIGOUT pol

1100

0 {1} 1 Terminal polarity DIGOUT0 High active1 Low active1: X5/A1, 2: X5/A2, 3: X5/A3, 4: X5/A4

C0444 DIS: C0118 0 1 Display of C0118DT

C0650 DT1-1 gain 1.00 -320.00 {0.01} 320.00 Gain of DT1-1 componentC0651 Delay T 1.00 0.005 {0.01 s} 5.000 Time constant of DT1-1

[C0652] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of DT1-1C0653 Sensibility 1 1 {1} 7 Input sensitivity of DT1-1

1 15-bit2 14-bit3 13-bit4 12-bit5 11-bit6 10-bit7 9-bit

C0654 DIS: IN -199.99 {0.01 %} 199.99 Analog input signal of DT1-1FCNT

C1100 Function 1 1 {1} 2 1 Return2 Hold

[C1101]12

CFG: LD-VALCFG: CMP-VAL

1000 FIXED0% @ Selection list 1 Configuration analog inputs

[C1102]123

CFG: CLKUPCFG: CLKDWNCFG: LOAD

1000 FIXED0 @ Selection list 2 Digital inputs

C1103 DIS: C1101 -32768 {1} 32768 Display of C1101

Page 142: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-17

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C1104 DIS: C1102 Display of C1102FDO

[C0116]1...32

CFG: FDO...CFG: FDO

1000 FIXED 0 @ Selection list 2 Signal configuration FDOFDO0...FDO31Free digital outputs can only be evaluated whennetworked with automation interfaces.

C0151 DIS: FDO (DW) Bit00 Bit00 {01} Bit 31 Display (hex.) of free digital outputsl Binary interpretation indicates the bit states

FEVANC1090 Output signal -2147483648 {1} 2147483647 Output signal of FEVAN1C1091 Code 141 2 {1} 2000 FEVAN1 CodeC1092 Subcode 0 0 {1} 255 FEVAN1 SubcodeC1093 Numerator 1.0000 0.0001 {0.0001} 100000.0000 FEVAN1 numeratorC1094 Denominator 0.0001 0.0001 {0.0001} 100000.0000 FEVAN1 denominatorC1095 Offset 0 0 {1} 1000000000 FEVAN1 Offset

[C1096] CFG: IN 1000 FIXED0% @ Selection list 1 Configuration analog input of FEVAN1[C1097] CFG: LOAD 1000 FIXED0 @ Selection list 2 Digital inputs of FEVAN1

C1098 DIS: C1096 -32768 {1} 32767 Display of C1096C1099 DIS: C1097 Display of C1097C1500 Output signal -2147483648 {1} 2147483647 Output signal of FEVAN2C1501 Code 141 2 {1} 2000 Target code of FEVAN2C1502 Subcode 0 0 {1} 255 Target subcode FEVAN2C1503 Numerator 1.0000 0.0001 {0.0001} 100000.0000 Numerator of FEVAN2C1504 Denominator 0.0001 0.0001 {0.0001} 100000.0000 Denominator of FEVAN2C1505 Offset 0 0 {1} 1000000000 Offset of FEVAN2

[C1506] CFG: IN 1000 FIXED0% @ Selection list 1 Configuration analog input of FEVAN2[C1507] CFG: LOAD 1000 FIXED0 @ Selection list 2 Digital inputs of FEVAN2

C1508 DIS: C1506 -32768 {1} 32767 Display of C1506C1509 DIS: C1507 Display of C1507

FIXSETC0560

12345..

15

Fixed setpoints1007550250..0

-199.99 {0.01 %} 199.99

[C0561] CFG: AIN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of FIXSET1[C0562]

1234

CFG: INCFG: INCFG: INCFG: IN

1000 FIXED 0 @ Selection list 2 Configuration of digital inputs

C0563 DIS: C0561 -199.99 {0.01 %} 199.99 Display of C0561C0564 DIS: C0562 Display of C0562

FLIP[C0770] CFG: D 1000 FIXED0 @ Selection list 2 Data input of FLIP1[C0771] CFG: CLK 1000 FIXED0 @ Selection list 2 Configuration clock input of FLIP1[C0772] CFG: CLR 1000 FIXED0 @ Selection list 2 Configuration reset input of FLIP1

C0773123

DIS: C0770DIS: C0771DIS: C0772

Display ofC0770C0771C0772

[C0775] CFG: D 1000 FIXED0 @ Selection list 2 Data input of FLIP2[C0776] CFG: CLK 1000 FIXED0 @ Selection list 2 Configuration clock input of FLIP2[C0777] CFG: CLR 1000 FIXED0 @ Selection list 2 Configuration reset input of FLIP2

C0778123

DIS: C0775DIS: C0776DIS: C0777

Display ofC0775C0776C0777

Page 143: ba93ku_gb.pdf

Appendix

11-18 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

GEARCMPC1260 Offset 0 -16383 {1} 16383 OffsetC1261 Num 1 -32767 {1} 32767 NumeratorC1262 Denom 1 1 {1} 32767 Denominator

[C1265] CFG: TORQUE 1000 FIXED0% @ Selection list 1 Configuration correction input[C1266] CFG: Phi In 1000 FIXED0INC @ Selection list 3 Configuration input

C1268 DIS: C1265 -199.99 {0.01 %} 199.99 Display of C1265C1269 DIS: C1266 -2147483647 {1} 2147483647 Display of C1266

LIMC0630 Max. limit 100.00 -199.99 {0.01 %} 199.99 Upper limit of limiter LIM1C0631 Min limit -100.0 -199.99 {0.01 %} 199.99 Lower limit of limiter LIM1

[C0632] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of LIM1C0633 DIS: C0632 -199.99 {0.01 %} 199.99 Display of C0632

MCTRL[C0006] Ctrl. mode * Control mode of the motor control

È depends on C0086l Change of C0086 resets value to factory

settingl Change of C0006 sets C0086 = 0!

C0011 Nmax 3000 500 {1 rpm} 16000 Maximum speedReference value for the absolute and relativesetpoint selection for the acceleration anddeceleration times.l Parameter setting via interface:

Large changes in one step should only bemade when the controller is inhibited.

C0018 fchop 1 0 {1} 2 Chopping frequencyNoise optimised operation with automaticchangeover to 8kHz.0 16/8 kHz1 8 kHz sine2 16 kHz sine

C0022 Imax current * 0 {0.01 A} 1.50 Ir Imax limitÈ depends on C0086l Change of C0086 resets value to the

assigned factory setting (1.5*Imotor)

Page 144: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-19

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C0025] Feedback type 10 0 / 1 / 10 / 110 ... 113 / 210 ... 213 / 310 / 410 Selection of the feedback systeml Input of the encoder specified on the

nameplate of the Lenze motor:– C0025 a tomatically changes C0420,– C0025 automatically changes C0420,

C0490, C0495È 0 COMMON:

C0420, C0490 or C0495 was changeds bseq entlysubsequently

È 1 no feedbackControl without feedback system (sensorlesscontrol, SSC)

È 10 RSx (Resolver)È 10 RSx (Resolver)The resolver is designated with RSxxxxxxxx.

È 110 IT-512-5V111 IT-1024-5V112 IT 2048 5V112 IT-2048-5V113 IT-4096-5VIncremental encoder with TTL level

È 210 IS-512-5V211 IS 1024 5V211 IS-1024-5V212 IS-2048-5V213 IS-4096-5VSine-cosine encoderSine cosine encoder

È 310 AS-512-8VMulti-turnSin/cos encoder with RS485 interfaceFa. StegmannFa. Stegmann

È 410 AM-512-8VSingle-turnSin/cos encoder with RS485 interfaceFa. Stegmann

C0050 MCTRL-NSET2 -100.00 {0.01 %} 100.00 n set at speed controller inputC0051 MCTRL-NACT -30000 {1 rpm} 30000 Actual speedC0052 MCTRL-Umot 0 {1 V} 800 Actual motor voltageC0053 UG-VOLTAGE 0 {1 V} 900 DC-bus voltageC0054 IMot 0.0 {0.1 A} 300.0 Actual motor currentC0056 MCTRL-MSET2 -150.00 {0.01 %} 150.00 Torque setpoint (output of the speed controller)C0057 Max. torque 0 {1 Nm} 400 Maximum possible torque of the drive

configurationl depends on C0022, C0086

C0070 Vp speed-CTRL * 0.0 {0.5} 255.0 V pn speed controllerÈ depends on C0086l Change of C0086 resets value to factory

settingC0071 Tn speed-CTRL * 1.0 {0.5 ms} 600.0 T nn speed controller

>512 ms switched offÈ depends on C0086l Change of C0086 resets value to factory

settingC0072 Td speed-CTRL 0.0 0.0 {0.1 ms} 32.0 T dn speed controllerC0075 Vp curr-CTRL 0.35 0.00 {0.01} 15.99 V pi current controllerC0076 Tn curr-CTRL 1.8 0.5 {0.1 ms} 1999.0 T ni current controller

2000 ms switched offC0077 Vp field-CTRL 0.25 0.00 {0.01} 15.99 V pF field controllerC0078 Tn field-CTRL 15.0 1.0 {0.5 ms} 7999.0 T nF field controller

8000 ms switched off[C0081] Mot power * 0.01 {0.01 kW} 150.00 Rated motor power according to nameplate

È depends on C0086l Change of C0086 resets value to factory

settingl Change of C0081 sets C0086 = 0

[C0084] Mot Rs * 0.00 {0.01 �} 100.00 Stator resistance of motorÈ depends on C0086l Change of C0086 resets value to factory

setting

Page 145: ba93ku_gb.pdf

Appendix

11-20 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C0085] Mot Ls * 0.00 {0.01} 200.00 Motor leakage inductanceÈ depends on C0086l Change of C0086 resets value to factory

setting[C0086] Mot type * Motor type selection

È depends on the controllerl Change of C0086 resets C0006, C0022,

C0070, C0071, C0081, C0084, C0085,C0087, C0088, C0089, C0090, C0091 to thefactory setting

0 COMMON no Lenze motorNew generation of Lenze asynchronous servo motorsintegrated temperature monitoring via resolver or encoder cablel The temperature monitoring via resolver or encoder cable is automatically activated, i.e.:

C0583 = 0C0584 = 2C0594 = 0

10 DSKA56-14011 DFKA71-12012 DSKA71-14013 DFKA80-6014 DSKA80-7015 DFKA80-12016 DSKA80-14017 DFKA90-6018 DSKA90-8019 DFKA90-12020 DSKA90-14021 DFKA100-6022 DSKA100-8023 DFKA100-12024 DSKA100-14025 DFKA112-6026 DSKA112-8527 DFKA112-12028 DSKA112-140

MDSKAXX056-22, fr : 140HzMDFKAXX071-22, fr: 120HzMDSKAXX071-22, fr: 140HzMDFKAXX080-22, fr: 60HzMDSKAXX080-22, fr: 70HzMDFKAXX080-22, fr: 120HzMDSKAXX080-22, fr: 140HzMDFKAXX090-22, fr: 60HzMDSKAXX090-22, fr: 80HzMDFKAXX090-22, fr: 120HzMDSKAXX090-22, fr: 140HzMDFKAXX100-22, fr: 60HzMDSKAXX100-22, fr: 80HzMDFKAXX100-22, fr: 120HzMDSKAXX100-22, fr: 140HzMDFKAXX112-22, fr: 60HzMDSKAXX112-22, fr: 85HzMDFKAXX112-22, fr: 120HzMDSKAXX112-22, fr: 140Hz

Lenze asynchronous servo motorswithout integrated temperature monitoringl The temperature monitoring via resolver or encoder cable is automatically deactivated, i.e.:

C0583 = 3C0584 = 3C0594 = 3

50 DSVA56-14051 DFVA71-12052 DSVA71-14053 DFVA80-6054 DSVA80-7055 DFVA80-12056 DSVA80-14057 DFVA90-6058 DSVA90-8059 DFVA90-12060 DSVA90-14061 DFVA100-6062 DSVA100-8063 DFVA100-12064 DSVA100-14065 DFVA112-6066 DSVA112-8567 DFVA112-12068 DSVA112-140

DSVAXX056-22, fr: 140HzDFVAXX071-22, fr: 120HzDSVAXX071-22, fr: 140HzDFVAXX080-22, fr: 60HzDSVAXX080-22, fr: 70HzDFVAXX080-22, fr: 120HzDSVAXX080-22, fr: 140HzDFVAXX090-22, fr: 60HzDSVAXX090-22, fr: 80HzDFVAXX090-22, fr: 120HzDSVAXX090-22, fr: 140HzDFVAXX100-22, fr: 60HzDSVAXX100-22, fr: 80HzDFVAXX100-22, fr: 120HzDSVAXX100-22, fr: 140HzDFVAXX112-22, fr: 60HzDSVAXX112-22, fr: 85HzDFVAXX112-22, fr: 120HzDSVAXX112-22, fr: 140Hz

Page 146: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-21

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

New generation of Lenze synchronous servo motorsintegrated temperature monitoring via resolver or encoder cablel The temperature monitoring via resolver or encoder cable is automatically activated, i.e.:

C0583 = 0C0584 = 2C0594 = 0

110 DSKS56-23-150111 DSKS56-33-150112 DSKS71-13-150113 DFKS71-13-150114 DSKS71-23-150115 DFKS71-23-150116 DSKS71-33-150117 DFKS71-33-150

MDSKSXX056-23, fr: 150HzMDSKSXX056-33, fr: 150HzMDSKSXX071-13, fr: 150HzMDFKSXX071-13, fr : 150HzMDSKSXX071-23, fr: 150HzMDFKSXX071-23, fr: 150HzMDSKSXX071-33, fr: 150HzMDFKSXX071-33, fr: 150Hz

Lenze inverter motor in star connectionl The temperature monitoring via resolver or encoder cable is automatically deactivated, i.e.:

C0583 = 3C0584 = 3C0594 = 3

210 DXRA071-12-50211 DXRA071-22-50212 DXRA080-12-50214 DXRA090-12-50215 DXRA090-32-50216 DXRA100-22-50217 DXRA100-32-50218 DXRA112-12-50219 DXRA132-12-50220 DXRA132-22-50221 DXRA160-12-50222 DXRA160-22-50223 DXRA180-12-50224 DXRA180-22-50

DXRAXX071-12, fd : 50HzDXRAXX071-22, fd : 50HzDXRAXX080-12, fd : 50HzDXRAXX090-12, fd : 50HzDXRAXX090-32, fd : 50HzDXRAXX100-22, fd : 50HzDXRAXX100-32, fd : 50HzDXRAXX112-12, fd : 50HzDXRAXX132-12, fd : 50HzDXRAXX132-22, fd : 50HzDXRAXX160-12, fd : 50HzDXRAXX160-22, fd : 50HzDXRAXX180-12, fd : 50HzDXRAXX180-22, fd : 50Hz

Lenze inverter motor in delta connectionl The temperature monitoring via resolver or encoder cable is automatically deactivated, i.e.:

C0583 = 3C0584 = 3C0594 = 3

250 DXRA071-12-87251 DXRA071-22-87252 DXRA080-12-87254 DXRA090-12-87255 DXRA090-32-87256 DXRA100-22-87257 DXRA100-32-87258 DXRA112-12-87259 DXRA132-12-87260 DXRA132-22-87261 DXRA160-12-87262 DXRA160-22-87263 DXRA180-12-87264 DXRA180-22-87

DXRAXX071-12, fd : 87HzDXRAXX071-22, fd: 87HzDXRAXX080-12, fd : 87HzDXRAXX090-12, fd : 87HzDXRAXX090-32, fd : 87HzDXRAXX100-22, fd : 87HzDXRAXX100-32, fd : 87HzDXRAXX112-12, fd : 87HzDXRAXX132-12, fd : 87HzDXRAXX132-22, fd : 87HzDXRAXX160-12, fd : 87HzDXRAXX160-22, fd : 87HzDXRAXX180-12, fd : 87HzDXRAXX180-22, fd : 87Hz

[C0087] Mot speed * 300 {1 rpm} 16000 Rated motor speedÈ depends on C0086È depends on C0086l Change of C0086 resets value to factory

setting[C0088] Mot current * 0.5 {0.1 A} 300.0 Rated motor current

È depends on C0086l Change of C0086 resets value to factory

setting[C0089] Mot frequency * 10 {1 Hz} 1000 Rated motor frequency[C0090] Mot voltage * 50 {1 V} 500 Rated motor voltage

È depends on C0086l Change of C0086 resets value to factory

setting

Page 147: ba93ku_gb.pdf

Appendix

11-22 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C0091] Mot cos phi * 0.50 {0.01} 1.00 Motor cos ÖÈ depends on C0086l Change of C0086 resets value to factory

setting1 8 kHz sin Power optimised operation

C0105 QSP Tif 0.000 0.000 {0.001 s} 999.900 Deceleration time for quick stop (QSP)Ref. to speed change 0¤nmax.

C0254 Vp phase-CTRL 0.40 0.0000 {0.0001} 3.9999 V p Phase controller in MCTRL[C0420] Encoder const 512 256 {1 inc/rev} 8192 Encoder constant for encoder input X8

in increments per revolution[C0490] Feedback pos 0 0 {1} 4 Feedback system for position controller

l C0490 = 0, 1, 2 can be mixed withC0495 = 0, 1, 2C0495 = 0, 1, 2

l C0490 = 3, 4 sets C0495 to the same value0 Resolver at X71 Encoder TTL at X81 Encoder TTL at X82 Encoder sin at X83 Absolute ST at X84 Absolute MT at X8

[C0495] Feedback n 0 0 {1} 4 Feedback system for the speed controllerl C0495 = 0, 1, 2 can be mixed with

C0490 = 0, 1, 2l C0495 = 3, 4 also sets C0490 to the same

value0 Resolver at X71 Encoder TTL at X82 Encoder sin at X83 Absolute ST at X84 Absolute MT at X8

C0497 Nact-filter 2.0 0.0 {0.1 ms} 50.00 ms switched off

Time constant actual speed

[C0890] CFG: N-SET5050

@ Selection list 1NSET-NOUT

Speed setpoint input

[C0891] CFG: M-ADD 1000 FIXED0% @ Selection list 1 Configuration torque setpoint input[C0892] CFG: LO-M-LIM 5700 ANEG1-OUT @ Selection list 1 Configuration lower torque limit[C0893] CFG: HI-M-LIM 19523 FCODE-472/3 @ Selection list 1 Configuration upper torque limit[C0894] CFG: PHI-SET 1000 FIXED0INC @ Selection list 3 Configuration rotor position setpoint[C0895] CFG: PHI-LIM 1006 FIXED100% @ Selection list 1 Configuration phase controller limit[C0896] CFG: N2-LIM 1000 FIXED0% @ Selection list 1 Configuration 2nd speed limitation

value[C0897] CFG: PHI-ON 1000 FIXED0 @ Selection list 2 Configuration switch-on signal phase

controller[C0898] CFG: FLD-WEAK 1006 FIXED100% @ Selection list 1 Signal for field weakening[C0899] CFG: N/M-SWT 1000 FIXED0 @ Selection list 2 Changeover between n and M control[C0900] CFG: QSP 10250 R/L/Q-QSP @ Selection list 2 Control signal for release[C0901] CFG: I-SET 1000 FIXED0% @ Selection list 1 Load I-component of the speed

controller[C0902] CFG: I-LOAD 1000 FIXED0 @ Selection list 2 Release signal to load the I-component of the

speed controller[C0903] CFG: P-ADAPT 1006 FIXED0% @ Selection list 1 Adaptation phase controller

C0906123456789

DIS: N-SETDIS: M-ADDDIS: LO-M-LIMDIS: HI-M-LIMDIS: PHI-LIMDIS: N2-LIMDIS: FLD-WEAKDIS: I-SETDIS: P-ADAPT

-199.99 {0.01 %} 199.99 Analog input signals of MCTRL

Page 148: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-23

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C09071234

DIS: PHI-ONDIS: N/M-SWTDIS: QSPDIS: I-LOAD

digital input signals

C0908 DIS: PHI-SET -2147483647 {1 inc} 2147483647 Set phase signall 1 rev. = 65536 inc

C0909 speed limit 1 1 {1} 2 Limitation of direction of rotation for the speedsetpoint1 +/- 175 %2 0 .. +175 %3 -175 .. 0 %

MFAIL[C0970] CFG: N-SET 1000 FIXED0% @ Selection list 1 Speed input of the mains failure control

Setpoint path[C0971] CFG: FAULT 1000 FIXED0 @ Selection list 2 Input mains failure detected, input for activation[C0972] CFG: RESET 1000 FIXED0 @ Selection list 2 Reset input mains failure control[C0973] CFG: ADAPT 1000 FIXED0% @ Selection list 1 Adaptation of P-gain of the voltage controller[C0974] CFG: CONST 1000 FIXED0% @ Selection list 1 Adaptation of P-gain of the voltage controller[C0975] CFG: THRESHLD 1000 FIXED0% @ Selection list 1 Restart protection when the value falls below

the speed threshold[C0976] CFG: NACT 1000 FIXED0% @ Selection list 1 Comparison of threshold function

l Start for V2controller[C0977] CFG: SET 1000 FIXED0% @ Selection list 1 Speed start value[C0978] CFG: DC-SET 1000 FIXED0% @ Selection list 1 Setpoint DC-bus voltage

C09881234567

DIS: C0970DIS: C0973DIS: C0974DIS: C0975DIS: C0976DIS: C0977DIS: C0978

-199.99 {0.01 %} 199.99 Display ofC0970C0973C0974C0975C0976C0977C0978

C098912

DIS: C0971DIS: C0972

Display ofC0971C0972

MPOTC0260 MPOT1 high 100.00 -199.99 {0.01 %} 199.99 Motor potentiometer upper limit, condition:

C0260 > C0261C0261 MPOT1 low -100.0 -199.99 {0.01 %} 199.99 Motor potentiometer lower limit, condition:

C0261 < C0260C0262 MPOT1 Tir 10.0 0.1 {0.1 s} 6000.0 Motor potentiometer acceleration time Tir,

ref. to change 0¤100 %C0263 MPOT1 Tif 10.0 0.1 {0.1 s} 6000.0 Motor potentiometer deceleration time Tif

ref. to change 0¤100 %C0264 MPOT1 on/off 0 0 {1} 5 Deactivation function of motor pot

l Function which is executed when motor potis deactivated via the input MPOT1-INACTIVE.

0 no change1 Deceleration with Tif to 0%1 Deceleration with Tif to 0%2 Deceleration with Tif to C02613 Jump with Tif = 0 to 0%4 Jump with Tif = 0 to C02615 Acceleration with Tir to C0260

C0265 MPOT1 init 0 0 {1} 2 Initialization function of motor potl Value which is accepted during mains

switching and activated motor pot.g p0 Value during mains failure1 lower limit of C02612 0 %

[C0267]12

CFG: UPCFG: DOWN

1000 FIXED0 @ Selection list 2 Digital inputs: motor potentiometers

Page 149: ba93ku_gb.pdf

Appendix

11-24 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C0268] CFG: INACT 1000 FIXED 0 @ Selection list 2 Configuration: motor potentiometerinput

C0269123

DIS: C0267/1DIS: C0267/2DIS: C0268

Display ofDIS: C0267/1DIS: C0267/2DIS: C0268

MSELC1394

123456789

10

CFG: EN-M1CFG: EN-M2CFG: EN-M3CFG: EN-M4CFG: LOCKCFG: EN-M1CFG: EN-M2CFG: EN-M3CFG: EN-M4CFG: LOCK

1000 FIXED 0 @ Selection list 21. MSEL1: Activation master value 12. MSEL1: Activation master value 23. MSEL1: Activation master value 34. MSEL1: Activation master value 45. MSEL1: Locking6. MSEL2: Activation master position 17. MSEL2: Activation master position 28. MSEL2: Activation master position 39. MSEL2: Activation master position 410.MSEL2: Locking

C1395 DIS: C1394/1 ...10

Display of C1394

C13961234

CFG: M1POSCFG: M2POSCFG: M3POSCFG: M4POS

1000 FIXED0 INC @ Selection list 31. MSEL2: Master position input 12. MSEL2: Master position input 23. MSEL2: Master position input 34. MSEL2: Master position input 4

C1397 DIS: C1396/1 ... 4 Display of C1396C1398

1234

CFG: DFIN1CFG: DFIN2CFG: DFIN3CFG: DFIN4

1000 FIXEDPHI-0 @ Selection list 41: Master value input 12: Master value input 23: Master value input 34: Master value input 4

C1399 DIS: C1398/1 ... 4 Display of C1398NOT

[C0840] CFG: IN 1000 FIXED0 @ Selection list 2 Digital input NOT1C0841 DIS: C0840 Display of C0840

[C0842] CFG: IN 1000 FIXED0 @ Selection list 2 Digital input NOT2C0843 DIS: C0842 Display of C0842

[C0844] CFG: IN 1000 FIXED0 @ Selection list 2 Digital input NOT3C0845 DIS: C0844 Display of C0844

[C0846] CFG: IN 1000 FIXED0 @ Selection list 2 Digital input NOT4C0847 DIS: C0846 Display of C0846

[C0848] CFG: IN 1000 FIXED0 @ Selection list 2 Digital input NOT5C0849 DIS: C0848 Display of C0848

NSETC0011 Nmax 3000 500 {1 rpm} 16000 Maximum speed

Reference value for the absolute and relativesetpoint selection for the acceleration anddeceleration times.l Parameter setting via interface:

Large changes in one step should only bemade when the controller is inhibited.

C0012 Tir (acc) 0.000 0.000 {0.001 s} 999.900 Acceleration time Tir for the main setpoint ofNSET(ref. to speed change 0¤nmax. )

C0013 Tif (dec) 0.000 0.000 {0.001 s} 999.900 Deceleration time Tif for the main setpoint ofNSET(ref. to speed change 0¤nmax. )

Page 150: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-25

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C003912345...1415

JOG set-valueJOG set-valueJOG set-valueJOG set-valueJOG set-value...JOG set-valueJOG set-value

100.0075.0050.0025.000.00...0.000.00

-199.99 {0.01 } 199.99 Fixed speeds (JOG setpoints) can beselected for NSET using digital inputs.

C0045 DIS: act JOG 0 Nset active1 JOG 12 JOG 2...15 JOG 15

Active JOG set-value

C0046 DIS: N -199.99 {0.01 %} 199.99 Main set-valueC0049 DIS: NADD -199.99 {0.01 %} 199.99 Additional setpointC0101

12...15

add Tiradd Tir...add Tir

0.0.000...0.000

0.000 {0.001 s} 999.900 Additional acceleration times Tir forthe main setpoint of NSET(ref. to speed change 0¤nmax. )

C010312...15

add Tifadd Tif...add Tif

0.0.000...0.000

0.000 {0.001 s} 999.900 Additional deceleration times Tif forthe main setpoint of NSET(ref. to speed change 0¤nmax. )

C0130 DIS: act Ti Active Ti times of NSETC0134 RFG charac 0 0/1 Ramp characteristic for setpoint

0: linear1: S-curve

C0182 Ti S-curve 20.00 0.01 s {0.01 s} 50.00 s T i time of the S-curve ramp function generatorfor NSETDetermines the S-curvel low valuesA

minimum S roundingl high valuesA

maximum S roundingC0190 NSET arith 0 0 {1} 5 Arithmetic block in the function block NSET.

Connects main setpoint C0046 and additionalsetpoint C00400 OUT = C461 C46 + C492 C46 - C493 C46 * C494 C46 / C495 C46/(100 - C49)

C0220 NSET Tir add 0.000 0.000 {0.001 s} 999.900 Acceleration time Tir of the additional setpointfor NSET(ref. to speed change 0¤nmax. )

C0221 NSET Tif add 0.000 0.000 {0.001 s} 999.900 Deceleration time Tif of the additional setpointfor NSET(ref. to speed change 0¤nmax. )

C0241 NSET RFG I = O 1.00 0.00 {0.01 %} 100.00 Threshold ramp function generator for mainsetpointInput = output , (100 % = nmax)

[C0780] CFG: N 50 AIN1-OUT @ Selection list 1 Configuration main setpoint input[C0781] CFG: N-INV 10251 R/L/Q-R/L @ Selection list 2 Configuration main setpoint inversion[C0782] CFG: NADD 5650 ASW1-OUT @ Selection list 1 Configuration additional setpoint input[C0783] CFG: NADD-INV 1000 FIXED0 @ Selection list 2 Configuration additional setpoint inversion[C0784] CFG: CINH-VAL 5001 MCTRL-NACT @ Selection list 1 Configuration output signal with controller inhibit[C0785] CFG: SET 5000 MCTRL-NSET2 @ Selection list 1 Configuration ramp function generator[C0786] CFG: LOAD 5001 MCTRL-QSP-OUT @ Selection list 2 Digital input (load ramp function generator)

Page 151: ba93ku_gb.pdf

Appendix

11-26 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C0787]1234

CFG: JOG*1CFG: JOG*2CFG: JOG*4CFG: JOG*8

53100010001000

@ Selection list 2DIGIN3FIXED0FIXED0FIXED0

Configuration JOG selection and JOG activationBinary interpretation

[C0788]1234

CFG: TI*1CFG: TI*2CFG: TI*4CFG: TI*8

1000100010001000

@ Selection list 2FIXED0FIXED0FIXED0FIXED0

Configuration Ti selection and Ti activationl Binary interpretationl Tir and Tif pairs are identical

[C0789] CFG: RFG-0 1000 FIXED0 @ Selection list 2 Digital input (ramp function generator 0)[C0790] CFG: RFG-STOP 1000 FIXED0 @ Selection list 2 Digital input (ramp function generator stop)

C079812

DIS: CINH-VALDIS: SET

-199.99 {0.01 %} 199.99 analog input signals

C0799123456789

10111213

DIS: N-INVDIS: NADD-INVDIS: LOADDIS: JOG*1DIS: JOG*2DIS: JOG*4DIS: JOG*8DIS: TI*1DIS: TI*2DIS: TI*4DIS: TI*8DIS RFG-0DIS: RFG-STOP

Display digital input signals of NSET

OR[C0830]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs OR1

C0831 DIS: C0830 Display of C0830[C0832]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs OR2

C0833 DIS: C0832 Display of C0832[C0834]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs of the OR element OR3

C0835 DIS: C0834 Display of C0834[C0836]

123

CFG: IN1CFG: IN2CFG: IN3

1000 FIXED0 @ Selection list 2 Digital inputs of the OR element OR4

C0837 DIS: C0836 Display of C0836[C0838]

123

CFG: IN1CFG: IN2CFG: IN

1000 FIXED0 @ Selection list 2 Digital inputs of the OR element OR5

C0839 DIS: C0838 Display of C0838OSZ

2 Enable/inhibit 0 0 {1} 1 For reading, the data memory must beenabled0 Read data inhibited1 Read data enabled

Page 152: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-27

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0730 Mode 0 0 {1} 1 Start / stop of the measuring valuerecording0 Start measurement1 Stop measurement

C0731 Status 0 {1} 5 Actual operating status0 Measurement completed1 Measurement active2 Trigger detected3 Cancel4 Cancel after trigger5 Read memory

[C0732]1234

CFG: channel1CFG: channel2CFG: channel3CFG: channel4

1000 FIXED0% @ Selection list 1 Configuration analog inputs

[C0733]1 CFG: Dig. trigger

1000 FIXED0 @ Selection list 2 Configuration trigger input

C0734 Trigger source 0 0 {1} 4 Selection of trigger source0 dig. trigger input1 Channel 12 Channel 23 Channel 34 Channel 4

C0735 Trigger level 0 -32767 {1} 32767 Adjust trigger level to channel 1 ... 4C0736 Trigger signal 0 0 {1} 1 Selection of trigger signal

0 LOW/HIGH transition1 HIGH/LOW transition

C0737 Trigger delay 0.0 -100.0 {0.1 %} 999.99 Setting of pre- and post-triggeringC0738 Scanning period 3 3 {1} 21 Selection of the scanning period

3 1 ms4 2 ms5 5 ms6 10 ms7 20 ms8 50 ms9 100 ms10 200 ms11 500 ms12 1 s13 2 s14 5 s15 10 s16 20 s17 50 s18 1 min19 2 min20 5 min21 10 min

C0739 Number ofchannels

4 1 {1} 4 Number of channels to be measured

C0740 during start 0 0 {1} 16383 Determine the start point for reading the datamemorySelection of a memory block

C07411234

DIS: VersionDIS: MemoryspaceDIS: Data widthDIS: Number ofchannels

1 Version2 Memory space3 Data width4 Number of channels

Page 153: ba93ku_gb.pdf

Appendix

11-28 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0744 Memory space 2048 0 {1} 6 Adapt memory capacity to themeasuring task0 5121 10242 15363 20484 30725 40966 8192

C0749123

DIS: Index cancelDIS: Index triggerDIS: Index end

Information about sroring measuredvalues

PCTRLC0222 PCTRL Vp 1.0 0.1 {0.1} 500.0 Process controller gain VpC0223 PCTRL Tn 400 20 {1 ms} 99998 Process controller integral component Tn

99999 ms switched offC0224 PCTRL Kd 0.0 0.0 {0.1} 5.0 Process controller differential

component K dC0325 Vp2 adapt 1.0 0.1 {0.1} 500.0 Process controller adaptation gain

(Vp2)C0326 Vp3 adapt 1.0 0.1 {0.1} 500.0 Process controller adaptation gain

(Vp3)C0327 Set2 adapt 100.00 0.00 {0.01 %} 100.00 Set speed threshold of the process controller

adaptationCondition: C0327 > C0328

C0328 Set1 adapt 0.00 0.00 {0.01 %} 100.00 Set speed threshold of the process controlleradaptationCondition: C0328 < C0327

C0329 Adapt on/off 0 Activate process controller adaptationC0329 Adapt on/off 00 no1 Extern Vp2 Set-value3 Ctrl diff

Activate process controller adaptation0: No process controller adaptation1: Externally via input2: Adaptation via setpoint3: Adaptation via control difference

C0332 PCTRL Tir 0.000 0.000 {0.001 s} 999.900 Process controller acceleration time TirRef. to setpoint change 0¤100 %

C0333 PCTRL Tif 0.000 0.000 {0.001 s} 999.900 Process controller deceleration time TirRef. to setpoint change 0¤100 %

C0336 DIS: act Vp 0.0 {0.1} 500.0 Process controller actual VpC0337 Bi/unipolar 0 0 bipolar

1 unipolarProcess controller range bipolar/unipolar

[C0800] CFG: SET 1000 FIXED0% @ Selection list 1 Configuration setpoint input[C0801] CFG: ACT 1000 FIXED0% @ Selection list 1 Configuration actual value input[C0802] CFG: INFLU 1000 FIXED0% @ Selection list 1 Configuration evaluation input[C0803] CFG: ADAPT 1000 FIXED0% @ Selection list 1 Configuration adaptation input[C0804] CFG: INACT 1000 FIXED0 @ Selection list 2 Configuration inactivation input[C0805] CFG: I-OFF 1000 FIXED0 @ Selection list 2 Digital input (switch-off I component)

C08081234

DIS: C0800DIS: C0801DIS: C0802DIS: C0803

-199.99 {0.01 %} 199.99 Display ofC0800C0801C0802C0803

C80912

DIS: C0804DIS: C0805

Display ofC0804C0805

PHADD[C1200]

123

CFG: INCFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Configuration input of PHADD1

C1201 DIS: C1200 -2147483647 {1} 2147483647 Display of C1200

Page 154: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-29

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

PHCMPC0695 Function 2 1 {1} 2 Function comparator for phase signals PHCMP1

Compares the inputs IN1 and IN21 IN 1 < IN22 |IN1| < |IN2|

[C0697]12

CFG: INCFG: IN

1000 FIXED 0INC @ Selection list 3 Configuration phase inputs of PHCMP1

C0698 DIS: C0697 -2147483647 {1} 2147483647 Display of C0697[C1205]

12

CFG: IN1CFG: IN2

1000 FIXED0INC @ Selection list 3 Configuration inputs of PHCMP2

C1206 DIS: C1205 -2147483647 {1} 2147483647 Display of C1205C1207 Function PHCMP2 2 1 {1} 2 Function of PHCMP2

1 IN1 < IN22 |IN1| < |IN2|

[C1270]12

CFG: INCFG: IN

1000 FIXED0INC @ Selection list 3 Configuration inputs of PHCMP3

C1271 DIS: C1270 -2147483647 {1} 2147483647 Display of C1270C1272 Function PHCMP3 2 1 {1} 2 1 IN1 < IN2

2 �IN1� < �IN2�PHDIFF

[C1230]12

CFG: ENCFG: RESET

1000 FIXED0 @ Selection list 2 Digital inputs of PHDIFF1

[C1231] CFG: IN 1000 FIXEDPHI-0 @ Selection list 4 Configuration inputs of PHDIFF1[C1232]

12

CFG: SETCFG: ADD

1000 FIXED0INC @ Selection list 3 Configuration inputs of PHDIFF1

C1235 DIS: C1230 Display of C1230C1236 DIS: C1231 -32767 {1} 32767 Display of C1231C1237 DIS: C1232 -2147483647 {1} 2147483647 Display of C1232

PHDIVC0995 Factor 0 -31 {1} 31

[C0996] CFG: IN 1000 FIXED0INC @ Selection list 3 Configuration input phase divisionPHDIV1

C0997 DIS: C0996 -2147483647 {1} 2147483647 Display of C0996PHINT

[C0990] CFG: IN 1000 FIXEDPHI0 @ Selection list 4 Input phase integrator PHINT1[C0991] CFG: RESET 1000 FIXED0 @ Selection list 2 Reset input of PHINT1

C0992 DIS: C0990 -32767 {1} 32767 Display of C0990C0993 DIS: C0991 Display of C0991

[C1030] CFG: IN 1000 FIXEDPHI0 @ Selection list 4 Input PHINT2

[C1031] CFG: RESET 1000 FIXED0 @ Selection list 2 Reset input of PHINT2C1032 DIS: C1030 -32767 {1} 32767 Display of C1030C1033 DIS: C1031 Display of C1031C1150 Function 0 0 Load perm

1 Load edge2 Cmp & sub

Function of PHINT3

C1151 Comp. value 2ô109 0 {1} 2000000000 Comparison value of PHINT3[C1153] CFG: IN 1000 FIXEDPHI0 @ Selection list 4 Input phase integrator PHINT3[C1154] CFG: LOAD 1000 FIXED0 @ Selection list 2 Input of PHINT3[C1155] CFG: SET 1000 FIXED0INC @ Selection list 3 Input of PHINT3

C1157 DIS: C1153 -32767 {1} 32767 Display of C1153C1158 DIS: C1154 Display of C1154C1159 DIS: C1155 -2147483647 {1} 2147483647 Display of C1155

Page 155: ba93ku_gb.pdf

Appendix

11-30 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

PSAVEC1430

1

2

Window formaster valuecomparisonWindow for actualvalue comparison

1.0000 0 {0.0001 units} 214000.0000

C1431 Memory function 0 0 {1] 2 0 Compare MPOS and ACTPOS1 compare MPOS only2 compare ACTPOS only

C143412

CFG: ONCFG: SAVE

1000 FIEXED0 @ Selection list 2 1. HIGH = Comparison of inputs MPOS/ACTPOSwith values saved and difference output

2. HIGH = Acceptance of the inputs MPOS andACTPOS

C1435 DIS: C1434/1 ... 2 Disply of C1434C1436

12

CFG: MPOSCFG: ACTPOS

1000 FIXED0INC @ Selection list 3 1. Input for master position2. Input for actual position (e.g. rotor position)

C1437 DIS: C1436/1 ... 2 Display of C1436PT1

C0640 Delay T 20.00 0.01 {0.01 s} 50.00 Time constant of the PT1-1component

C1641 CFG: 1-1IN 1000 FIXED0 @ Selection list 1 SP value for IN1-1[C1642] DIS: 1-1IN Display of C1641

R/L/Q[C0885] CFG: R 51 DIGIN 1 @ Selection list 2 Digital input (CW rotation) of R/L/Q[C0886] CFG: L 52 DIGIN 2 @ Selection list 2 Digital input (CCW rotation) of R/L/Q

C088912

DIS: C0885DIS: C0886

Display ofC0885C0886

REFCC0011 Nmax 3000 500 {1 rpm} 16000 Maximum speed

Reference value for the absolute and relativesetpoint selection for the acceleration anddeceleration times.l Parameter setting via interface:

Large changes in one step should only bemade when the controller is inhibited.

C04741 FCODE PH

0 -2147483648 {1} 2147483648 Freely assignable code for phase signals1 rev. = 65536 inc

[C0920] CFG: ON 1000 FIXED0 @ Selection list 2 Activation input homing[C0921] CFG: MARK 1000 FIXED0 @ Selection list 2 Digital reference switch[C0922] CFG: PHI-IN 1000 FIXED0INC @ Selection list 3 Phase input[C0923] CFG: N-IN 1000 FIXED0% @ Selection list 1 Speed input[C0924] CFG: POS-LOAD 1000 FIXED0 @ Selection list 2 Control ”set position”[C0925] CFG: ACTPOS-I 1000 FIXED0INC @ Selection list 3 Position ”set position”

C09261234

DIS: C0925DIS: C0922DIS: ACTPOSDIS: TARGET

-2147483647 {1 inc} 2147483647 Display of1. C09252. C09223. Display of the actual position4. Display of the target position

C0927123

DIS: C0920DIS: C0921DIS: LOAD

Display of1. C09202. C09213. C0924

C0928 DIS: C0922 -2147483647 {1 inc} 2147483647 Phase signal (contouring error) of REFl 1 rev. = 65536 inc

C0929 DIS: C0923 -199.99 {0.01 %} 199.99 Analog input signal[C0930] Gearbox mot 1 1 {1} 65535 Gearbox factor (numerator)[C0931] Gearbox enc 1 1 {1} 65535 Gearbox factor (denominator)

Page 156: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-31

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C0932 REF mode 00 Mode 01 Mode 16 Mode 67 Mode 78 Mode 89 Mode 920 Mode 2021 Mode 21

Homing mode

C0933 REF trans 00 Rising trans1 Falling trans

Reference signal transitionrising transitionfalling transition

C0934 REF offset 0 -2140000000 {1 inc} 2140000000 Home position offsetC0935 REF speed 2.0000 0.0001 {0.0001 % Nmax} 100.0000 Homing speedC0936 REF Ti 1.00 0.01 {0.01 s} 990.00 T i time homing

l Tir and Tif are identicalC0937 CFG: DFIN 1000 FIXEDPHI-0C0938 DIS: C0937 Display of C0937

RFGC0671 RFG1 Tir 0.000 0.000 {0.01 s} 999.900 Acceleration time Tir of ramp function

generator RFG1C0672 RFG1 Tif 0.000 0.000 {0.01 s} 999.900 Deceleration time Tif of RFG1

[C0673] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of RFG1[C0674] CFG: SET 1000 FIXED 0 % @ Selection list 1 Configuration set input of RFG1[C0675] CFG: LOAD 1000 FIXED 0 @ Selection list 2 Digital input of RFG1

C067612

DIS: C0673DIS: C0674

-199.99 {0.01 %} 199.99 Display ofC0673C0674

C0677 DIS: C0675 Display of C0675RFGPH

C1400123

CFG: RESETCFG: RFG-0CFG: T/DIST

1000 FIXED 0 @ Selection list 2 1. HIGH = sets RFGPH1-OUT = 0 (jump)LOW = RFGPH1-OUT is set to the value atRFGPH1-IN according to the selectedfunctionInput has priority over RFGPH1-RFG-0

2. HIGH = proceeds according to the selectedfunction RFGPH1-OUT = 0LOW = RFGPH1-OUT is set to the value atRFGPH1-IN according to the selectedfunction

3. Function changeover HIGH = path-based pathchangeLOW = time-based path change

C1401 DIS: C1400/1 ... 3 Display of C1400C1402

12

CFG: INCFG: DIST

1000 FIXED0 INC @ Selection list 3 1. Position setpoint (65536 inc = 1 rev.)2. Path difference by which the path is to be

changed at the input -IN (65536 inc = 1 rev.)C1403 DIS: C1402/1 ... 2 Display of C1402C1404 CFG: DFIN 1000 FIXEDPHI-0 @ Selection list 4 Digital frequency inputC1405 DIS: C1404 Display of C1404C1408 Speed 300.0 -16000.0000 {0.0001 rpm} 16000.0000

S&H[C0570] CFG: IN 1000 FIXED 0 % @ Selection list 1 Configuration analog input of S&H1[C0571] CFG: LOAD 1000 FIXED 0 @ Selection list 2 Digital input of S&H1

C0572 DIS: C0570 -199.99 {0.01 %} 199.99 Display of C0570C0573 DIS: C0571 Display of C0571

SELPHC1660 DIS: act.sel. 0 0 {1} 8 Display of the actual selection

[C1661] CFG: SELPH1-SELECT

1000 FIXED0% @ Selection list 1

[C1662]1..8

CFG: SELPH1-IN1...CFG: SELPH1-IN8

1000 FIXED0INC @ Selection list 3

Page 157: ba93ku_gb.pdf

Appendix

11-32 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C1663 DIS: C1661 0 -32768 {1} 32767 Display of C1661C1664 DIS: C1662 0 -2147483648 {1 inc} 147483647 Display of C1662C1665 DIS: act.sel. 0 0 {1} 8 Display of the actual selection

[C1666] CFG: SELPH2-SELECT

1000 FIXED0% @ Selection list 1

[C1667]1..8

CFG: SELPH2-IN1...CFG: SELPH2IN8

1000 FIXED0INC @ Selection list 3

C1668 DIS: C1666 0 -32768 {1} 32767 Display of C1666C1669 DIS: C1667 0 -2147483648 {1 inc} 2147483647 Display of C1667

SPC[C1640] CFG: RESET 1000 FIXED0 @ Selection list 2

C1641123456789

10111213141516

SP-value 1-1SP-value 1-2SP-value 2-1SP-value 2-2SP-value 3-1SP-value 3-2SP-value 4-1SP-value 4-2SP-value 5-1SP-value 5-2SP-value 6-1SP-value 6-2SP-value 7-1SP-value 7-2SP-value 8-1SP-value 8-2

1 FCODE1476/xFCODE1477/xFCODE0474/xVTPOSC-No.x

SPC1SP-value 1-1: Switch point output STAUS-01SP-value 1-2: Switch point output STAUS-01......

SP-value 8-1: Switch point output STAUS-08SP-value 8-2: Switch point output STAUS-08

[C1642] CFG: L-IN 1000 FIXED0INC @ Selection list 3C1643 DIS: C1640 0 0 {1} 1 Display of C1640C1644 DIS: C1642 0 -1073741824 {1 inc} 1073741823 Display of C1642C1645 SPC1 mode 0 0 {1} 1 0 on / off

1 centre/range[C1650] CFG: RESET 1000 FIXED0 @ Selection list 2

C1651123456789

10111213141516

SP-value 1-1SP-value 1-2SP-value 2-1SP-value 2-2SP-value 3-1SP-value 3-2SP-value 4-1SP-value 4-2SP-value 5-1SP-value 5-2SP-value 6-1SP-value 6-2SP-value 7-1SP-value 7-2SP-value 8-1SP-value 8-2

1 FCODE 1476/1 @ Selection list 1 SPC2SP-value 1-1: Switch point output STAUS-01SP-value 1-2: Switch point output STAUS-01......

SP-value 8-1: Switch point output STAUS-08SP-value 8-2: Switch point output STAUS-08

[C1652] CFG: L-IN 1000 FIXED0INC @ Selection list 3C1653 DIS: C1650 0 0 {1} 1 Display of C1640C1654 DIS: C1652 0 -1073741824 {1 inc} 1073741823 Display of C1652C1655 SPC2 mode 0 0 {1} 1 0 on / off

1 centre/rangeC1657

1..4

Death time..Death time

0 -30000 {1 ms} 30000 SP2 dead time

Page 158: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-33

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C1658 Hysteresis 0 -32767 {1 inc} 32767 SP2 hysteresisC1659 Filter 1 0 / 1 / 2 / 4 / 8 / 16 Filters

0 Filter off1 Filter 1 ms2 Filter 2 ms4 Filter 4 ms8 Filter 8 ms16 Filter 16 ms

SRFGC1040 Accelaration 100.00 0.001 {0.001} 5000.000 Acceleration of SRFG1C1041 Jolt 0.200 0.001 {0.001 s} 999.999 Adjust jolt of SRFG1

[C1042] CFG: IN 1000 FIXED0% @ Selection list 1 Configuration input of SRFG1[C1043] CFG: SET 1000 FIXED0% @ Selection list 1 Configuration input of SRFG1[C1044] CFG: LOAD 1000 FIXED0 @ Selection list 2 Digital input of SRFG1

C104512

DIS: C1042DIS: C1043

-199.99 {0.01 %} 199.99 Display ofC1042C1043

C1046 DIS: C1044 Display of C1044STAT

C0150 DIS: Status word 0 {1} 65535 Status word when networked with automationinterfacesl Binary interpretation indicates the bit states

[C0156]1234567

CFG: STAT.B0CFG: STAT.B2CFG: STAT.B3CFG: STAT.B4CFG: STAT.B5CFG: STAT.B14CFG: STAT.B15

200050025003505010650505500

@ Selection list 2DCTRL-PAR*1-OMCTRL-IMAXMCTRL-MMAXNSET-RFG I=OCMP1-OUTDCTRL-CW/CCWDCTRL-RDY

Configuration of the free bits of thestatus word

C0157 DIS: C0156 0 1 Display of C0156STATE-BUS

[C0440] CFG: STATE-BUS 1000 @ Selection list 2 Configuration state bus X5/STC0441 DIS: C0440 Display of C0440

STORE[C1210]

12345

CFG: RESETCFG: ENTPCFG: ENWINCFG: LOAD0CFG: LOAD1

1000 FIXED0 @ Selection list 2 Digital inputs of STORE1

[C1211]12

CFG: INCFG: MASKI

1000 FIXEDPHI-0 @ Selection list 4 Configuration inputs of STORE1

[C1212] CFG: MASKV 1000 FIXED0INC @ Selection list 3 Configuration input of STORE1C1215 DIS: C12101 ... 5 Display of C1210C1216 DIS: C1211/1 ... 2 -32767 {1} 32767 Display of C1211C1217 DIS: C1212 -2147483647 {1} 2147483647 Display of C1212

[C1220]12

CFG: RESETCFG: ENTP

1000 FIXED0 @ Selection list 2 Digital inputs of STORE2

C1223 DIS: C1220/1 ... 2 Display of C1220SWPHD

C144012

CFG:SWPHD1-SETCFG:SWPHD2-SET

1000 FIXED 0 @ Selection list 2

C1441 DIS: C1440/1 ... 2 Display of C1440

Page 159: ba93ku_gb.pdf

Appendix

11-34 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C14421234

SWPHD1-IN1SWPHD1-IN2SWPHD2-IN1SWPHD2-IN2

1000 FIXEDPHI-0 @ Selection list 4

C1443 C1442/1 ... 4 Display of C1442SYNC

C1120 Sync mode 2 0 {1} 2 Function0 off1 CAN sync2 Terminal sync

[C1121]1 Sync cycle

2 0 {1 ms} 13 l The interpolation is started with every syncsignal1

2Sync cycleInterpol. cycl

signal1. Definition for the cycle time of sync signals

(slave); for SYSTEMBUS only(slave); for SYSTEMBUS only2. Definition for the interpolation time between

the sync signals (slave); for terminal onlyC1122 Sync time 0.460 0.000 {0.001 ms} 10.000 Phase shift between CAN sync and internal

control program cyclel for SYSTEMBUS onlyl depends on baud rate and bus load

C112312

Phase shiftSync Window

0 -1.000 {0.001 ms} 1.000 1. Phase shift between terminal synch andinternal program cycle, for terminal sync only

2. Window for the synchronisation signal of the2 Sync Window 2. Window for the synchronisation signal of theterminal synch (LOW/HIGH transition); forterminal sync only

l Activated when leaving the sync start window[C1124] CFG: IN1 1000 FIXED0INC @ Selection list 3 Input[C1125] CFG: IN2 1000 FIXED0INC @ Selection list 3 Input[C1126] CFG: IN3 1000 FIXED0INC @ Selection list 3 Input

C1127 DIS: C1124 -2147483647 {1} 2147483647 Display of C1124C1128 DIS: C1125 -2147483647 {1} 2147483647 Display of C1125C1129 DIS: C1126 -2147483647 {1} 2147483647 Display of C1126C1290 MONIT P16 3 0 / 2 / 3 Monitoring of the synchronisation test

0 Trip2 Warning3 Off

TRANSC0710 Function 0 0 {1} 2 Transition evaluation TRANS1

0 Rising trans1 Falling trans2 Both trans

C0711 Pulse T 0.001 0.001 {0.001 s} 60.000 Pulse time of TRANS1[C0713] CFG: IN 1000 FIXED 0 @ Selection list 2 Digital input of TRANS1

C0714 DIS: C0713 Display of C0713C0715 Function 0 0 {1} 2 Transition evaluation TRANS2

0 Rising trans1 Falling trans2 Both trans

C0716 Pulse T 0.001 0.001 {0.001 s} 60.000 Pulse time of TRANS2[C0718] CFG: IN 1000 FIXED 0 @ Selection list 2 Digital input of TRANS2

C0719 DIS: C0718 Display of C0718C1140 Function 0 0 {1} 2 Transition evaluation TRANS3

0 Rising trans1 Falling trans2 Both trans

C1141 Pulse T 0.001 0.001 {0.001 s} 60.000 Pulse time of TRANS3[C1143] CFG: IN 1000 FIXED 0 @ Selection list 2 Digital input of TRANS3

C1144 DIS: C1143 Display of C1143C1145 Function 0 0 {1} 2 0 rising transition

1 falling edge2 both transitions

C1146 pulse time 0.001 0.001 {0.001 s} 60.000

Page 160: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-35

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

[C1148] CFG: IN 1000 FIXED 0 @ Selection list 2 Digital input of TRANS4C1149 DIS: C1148 Display of C1148

VMASC1460 Selection setpoint

source0 0 {1} 1 0 Analog setpoint AIN

1 Phase difference setpointDFIN

C14611

2

CW speedCCW speed

300 -16000.0000 {0.0001 rpm} 16000.0000

C146212

Acceleration timeDeceleration time

1.000 0.010 {0.001 s} 999.990

C14631

2

Window rampfunction generatorHysteresis rampfunction generator

100 0 {1 rpm} 16000

C146612

VMAS1-AINVMAS1-RED-VAL

1000 FIXED 0% @ Selection list 1 1. Analog setpoint2. Alternative analog setpoint, target for speed

reductionC1467 DIS: C1466 Display of C1466C1468

12345

VMAS1-EN-AINVMAS1-EN-REDVMAS1-EN-RFGVMAS1-CWVMAS1-CCW

1000 FIXED 0 @ Selection list 2 1. HIGH = Activate the analog input VMAS1-AINor VMAS1-DFIN (depending on the selectionunder C1460)

2. HIGH = Activate the analog inputVMAS1-RED-VAL

3. HIGH = Active the ramp function generatorLOW = Input values are processed directly

4. Input CW rotation (determine speed inC1461/1)

5. Input CCW rotation (determine speed inC1461/2)

C1469 DIS: C1468 Display of C1468C1472 VMAS1-DFIN 1000 FIXEDPHI-0 @ Selection list 4 Master speed input (digital frequency)C1473 DIS: C1472 Display of C1472

VTPOSC[C1360]

123456789

10

CFG:IN1CFG:IN2CFG:IN3CFG:IN4CFG:IN5CFG:IN6CFG:IN7CFG:IN8CFG:IN9CFG:IN10

1000 FIXED0INC @ Selection list 3

C1361 DIS: C1361 0 0/1 Display of C1361WELD

C144412345

CFG: XINCFG: LEN-OCFG: LEN-CCFG: LENCFG: TIME

1000 FIXED0INC @ Selection list 31. Input X position2. Time of the closing phase3. Time of the opening phase4. Time of the cam profile5. Welding time in ms (1 inc = 1 ms)

C1445 DIS: C1444 Display of C1444YSET

C1350 Direction ofrotation of actualvalue

0 0 {1} 1 0 CW rotation1 CCW rotation

Page 161: ba93ku_gb.pdf

Appendix

11-36 BA9300KS1198

Code ImportantPossible settingsLCDCode ImportantSelectionLenze

LCD

C1352 CFG: FACT 1000 FIXED 0% @ Selection list 1 Stretching/compression factor:+100% = no compression/stretching> 100% = compression< 100% = stretching

C1353 DIS: C1352 Display of C1352C1354

12

CFG: RESETCFG: SYNCH

1000 FIXED 0 @ Selection list 2 1: Reset of the -OFFS input2: Clock pulse input for synchronous switchingof the stretching/compression factor

C1355 DIS: C1354 Display of C1354C1356 CFG: OFFS 1000 FIXED0 INC @ Selection list 3 Offset valueC1357 DIS: C1356 Display of C1356C1358

12

CFG: INCFG: IN-SYNCH

1000 FIXEDPHI-0 @ Selection list 4 Input in rpm

C1359 DIS: C1358 Display of C1358

Page 162: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-37

11.3 Selection list for signal connections

The signals must be connected by entering their numbers to configure thecontroller via the keypad.

Selection list 1, analog output signals (L)000050 AIN1-OUT 019500 FCODE-17 020101 CAN-IN1.W1000055 AIN2-OUT 019502 FCODE-26/1 020102 CAN-IN1.W2000100 DFSET-NOUT 019503 FCODE-26/2 020103 CAN-IN1.W3001000 FIXED0% 019504 FCODE-27/1 020201 CAN-IN2.W1001006 FIXED100% 019505 FCODE-27/2 020202 CAN-IN2.W2001007 FIXED-100% 019506 FCODE-32 020203 CAN-IN2.W3005000 MCTRL-NSET2 019507 FCODE-37 020204 CAN-IN2.W4005001 MCTRL-NACT 019510 FCODE-108/1 020301 CAN-IN3.W1005002 MCTRL-MSET2 019511 FCODE-108/2 020302 CAN-IN3.W2005003 MCTRL-MACT 019512 FCODE-109/1 020303 CAN-IN3.W3005005 MCTRL-DCVOLT 019513 FCODE-109/2 020304 CAN-IN3.W4005009 MCTRL-PHI-ACT 019515 FCODE-141 025101 AIF-IN.W1005050 NSET-NOUT 019521 FCODE-472/1 025102 AIF-IN.W2005100 MPOT1-OUT 019522 FCODE-472/2 025103 AIF-IN.W3005150 PCTRL1-OUT 019523 FCODE-472/3005200 REF-N-SET 019524 FCODE-472/4005500 ARIT1-OUT 019525 FCODE-472/5005505 ARIT2-OUT 019526 FCODE-472/6005550 ADD1-OUT 019527 FCODE-472/7005600 RFG1-OUT 019528 FCODE-472/8005650 ASW1-OUT 019529 FCODE-472/9005655 ASW2-OUT 019530 FCODE-472/10005700 ANEG1-OUT 019531 FCODE-472/11005705 ANEG2-OUT 019532 FCODE-472/12005750 FIXSET1-OUT 019533 FCODE-472/13005800 LIM1-OUT 019534 FCODE-472/14005850 ABS1-OUT 019535 FCODE-472/15005900 PT1-1-OUT 019536 FCODE-472/16005950 DT1-1-OUT 019537 FCODE-472/17006100 MFAIL-NOUT 019538 FCODE-472/18006150 DB1-OUT 019539 FCODE-472/19006200 CONV1-OUT 019540 FCODE-472/20006205 CONV2-OUT 019551 FCODE-473/1006210 CONV3-OUT 019552 FCODE-473/2006215 CONV4-OUT 019553 FCODE-473/3006230 CONVPHA1-OUT 019554 FCODE-473/4006400 FCNT1-OUT 019555 FCODE-473/5006300 S&H1-OUT 019556 FCODE-473/6006350 CURVE1-OUT 019557 FCODE-473/7010000 BRK-M-SET 019558 FCODE-473/8013301 CDATA-ACTCAM 019559 FCODE-473/9013302 CURVEC1-AOUT 019560 FCODE-473/10013601 CSEL1-OUT013351 CCTRL-NOUT013352 CCTL-MOUT013701 MSEL1-MVAL013711 MSEL2-MVAL

Page 163: ba93ku_gb.pdf

Appendix

11-38 BA9300KS1198

Selection list 2, digital output signals (P)000051 DIGIN1 010620 NOT5-OUT 015012 MONIT-EEr000052 DIGIN2 010650 CMP1-OUT 015013 MONIT-OC1000053 DIGIN3 010655 CMP2-OUT 015014 MONIT-OC2000054 DIGIN4 010660 CMP3-OUT 015015 MONIT-LP1000055 DIGIN5 010680 PHCMP1-OUT 015016 MONIT-OH000060 STATE-BUS 010685 PHCMP2-OUT 015017 MONIT-OH3000065 DIGIN-CINH 010700 DIGDEL1-OUT 015018 MONIT-OH4000100 DFSET-ACK 010705 DIGDEL2-OUT 015019 MONIT-OH7000500 DCTRL-RDY 010750 TRANS1-OUT 015020 MONIT-OH8000501 DCTRL-CINH1 010755 TRANS2-OUT 015021 MONIT-Sd2000502 DCTRL-INIT 010900 FLIP1-OUT 015022 MONIT-Sd3000503 DCTRL-IMP 010905 FLIP2-OUT 015023 MONIT-P03000504 DCTRL-NACT=0 012000 PHINT1-FAIL 015024 MONIT-P13000505 DCTRL-CW/CCW 012005 PHINT2-FAIL 015026 MONIT-CE0001000 FIXED0 013000 FEVAN1-BUSY 015027 MONIT-NMAX001001 FIXED1 013001 FEVAN1-FAIL 015028 MONIT-OC5002000 PAR*1 013301 CDATA-SEC1 015029 MONIT-SD5002001 PAR*2 013302 CDATA-SEC2 015030 MONIT-SD6002002 PAR-BUSY 013303 CDATA-SEC3 015031 MONIT-SD7005001 MCTRL-QSP 013304 CDATA-SEC4 015032 MONIT-H07005002 MCTRL-IMAX 013305 CDATA-SEC5 015033 MONIT-H10005003 MCTRL-MMAX 013306 CDATA-X0 015034 MONIT-H11005050 NSET-RFG-I=0 013307 CDATA-X>XMAX 015040 MONIT-CE1005200 REF-OK 013308 CDATA-X<0 015041 MONIT-CE2005201 REF-BUSY 013309 CDATA-BUSY-LENx 015042 MONIT-CE3006000 DFRFG1-FAIL 013310 CDATA-BSY.-LOAD 015043 MONIT-CE4006001 DFRFG1-SYNC 013311 CDATA-CHK-ERR 019500 FCODE-250006100 MFAIL-STATUS 013312 CURVEC1-X<0 019521 FCODE-471.B0006101 MFAIL-I-RESET 013313 CURVEC1-X>XMAX 019522 FCODE-471.B1006400 FCNT1-EQUAL 013314 CDATA-X0_CYCLE 019523 FCODE-471.B2010000 BRK1-OUT 013551 CLUT-OPEN 019524 FCODE-471.B3010001 BRK1-CINH 013552 CLUT-OL 019525 FCODE-471.B4010002 BRK1-QSP 013651 PSAVE-M-HI 019526 FCODE-471.B5010003 BRK1-M-STORE 013652 PSAVE-M-LO 019527 FCODE-471.B6010250 R/L/Q-QSP 013653 PSAVE-ACT-HI 019528 FCODE-471.B7010251 R/L/Q-R/L 013654 PSAVE-ACT-LO 019529 FCODE-471.B8010500 AND1-OUT 013751 WELD-T-ERR 019530 FCODE-471.B9010505 AND2-OUT 013752 WELD-ON 019531 FCODE-471.B10010510 AND3-OUT 013753 WELD-DIR-ERR 019532 FCODE-471.B11010515 AND4-OUT 013801 VMAS1-RFG-IN=OUT 019533 FCODE-471.B12010520 AND5-OUT 013911 CONVPHPHD1-FAIL 019534 FCODE-471.B13010550 OR1-OUT 013951 RFGPH1-RFG-I=0 019535 FCODE-471.B14010555 OR2-OUT 014050 STORE1-TP-INH 019536 FCODE-471.B15010560 OR3-OUT 014055 STORE2-TP-INH 019537 FCODE-471.B16010565 OR4-OUT 015000 DCTRL-TRIP 019538 FCODE-471.B17010570 OR5-OUT 015001 DCTRL-MESS 019539 FCODE-471.B18010600 NOT1-OUT 015002 DCTRL-WARN 019540 FCODE-471.B19010605 NOT2-OUT 015003 DCTRL-FAIL 019541 FCODE-471.B20010610 NOT3-OUT 015010 MONIT-LU 019542 FCODE-471.B21010615 NOT4-OUT 015011 MONIT-OU 019543 FCODE-471.B22

Page 164: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-39

Selection list 2, digital output signals (P) - continued -019544 FCODE-471.B23 020119 CAN-IN1.B18 020304 CAN-IN3.B3 025110 AIF-IN.B9019545 FCODE-471.B24 020120 CAN-IN1.B19 020305 CAN-IN3.B4 025111 AIF-IN.B10019546 FCODE-471.B25 020121 CAN-IN1.B20 020306 CAN-IN3.B5 025112 AIF-IN.B11019547 FCODE-471.B26 020122 CAN-IN1.B21 020307 CAN-IN3.B6 025113 AIF-IN.B12019548 FCODE-471.B27 020123 CAN-IN1.B22 020308 CAN-IN3.B7 025114 AIF-IN.B13019549 FCODE-471.B28 020124 CAN-IN1.B23 020309 CAN-IN3.B8 025115 AIF-IN.B14019550 FCODE-471.B29 020125 CAN-IN1.B24 020310 CAN-IN3.B9 025116 AIF-IN.B15019551 FCODE-471.B30 020126 CAN-IN1.B25 020311 CAN-IN3.B10 025117 AIF-IN.B16019552 FCODE-471.B31 020127 CAN-IN1.B26 020312 CAN-IN3.B11 025118 AIF-IN.B17019751 FCODE-135.B0 020128 CAN-IN1.B27 020313 CAN-IN3.B12 025119 AIF-IN.B18019752 FCODE-135.B1 020129 CAN-IN1.B28 020314 CAN-IN3.B13 025120 AIF-IN.B19019753 FCODE-135.B2 020130 CAN-IN1.B29 020315 CAN-IN3.B14 025121 AIF-IN.B20019755 FCODE-135.B4 020131 CAN-IN1.B30 020316 CAN-IN3.B15 025122 AIF-IN.B21019756 FCODE-135.B5 020132 CAN-IN1.B31 020317 CAN-IN3.B16 025123 AIF-IN.B22019757 FCODE-135.B6 020201 CAN-IN2.B0 020318 CAN-IN3.B17 025124 AIF-IN.B23019758 FCODE-135.B7 020202 CAN-IN2.B1 020319 CAN-IN3.B18 025125 AIF-IN.B24019763 FCODE-135.B12 020203 CAN-IN2.B2 020320 CAN-IN3.B19 025126 AIF-IN.B25019764 FCODE-135.B13 020204 CAN-IN2.B3 020321 CAN-IN3.B20 025127 AIF-IN.B26019765 FCODE-135.B14 020205 CAN-IN2.B4 020322 CAN-IN3.B21 025128 AIF-IN.B27019766 FCODE-135.B15 020206 CAN-IN2.B5 020323 CAN-IN3.B22 025129 AIF-IN.B28020001 CAN-CTRL.B0 020207 CAN-IN2.B6 020324 CAN-IN3.B23 025130 AIF-IN.B29020002 CAN-CTRL.B1 020208 CAN-IN2.B7 020325 CAN-IN3.B24 025131 AIF-IN.B30020003 CAN-CTRL.B2 020209 CAN-IN2.B8 020326 CAN-IN3.B25 025132 AIF-IN.B31020005 CAN-CTRL.B4 020210 CAN-IN2.B9 020327 CAN-IN3.B26020006 CAN-CTRL.B5 020211 CAN-IN2.B10 020328 CAN-IN3.B27020007 CAN-CTRL.B6 020212 CAN.IN2.B11 020329 CAN-IN3.B28020008 CAN-CTRL.B7 020213 CAN-IN2.B12 020330 CAN-IN3.B29020013 CAN-CTRL.B12 020214 CAN-IN2.B13 020331 CAN-IN3.B30020014 CAN-CTRL.B13 020215 CAN-IN2.B14 020332 CAN-IN3.B31020015 CAN-CTRL.B14 020216 CAN-IN2.B15 025001 AIF-CTRL.B0020016 CAN-CTRL.B15 020217 CAN-IN2.B16 025002 AIF-CTRL.B1020101 CAN-IN1.B0 020218 CAN-IN2.B17 025003 AIF-CTRL.B2020102 CAN-IN1.B1 020219 CAN-IN2.B18 025005 AIF-CTRL.B4020103 CAN-IN1.B2 020220 CAN-IN2.B19 025006 AIF-CTRL.B5020104 CAN-IN1.B3 020221 CAN-IN2.B20 025007 AIF-CTRL.B6020105 CAN-IN1.B4 020222 CAN-IN2.B21 025008 AIF-CTRL.B7020106 CAN-IN1.B5 020223 CAN-IN2.B22 025013 AIF-CTRL.B12020107 CAN-IN1.B6 020224 CAN-IN2.B23 025014 AIF-CTRL.B13020108 CAN-IN1.B7 020225 CAN-IN2.B24 025015 AIF-CTRL.B14020109 CAN-IN1.B8 020226 CAN-IN2.B25 025016 AIF-CTRL.B15020110 CAN-IN1.B9 020227 CAN-IN2.B26 025101 AIF-IN.B0020111 CAN-IN1.B10 020228 CAN-IN2.B27 025102 AIF-IN.B1020112 CAN-IN1.B11 020229 CAN-IN2.B28 025103 AIF-IN.B2020113 CAN-IN1.B12 020230 CAN-IN2.B29 025104 AIF-IN.B3020114 CAN-IN1.B13 020231 CAN-IN2.B30 025105 AIF-IN.B4020115 CAN-IN1.B14 020232 CAN-IN2.B31 025106 AIF-IN.B5020116 CAN-IN1.B15 020301 CAN-IN3.B0 025107 AIF-IN.B6020117 CAN-IN1.B16 020302 CAN-IN3.B1 025108 AIF-IN.B7020118 CAN-IN1.B17 020303 CAN-IN3.B2 025109 AIF-IN.B8

Page 165: ba93ku_gb.pdf

Appendix

11-40 BA9300KS1198

Selection list 3, signals (▲) Selection list 4, signals (D) Selection list 5, function blocks000100 DFSET-PSET 000050 DFIN-OUT 000000 empty 010570 OR5000101 DFSET-PSET2 000100 DFSET-POUT 000050 AIN1 010600 NOT1001000 FIXED0INC 000250 DFOUT-OUT 000055 AIN2 010605 NOT2005000 MCTRL-PHI-ANG 001000 FIXEDPHI-0 000070 AOUT1 010610 NOT3005200 REF-PSET 005000 MCTRL-PHI-ACT 000075 AOUT2 010615 NOT4005520 ARITPH1-OUT 006000 DFRFG-OUT 000100 DFSET 010620 NOT5005580 PHADD1-OUT 006220 CONV5-OUT 000200 DFIN 010650 CMP1006235 CONVPHPH1-OUT 006230 CONVPHA1-OUT2 000250 DFOUT 010655 CMP2012000 PHINT1-OUT 006240 CONVPP1-OUT 005050 NSET 010660 CMP3012005 PHINT2-OUT 013301 CDATA-NOUT 005100 MPOT1 010680 PHCMP1012050 PHDIV1-OUT 013302 CDATA-N-SYNCH 005150 PCTRL1 010685 PHCMP2013301 CDATA-LEN1 013312 CURVEC1-DFOUT 005200 REF 010700 DIGDEL1013302 CDATA-LEN2 013400 YSET1-OUT 005500 ARIT1 010705 DIGDEL2013303 CDATA-LEN3 013501 CERR1-W-LIM 005505 ARIT2 010750 TRANS1013304 CDATA-LEN4 013551 CLUT-NSET 005505 ARITPH1 010755 TRANS2013305 CDATA-LEN5 013701 MSEL1-OUT 005550 ADD1 010900 FLIP1013306 CDATA-ACTLEN 013851 CONVPHD1-OUT 005580 PHADD1 010905 FLIP2013307 CDATA-XPOS 013911 CONVPHPHD1-OUT 005600 RFG1 012000 PHINT1013308 CDATA-YOUT 014441 SWPHD1-OUT 005610 SRFG1 012005 PHINT2013309 CDATA-YEND 014445 SWPHD2-OUT 005650 ASW1 012050 PHDIV1013312 CURVEC1-OUT 019521 FCODE-475/1 005655 ASW2 013000 FEVAN1013351 CCTRL-POUT 019522 FCODE-475/2 005700 ANEG1 014000 PHDIFF1013352 CCTRL-PHI-SET 005705 ANEG2 014050 STORE1013353 CCTRL-PHI-ACT 005750 FIXSET1 014055 STORE2013354 CCTRL-PHI-SET2 005800 LIM1 014100 GEARCOMP013501 CERR1-ERR 005850 ABS1 020000 CAN-OUT013502 CERR1-WARN 005900 PT1-1 025000 AIF-OUT013551 CLUT-O-POS 005950 DT1-1013651 PSAVE-M-DIFF 006000 DFRFG1013652 PSAVE-M-SAVE 006100 MFAIL013653 PSAVE-ACT-DIFF 006150 DB1013654 PSAVE-ACT-SAVE 006200 CONV1013711 MSEL2-OUT 006205 CONV2013751 WELD-XOUT 006210 CONV3013951 RFGPH1-OUT 006215 CONV4014000 PHDIFF1-OUT 006220 CONV5014050 STORE1-PHACT 006300 S&H1014051 STORE1-PH1 006350 CURVE1014052 STORE1-PH2 006400 FCNT1014053 STORE1-PHDIFF 010000 BRK1014055 STORE2-PHACT 010250 R/L/Q014056 STORE2-PH1 010500 AND1014057 STORE2-PH2 010505 AND2014100 GEARCOMP-OUT 010510 AND3019521 FCODE-474/1 010515 AND4019522 FCODE-474/2 010520 AND5020103 CAN-IN1.D1 010550 OR1020201 CAN-IN2.D1 010555 OR2020301 CAN-IN3.D1 010560 OR3025103 AIF-IN.D1 010565 OR4

Page 166: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-41

11.4 Motor selection list

C0086 Lenze motortype C0081 C0087 C0088 C0089 C0090 Motor type Tempera-

ture sensorNo. Display Pr [kW] n r [rpm] Ir [A] f r [Hz] Vr [V]10 DSKA56-140 MDSKAXX056-22 0.80 3950 2.4 14011 DFKA71-120 MDFKAXX071-22 2.20 3410 6.0 12012 DSKA71-140 MDSKAXX071-22 1.70 4050 4.4 14013 DFKA80-60 MDFKAXX080-22 2.10 1635 4.8 6014 DSKA80-70 MDSKAXX080-22 1.40 2000 3.3 70

39015 DFKA80-120 MDFKAXX080-22 3.90 3455 9.1 120

390

16 DSKA80-140 MDSKAXX080-22 2.0 4100 5.8 14017 DFKA90-60 MDFKAXX090-22 3.80 1680 8.5 6018 DSKA90-80 MDSKAXX090-22 2.60 2300 5.5 8019 DFKA90-120 MDFKAXX090-22 6.90 3480 15.8 12020 DSKA90-140 MDSKAXX090-22 4.10 4110 10.2 140 35021 DFKA100-60 MDFKAXX100-22 6.40 1700 13.9 6022 DSKA100-80 MDSKAXX100-22 4.00 2340 8.2 80 39023 DFKA100-120 MDFKAXX100-22 13.20 3510 28.7 120 Asynchro-24 DSKA100-140 MDSKAXX100-22 5.20 4150 14.0 140 330

Asynchro-nous servo KTY

25 DFKA112-60 MDFKAXX112-22 11.00 1710 22.5 60nous servo

motorKTY

26 DSKA112-85 MDSKAXX112-22 6.40 2490 13.5 85 39027 DFKA112-120 MDFKAXX112-22 20.30 3520 42.5 12028 DSKA112-140 MDSKAXX112-22 7.40 4160 19.8 140 32030 DFQA100-50 MDFQAXX100-22 10.60 1420 26.5 5031 DFQA100-100 MDFQAXX100-22 20.30 2930 46.9 10032 DFQA112-28 MDFQAXX112-22 11.50 760 27.2 2833 DFQA112-58 MDFQAXX112-22 22.70 1670 49.1 5834 DFQA132-20 MDFQAXX132-32 17.00 550 45.2 20 36035 DFQA132-42 MDFQAXX132-32 40.30 1200 88.8 4240 DFQA112-50 MDFQAXX112-22 20.10 1425 43.7 5041 DFQA112-100 MDFQAXX112-22 38.40 2935 81.9 10042 DFQA132-36 MDFQAXX132-32 36.40 1030 77.4 3943 DFQA132-76 MDFQAXX132-32 60.10 2235 144.8 76 340

Page 167: ba93ku_gb.pdf

Appendix

11-42 BA9300KS1198

C0086 Lenze motortype C0081 C0087 C0088 C0089 C0090 Motor type Tempera-

ture sensorNo. Display Pr [kW] n r [rpm] Ir [A] f r [Hz] Vr [V]50 DSVA56-140 DSVAXX056-22 0.80 3950 2.4 14051 DFVA71-120 DFVAXX071-22 2.20 3410 6.0 12052 DSVA71-140 DSVAXX071-22 1.70 4050 4.4 14053 DFVA80-60 DFVAXX080-22 2.10 1635 4.8 6054 DSVA80-70 DSVAXX080-22 1.40 2000 3.3 70

39055 DFVA80-120 DFVAXX080-22 3.90 3455 9.1 120

390

56 DSVA80-140 DSVAXX080-22 2.30 4100 5.8 14057 DFVA90-60 DFVAXX090-22 3.80 1680 8.5 6058 DSVA90-80 DSVAXX090-22 2.60 2300 5.5 80 Asynchro- TKO59 DFVA90-120 DFVAXX090-22 6.90 3480 15.8 120

Asynchro-nous servo

TKO(Thermal

)60 DSVA90-140 DSVAXX090-22 4.10 4110 10.2 140 350nous servo

motor(Thermalcontact)

61 DFVA100-60 DFVAXX100-22 6.40 1700 13.9 6062 DSVA100-80 DSVAXX100-22 4.00 2340 8.2 80 39063 DFVA100-120 DFVAXX100-22 13.20 3510 28.7 12064 DSVA100-140 DSVAXX100-22 5.20 4150 14.0 140 33065 DFVA112-60 DFVAXX112-22 11.00 1710 22.5 6066 DSVA112-85 DSVAXX112-22 6.40 2490 13.5 85 39067 DFVA112-120 DFVAXX112-22 20.30 3520 42.5 12068 DSVA112-140 DSVAXX112-22 7.40 4160 19.8 140 320108 DSKS36-13-200 MDSKSXX036-13 0.25 4000 0.9 200 245109 DSKS36-23-200 MDSKSXX036-23 0.54 4000 1.1 200 345110 DSKS56-23-150 MDSKSXX056-23 0.60 3000 1.25 150 350111 DSKS56-33-150 MDSKSXX056-33 0.91 3000 2.0 150 340112 DSKS71-13-150 MDSKSXX071-13 1.57 3000 3.1 150 360113 DFKS71-13-150 MDFKSXX071-13 2.29 3000 4.35 150 385114 DSKS71-23-150 MDSKSXX071-23 2.33 3000 4.85 150 360115 DFKS71-23-150 MDFKSXX071-23 3.14 3000 6.25 150 375

S h116 DSKS71-33-150 MDSKSXX071-33 3.11 3000 6.7 150 330 Synchronousservo KTY

117 DFKS71-33-150 MDFKSXX071-33 4.24 3000 9.1 150 345 servomotor

KTY

160 DSKS56-23-190 MDSKSXX056-23 1.1 3800 2.3 190 330motor

161 DSKS56-33-200 MDSKSXX056-33 1.8 4000 3.6 200 325162 DSKS71-03-170 MDSKSXX071-03 2.0 3400 4.2 170 330163 DFKS71-03-165 MDFKSXX071-03 2.6 3300 5.6 165 330164 DSKS71-13-185 MDSKSXX071-13 3.2 3700 7.0 185 325165 DFKS71-13-180 MDFKSXX071-13 4.1 3600 9.2 180 325166 DSKS71-33-180 MDSKSXX071-33 4.6 3600 10.0 180 325167 DFKS71-33-175 MDFKSXX071-33 5.9 3500 13.1 175 325

Page 168: ba93ku_gb.pdf

Appendix

BA9300KS1198 11-43

C0086 Tempera-ture sensorMotor typeC0090C0089C0088C0087C0081Lenze motor

type

No. Vr [V]f r [Hz]Ir [A]n r [rpm]Pr [kW]Display210 DXRA071-12-50 DXRAXX071-12 0.25 1410 0.9211 DXRA071-22-50 DXRAXX071-22 0.37 1398 1.2212 DXRA080-12-50 DXRAXX080-12 0.55 1400 1.7213 DXRA080-22-50 DXRAXX080-22 0.75 1410 2.3214 DXRA090-12-50 DXRAXX090-12 1.10 1420 2.7215 DXRA090-32-50 DXRAXX090-32 1.50 1415 3.6216 DXRA100-22-50 DXRAXX100-22 2.20 1425 4.8217 DXRA100-32-50 DXRAXX100-32 3.00 1415 6.6

Asynchro-218 DXRA112-12-50 DXRAXX112-12 4.00 1435 8.3

Asynchro-nous TKO219 DXRA132-12-50 DXRAXX132-12 5.50 1450 11.0

50 400

nousinverter TKO

(Thermal220 DXRA132-22-50 DXRAXX132-22 7.50 1450 14.6

50 400invertermotor(i t

(Thermalcontact)

221 DXRA160-12-50 DXRAXX160-12 11.00 1460 21.0 (in starconnection)

contact)

222 DXRA160-22-50 DXRAXX160-22 15.00 1460 27.8connection)

223 DXRA180-12-50 DXRAXX180-12 18.50 1470 32.8224 DXRA180-22-50 DXRAXX180-22 22.00 1456 38.8225 30kW-ASM-50 30.00 1470 52.0226 37kW-ASM-50 37.00 1470 66.0227 45kW-ASM-50 45.00 1480 82.0228 55kW-ASM-50 55.00 1480 93.0229 75kW-ASM-50 75.00 1480 132.0250 DXRA071-12-87 DXRAXX071-12 0.43 2525 1.5251 DXRA071-22-87 DXRAXX071-22 0.64 2515 2.0252 DXRA080-12-87 DXRAXX080-12 0.95 2515 2.9253 DXRA080-22-87 DXRAXX080-22 1.3 2525 4.0254 DXRA090-12-87 DXRAXX090-12 1.95 2535 4.7255 DXRA090-32-87 DXRAXX090-32 2.7 2530 6.2256 DXRA100-22-87 DXRAXX100-22 3.9 2535 8.3257 DXRA100-32-87 DXRAXX100-32 5.35 2530 11.4

Asynchro-258 DXRA112-12-87 DXRAXX112-12 7.10 2545 14.3

Asynchro-nous TKO259 DXRA132-12-87 DXRAXX132-12 9.7 2555 19.1

87 400

nousinverter TKO

(Thermal260 DXRA132-22-87 DXRAXX132-22 13.2 2555 25.4

87 400 invertermotor

(i d lt

(Thermalcontact)

261 DXRA160-12-87 DXRAXX160-12 19.3 2565 36.5 (in deltaconnection)

contact)

262 DXRA160-22-87 DXRAXX160-22 26.4 2565 48.4 connection)

263 DXRA180-12-87 DXRAXX180-12 32.4 2575 57.8264 DXRA180-22-87 DXRAXX180-22 38.7 2560 67.4265 30kW-ASM-87 52.00 2546 90.0266 37kW-ASM-87 64.00 2546 114.0267 45kW-ASM-87 78.00 2563 142.0268 55kW-ASM-87 95.00 2563 161.0269 75kW-ASM-87 130.00 2563 228.0

Page 169: ba93ku_gb.pdf

Appendix

11-44 BA9300KS1198

11.5 Glossary

Term MeaningCE Communauté Européenne (English: European Community)Code For entry and display (access) of parameter values.

Variable addressing according to the format ”code/subcode” (Cxxxx/xx).All variables can be addressed via the code digits.

Contouring error Deviation between momentary position setpoint and actual position. Display for a momentary contouring errorunder C0908.

Contouring error monitoring Monitors the momentary contouring error for exceeding the following error tolerance and releases a faultindication, if necessary.

Contouring error tolerance If the contouring error reaches a defined contouring error tolerance, a fault indication is released.Ctrl. enable Controller enableCtrl. inhibit Controller inhibit ( = Controller enable )Field bus For data exchange between superimposed control and positioning control, e.g. InterBus-S or PROFIBUS DPGDC Global Drive Control (PC-program (Windows) for Lenze controllers)InterBus-S Industrial communication standard to DIN E19258LECOM Lenze CommunicationLU UndervoltageOU OvervoltagePC Personal ComputerPM Permanent magnetQSP Quick stopRFG Ramp generatorTarget position The target which is to be approached by means of a defined traversing profile.

Page 170: ba93ku_gb.pdf

Table of keywords

BA9300KS1198 11-45

11.6 Table of keywords

A

Acceleration time, 11-24, 11-25

Accessories, 11-1

Accessory kit, 1-1

Actual motor current, 11-19

Actual motor voltage, 11-19

Actual speed, 11-19

Additional module, Interbus-S, 4-1

Additional setpoint, 11-25

Aggressive gases, 4-1

Application, as directed, 1-2

Application conditions, 3-2

Assembly, with fixing rails or brackets, 4-2

Automation interface, 4-26

B

Basic cam data, 5-9

Basic configuration, 8-23

Brake unit, 4-16

Bus connection, 4-25

CCable cross-sections, 3-6, 4-13

Control cables, 4-19Mains connection, 4-13Motor connection, 4-16

Cable specification, 4-11Cam profile generation, 5-11CAN bus identifier, 11-7CANopen, 4-25Cleaning, 10-1Code table, 11-2Cold plate technique, Dimensions, 4-5Commissioning, 5-1

Controller, 5-4Initial switch-on, 5-1

ConfigurationFunction blocks, 8-3Monitoring, 8-32Predefined configurations, 8-1

ConnectionBrake unit, 4-16Control, Connection diagram, 4-21Control cables, 4-19Mains, 4-12Motor, 4-14

Connection diagram, Control connections,4-21Connections, Power, 4-12Control cables, 4-19Control connections, 4-19Control mode of the motor control, 11-18Control terminals, 4-19

Max. permissible cross-sections, for motorconnection, 4-19Overview, 4-19Protection against polarity reversal, 4-19Terminal assignment, 4-19

Controller, 1-1Adapted to motor, 5-6Application as directed, 1-2Assembly in , 4-5Identification, 1-2

Page 171: ba93ku_gb.pdf

Table of keywords

11-46 BA9300KS1198

Mains adaption, 5-6

Switch on, 5-4

Controller protection, 2-2

Cooling air, 4-1

Current derating, 6-4

D

DC-bus voltage, 11-19

Deceleration time, 11-24

Definitions, 1-1

Dimensions

Cold plate technique, 4-5

Standard units, 4-2

Disposal, 1-2

Drive system, 1-1

E

Electrical data

200% overcurrent, 3-4

Types 9321 bis 9325, 3-3

Types 9326 to 9332, 3-5

EMC

Assembly, 4-33

CE-typical drive system, Installation, 4-33

Filters, 4-33

Grounding, 4-34

Installation, 4-33

Screening, 4-34

Encoder connection, 4-31

FFault message, Reset, 9-11

Fault messages, 9-7

Feedback signals, 4-29Encoder connection, 4-31Resolver connection, 4-30Temperature monitoring, 4-27

Field controller, 11-19

Free space for assembly, 4-1

Function blocks, 8-3Configuration code, 8-5Connection, 8-6Display code, 8-5Input name, 8-4Input symbol, 8-4Make connections, 8-8Names, 8-4Output name, 8-5Output symbol, 8-5Parameter setting code, 8-5Remove connections, 8-9Signal types, 8-3

Fuses, 3-6Mains connection, 4-13

GGDC

Off-line operation, 5-5On-line operation, 5-5Switch on, 5-5

Global Drive Control, Status indications,6-2

Global-Drive-Control, 11-1

Glossary, 11-44

HHistory buffer, 9-3

Structure, 9-3Working with, 9-5

Page 172: ba93ku_gb.pdf

Table of keywords

BA9300KS1198 11-47

I

Identification, Controller, 1-2

Imax limit, 11-18

Information on operation, 6-3

Inputs

analog, 4-20

digital, 4-20

Installation

CE-typical drive system, 4-33Filters, 4-33Grounding, 4-34Screening, 4-34Structure, 4-33

Electrical, 4-8

Mechanical, 4-1

Standard assembly, 4-2

Insulation, 4-8

J

JOG setpoint, 11-25

Jumper, Analog setpoint selection, 4-20

L

Leakage inductance, 11-20

Legal regulations, 1-2

Liability, 1-2

MMains, Controller adaption, 5-6

Mains conditions, 4-11

Mains connection, 4-12Protection, 4-13

Mains filter, 3-7

Mains types, 4-11

Maintenance, 10-1

Manufacturer, 1-2

Maximum speed, 11-18, 11-24, 11-30

Message, 8-33

Messages, Fault, 9-7

Monitor output, 4-20

MonitoringFault indication via digital output, 8-36Monitoring functions, 8-34Reactions: warning, message, TRIP, 8-32

Monitorings, 8-32

MotorController adaption, 5-6Selection list, 11-41

Motor cable, Screening, 4-14

Motor connection, 4-14, 4-15

Motor potentiometer, 11-23

Motor protection, 4-10

Motor stator resistance, 11-19

Motor type selection, 11-20

Mounting, 4-1

NNoise optimised operation, 11-18

OOperating module, Status indications, 6-1

Oscillations, 4-1

Outputsanalog, 4-20digital, 4-20

Overspeeds, 2-2

Page 173: ba93ku_gb.pdf

Table of keywords

11-48 BA9300KS1198

P

Packing list, 1-1

Parameter

Parameter classes, 7-2

PC program, 7-1

Set generation, 5-5

Structure of a parameter set, 7-2

Ways of parameter setting, 7-1

Parameter set, Generation, 5-5

Parameter setting, 7-1

PC, Switch on, 5-5

PC program, 7-1

PC-Programm, Global-Drive-Control,11-1

Power connections, 4-12

Max. permissible cross-sectionsfor mains connection, 4-13for motor connection, 4-16

Power optimised operation, 11-22

Process controller adaptation, 11-28

Process input words, 11-2

Process output words, 11-2

Protection against contact, 4-8

Protection against polarity reversal, 4-19

Protection of devices, Current derating,6-4

Protection of persons, 2-2

Push-through technique, 4-3

Q

QSP deceleration time, 11-22

RRated data, 3-3

200% overcurrent, 3-4Controllers 9321 to 9325, 3-3Fuses, cable cross-sections, 3-6Mains filter, 3-7Types 9326 to 9332, 3-5

Rated motor power, 11-19

Rated motor voltage, 11-21

Reset, Fault message, 9-11

Residual current circuit breakers, 4-8

Residual hazards, 2-2

Residual-current operatedprotectivedevices, 4-8

Resolver connection, 4-30

SSafety information, 2-1

Layout, 2-2Other notes, 2-2Warning of damage to material, 2-2Warning of damage to persons, 2-2

Screen sheet, 4-19

ScreeningControl cables, 4-19EMC, 4-34Motor cable, 4-14

Selection of the feedback system, 11-19

Servo, see Controller

State bus, 4-24

Status indicationsGlobal Drive Control, 6-1Operating module, 6-1

Status word, 11-33

Switch on, 5-1Controller, 5-4GDC, 5-5PC, 5-5

Switching on the motor side, 4-16

Page 174: ba93ku_gb.pdf

Table of keywords

BA9300KS1198 11-49

TTechnical data, 3-1

Dimensions, 3-7Electrical data, 3-3Features, 3-1Fuses, cable cross-sections, 3-6General data/application conditions, 3-2

Temperature monitoring, 4-27

Thermal separation, 4-3

Tightening torquesControl terminals, 4-19Power terminals, 4-13, 4-16

Tni-current controller, 11-19

Tnn-speed controller, 11-19

Transport, storage, 2-1

Troubleshooting, 9-1

TRIP, 8-32

V

Vibrations, 4-1

Voltage drop, 4-13

Vpi-current controller, 11-19

Vpn-speed controller, 11-19

W

Warning, 8-33

Warranty, 1-2

Page 175: ba93ku_gb.pdf

Table of keywords

11-50 BA9300KS1198

Page 176: ba93ku_gb.pdf

Table of keywords

BA9300KS1198 11-51

Page 177: ba93ku_gb.pdf

Table of keywords

11-52 BA9300KS1198

Page 178: ba93ku_gb.pdf

Table of keywords

BA9300KS1198 11-53

Page 179: ba93ku_gb.pdf

Table of keywords

11-54 BA9300KS1198