Top Banner
Nguyn Phú Khánh 549 Trong mt phng tođộ đề cc vung gc O.  . T để C hc đư g hg 2 0 + =  a ch ABC   g C , bế ( ) ( ) A 1; 2 ,B 1; 3  .  Cho tam gic ABC c ( ) A 3;2  v phư ơng trnh hai đường trung tuy ến + = = BM :3x 4 y 3 0,CN: 3x 10 y 17 0  . Tnh ta độ cc đim B, C.   Cho tam gic ABC c ( ) A 3; 0  v phương trnh hai đường phn gic trong = + + = BD:x y 1 0, CE:x 2 y 17 0  . Tnh ta độ cc đim B, C.   Trong mt phng Oxy, cho tam gi c ABC  vung cn ti A . Xc định ta độ 3 đỉnh ca t am gi c để đường thng AC đi qu a đim ( ) N 7;7 , ( ) M 2; 3 th u c AB v nm ngo i AB , phư ơng t rnh BC : + = x 7y 31 0 .  Trong mt phng Oxy,  cho hnh bnh hnh ABCD  c ( ) B 1;5 ,  đường cao + = AH:x 2y 2 0, phn gic   ACB c phương trnh = x y 1 0 . Tm ta độ đi m A. Trong mt phng tođộ đề cc vung gc O, cho để ( ) A 1;3   đườg hg ( ) : 2 2 0 + =  .Ngườ a dg h h g ABCD a ch 2 để B   C   đườg hg ( )   cc a độ ca đ h C  đề dươg. T a độ c c đỉ h B,C,D ; T ch dch hh g ABCD . Trong mt phng tođộ đề cc vung gc O,  Cho tam gic MNP  c ( ) N 2; 1 ,  đường cao htM xung NP c phương trnh: 3x 4y 27 0 + =  v đường phn gic trong đỉnh P c phương trnh: x 2 y 5 0 + =  . Viết phương trnh cc c nh cha cc cnh tam gic .  Cho tam gic ABC  c ( ) C 5; 3  v phương trnh đường cao + = AA':x y 2 0 , đường trung tuyến  + = BM:2x 5y 13 0 .Tnh ta độ cc đim A, B.  Cho tam gic ABC c ( ) B 1; 3  v phương trnh đường cao + = AD:2x y 1 0  , đường phn gic + = CE:x y 2 0 .Tnh ta độ cc đim A, C.  www.VNMATH.com
38

b Duong Thang.doc

Oct 18, 2015

Download

Documents

nguyenangha
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 5/28/2018 b Duong Thang.doc

    1/38

    Nguyn Ph Khnh

    549

    Trong mt phng to cc vung gc O.

    . T C hc g hg 2 0 + = a ch ABC g C , b

    ( ) ( )A 1; 2 ,B 1; 3 .

    Cho tam gic ABC c ( )A 3;2 v phng trnh hai ng trung tuyn

    + = =BM : 3 x 4y 3 0, CN : 3x 10y 17 0. Tnh ta cc im B, C.

    Cho tam gic ABC c ( )A 3; 0 v phng trnh hai ng phn gic trong

    = + + =BD : x y 1 0,CE : x 2y 17 0. Tnh ta cc im B, C.

    Trong mt phng Oxy, cho tam gic ABC vung cn ti A . Xc nh ta 3 nh ca tam gic ng thng AC i qua im ( )N 7;7 , ( )M 2; 3 thuc

    AB v nm ngoi AB , phng trnh BC : + =x 7 y 3 1 0.

    Trong mt phng Oxy, cho hnh bnh hnh ABCD c ( )B 1;5 , ng cao

    + =AH : x 2y 2 0,phn gic ACB c phng trnh =x y 1 0 . Tm ta

    im A.

    Trong mt phng to cc vung gc O, cho ( )A 1;3

    g hg ( ) : 2 2 0 + = .Ng a dg hh g ABCD a ch 2 B C

    g hg ( ) cc a ca h C dg. T a cc h B,C,D ;

    T ch d ch hh g ABCD.

    Trong mt phng to cc vung gc O,

    Cho tam gic MNP c ( )N 2; 1 , ng cao h t M xung NP c phng

    trnh: 3x 4y 27 0 + = v ng phn gic trong nh P c phng trnh:

    x 2y 5 0+ = . Vit phng trnh cc cnh cha cc cnh tam gic.

    Cho tam gic ABC c ( )C 5 ; 3 v phng trnh ng cao + =AA' : x y 2 0,

    ng trung tuyn + =BM : 2x 5y 13 0 .Tnh ta cc im A, B.

    Cho tam gic ABC c ( )B 1; 3 v phng trnh ng cao + =AD : 2x y 1 0 ,

    ng phn gic + =CE :x y 2 0 .Tnh ta cc im A, C.

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    2/38

    ?

    Nguyn Ph Khnh

    550

    Trong mt phng Oxy, cho im ( )E 1; 1 l tm ca mt hnh vung, mt

    trong cc cnh ca n c phng trnh + =x 2y 12 0 . Vit phng trnh cc cnh

    cn li ca hnh vung.Trong mt phng Oxy, cho hnh vung ABCD c chu vi bng 6 2, nh A

    thuc trc Ox ( A c honh dng) v hai nh B,C thuc ng thng + =d : x y 1 0 . Vit phng trnh ng thng BD

    Trong mt phng to cc vung gc O,

    Cho tam gic ABC vung cn ti A c trng tm2

    G 0;3

    . Vit phng trnh

    cha cc cnh tam gic 1 1

    I ;2 2

    l trung im cnh BC.

    Cho tam gic ABC c ( )M 2; 0 l trung im ca cnh AB . ng trung tuyn

    v ng cao qua nh A ln lt c phng trnh l =7x 2y 3 0 v

    =6x y 4 0 . Vit phng trnh ng thng AC .

    cho im ( )C 2 ; 5 v ng thng + =: 3x 4y 4 0 .Tm trn hai im A

    v B i xng nhau qua5

    I 2;2

    sao cho din tch tam gic ABC bng15.

    Trong mt phng Oxy cho hnh ch nht ABCD c din tch bng 12 , tm I

    l giao im ca ng thng ( ) ( ) = + =1 2d : x y 3 0, d : x y 6 0 . Trung im

    ca mt cnh l giao im ca ( )1d vi trc Ox .Tm ta cc nh ca hnh ch

    nht ABCD .Trong mt phng ta Oxy, cho hnh ch nht ABCD c phng trnh cnh

    =A B : x 2 y 1 0, ng cho + =BD : x 7y 14 0 v ng cho AC i qua

    im ( )E 2;1 . Tm ta cc nh ca hnh ch nht.

    Trong mt phng to cc vung gc O,

    Cho a gc ABC c 3 ch he h 3 g hg :

    ( ) + =1d : 6 0 , ( ) + =2d : 4 14 0, ( ) =3d :4 19 0 . H hh dg ca

    a gc.

    Cho im ( )A 2; 2 v hai ng thng: + =1d : x y 2 0, + =2d : x y 8 0 . Tm

    ta im B,C ln lt thuc 1 2d , d sao cho tam gic ABC vung cn ti A.

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    3/38

    Nguyn Ph Khnh

    551

    Trong mt phng ta Oxy, cho tam gic ABC cn ti A c phng trnh 2

    cnh AB, AC ln lt l: + =x 2y 2 0 v + + =2x y 1 0, im ( )M 1;2 thuc on

    BC . Tm ta im D sao cho DB.DC

    c gi tr nh nht.Trong mt phng ta O,cho ng trn ( )C : + + =2 2x y 2x 2y 14 0 c

    tm I v ng thng ( )d : + + =x y m 0 . Tm d ct ( )C ti hai im phn

    bit A, B ng thi din tch tam gic IAB ln nht.Trong mt phng ta Oxy, cho hnh ch nht ABCD c phng trnh

    ng thng AB, BDln lt l: + =x 2y 1 0 v + =x 7y 14 0, ng thng

    ACi qua ( )M 2; 1 .Tm to im N thuc BDsao cho +NA NC nh nht.

    Trong mt phng to cc vung gc O,

    Cho tam gic ABC c ( )A 4 ; 1 v phng trnh hai ng trung tuyn 1BB :

    8x y 3 0, = 1CC : 14x 13y 9 0 = . Tnh ta cc im B, C.

    Cho hnh ch nht ABCD,vi to cc nh ( )A 1;1 .Gi4

    G 2;3

    l trng

    tm tam gic ABD. Tm ta cc nh cn li ca hnh ch nht bit D nm trnng thng c phng trnh: x y 2 0. =

    . Trong mt phng ta Oxy, cho hnh ch nht ABCD c din tch bng 22 .

    ng thng AB c phng trnh 3x 4y 1 0,+ + = ng thng BD c phng

    trnh x y 2 0.+ = Tm ta cc nh A ,B,C, D? .

    Trong mt phng ta Oxy, cho hnh ch nht ABCD c ( )M 4;6 l trung

    im ca AB .Giao im I ca hai ng cho nm trn ng thng ( )d cphng trnh 3x 5y 6 0,+ = im ( )N 6; 2 thuc cnh CD . Hy vit phng

    trnh cnh CD bit tung im I ln hn 4 .

    Trong mt phng to cc vung gc O,

    Cho tam gic ABC c ( )A 4 ; 1 , phng trnh hai ng phn gic

    B E : x 1 0 , C F : x y 1 0 = = . Tnh ta cc im B, C.

    Cho tam gic ABC vung ti C , bit ( )A 3;0 , nh C thuc trc tung, im B

    nm trn ng thng : 4x 3y 12 0. + = Tm ta trng tm tam gic ABC ,

    bit din tch tam gic ABC bng 6.

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    4/38

    3

    Nguyn Ph Khnh

    552

    Cho hnh bnh hnh ABCD c ( )B 1;5 v ng cao AH c phng trnh

    x 2y 2 0+ = , vi H thuc BC, ng phn gic trong ca gc ACB c phng

    trnh l x y 1 0 = . Tm ta nh A,C,D. Cho tam gic ABC vi hai im ( )A 2; 1 , ( )B 1; 2 v trng tm G nm trn

    ng thng d : x y 2 0.+ = Tm ta im C,bit din tch tam gic ABC

    bng3

    .2

    Cho hnh bnh hnh ABCD c ( )D 6; 6 . ng trung trc ca on DC c

    phng trnh ( )d : 2x 3y 17 0+ + = v ng phn gic gc BAC c phng

    trnh ( )d' : 5x y 3 0+ = .Xc nh to cc nh cn li ca hnh bnh hnh.

    Trong mt phng to cc vung gc O,Cho tam gic ABC c ( )C 4; 5 v phng trnh ng cao AD : x 2y 2 0+ = ,

    ng trung tuyn 1BB : 8x y 3 0 = .Tm ta cc im A, B.

    Cho hnh thang vung ABCD, vung ti A v D. Phng trnh AD

    = 2 0 . Trung im M ca BC c ta ( )M 1;0 . Bit = =BC CD 2AB. Tm ta

    ca im A.

    Cho ABC ,bit ta im ( )A 2 ; 3 v ( )B 3; 2 , din tch tam gic ABC l

    32

    v trng tm G ca tam gic thuc ng thng : 3x y 8 0 = .Tm ta

    im C .Cho tam gic ABC vung ti A, bit B v C i xng nhau qua gc ta .

    ng phn gic trong ca gc ABC c phng trnh l: x 2y 5 0.+ = Tm ta

    cc nh ca tam gic bit ng thng AC i qua im ( )K 6;2 .

    Cho tam gic ABC cn ti C c phng trnh cnh AB l : x 2y 0 = , im

    ( )I 4; 2 l trung im ca AB , im9

    M 4;2

    thuc cnh BC , din tch tam gic

    ABC bng 10. Tm ta cc nh ca tam gic ABCbit tung im B lnhn hoc bng 3.

    Trong mt phng to cc vung gc O, Cho tam gic ABC c ( )B 1;5 v phng trnh ng cao AD : x 2y 2 0+ = ,

    ng phn gic trong 1CC : x y 1 0 = . Tnh ta cc im A, C.

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    5/38

    3

    Nguyn Ph Khnh

    553

    Cho tam gic ABC vung cn ti A, phng trnh BC : 2x y 7 0, = ng

    thng AC i qua im ( )M 1; 1 , im A nm trn ng thng

    : x 4y 6 0. + = Tm ta cc nh ca tam gic ABC bit rng nh A chonh dng.

    Cho 2 ng thng ln lt c phng trnh l ( )1d : 2x 3y 3 0 = v

    ( )2d : 5x 2y 17 0+ = . Vit phng trnh ng thng i qua giao im ca ( )1d

    , ( )2d ln lt ct cc tia Ox, Oy ti A v B sao cho2

    OAB

    ABS

    t gi tr nh

    nht.

    Cho parabol ( )P : 2y x 2x 3= + . Xt hnh bnh hnh ABCD

    ( ) ( )A 1; 4 , B 2;5 thuc ( )P v tm I ca hnh bnh hnh thuc cung AB ca( )P sao cho tam gic IAB c din tch ln nht. Hy xc nh ta hai imC, D.

    Cho tam gic ABC cn ti A, c nh B v C thuc ng thng

    1:d x y 1 0+ + = ng cao i qua nh B l 2d :x 2y 2 0 = im ( )M 2;1

    thuc ng cao i qua nh C.Vit phng trnh cc cnh bn ca tam gicABC

    f. Cho tam gic ABC c A nm trn Ox vi A5

    0 x2

    < < . Hai ng cao xut

    pht t B v C ln lt c phng trnh: 1d : x y 1 0, + = 2d : 2x y 4 0.+ = Tm

    ta A, B, C sao cho din tch tam gic ABCl ln nht.

    Trong mt phng to cc vung gc O,

    Cho tam gic ABC c phng trnh cc ng caoAD : 2x y 1 0, BE : x y 2 0 + = + = , C thuc ng thng d : x y 6 0+ = v BC

    i qua ( )M 0;3 . Tm ta cc nh ca tam gic.

    Cho hnh vung ABCD c phng trnh ng thng AB : 2x y 1 0,+ = v

    C, D ln lt thuc 2 ng thng 1d : 3x y 4 0, = 2d : x y 6 0.+ = Tnh din

    tch hnh vung

    Cho hnh bnh hnh ABCD c ( )A 2;1 , ng cho BD c phng trnh

    x 2 y 1 0 .+ + = im M nm trn ng thng AD sao cho AM AC.= ngthng MC c phng trnh x y 1 0.+ = Tm ta cc nh cn li ca hnh

    bnh hnh ABCD .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    6/38

    3

    Nguyn Ph Khnh

    554

    Cho tam gic ABC vung cn ti A. Bit phng trnh cnh BC l

    ( )d : x 7y 31 0+ = , im ( )N 7; 7 thuc ng thng AC, im ( )M 2; 3 thuc

    AB v nm ngoi on AB . Tm ta cc nh ca tam gic ABC .

    Trong mt phng to cc vung gc O,

    Cho tam gic ABC cn ti A c trng tm4 1

    G ;3 3

    , phng trnh ng

    thng BC : x 2y 4 0 = v phng trnh ng thng BG : 7x 4y 8 0 = . Tm

    ta cc nh A,B,C.

    Cho hnh thang ( )ABCD AB CD . Bit hai nh ( )B 3;3 v ( )C 5; 3 . Giao

    im I ca hai ng cho nm trn ng thng : 2x y 3 0.+ = Xc nh ta

    cc nh cn li ca hnh thang ABCD CI 2BI,= tam gic ACB c din

    tch bng 12 , im I c honh dng v im A c honh m .

    Trong mt phng to cc vung gc O,

    Cho tam gic ABC c nh A thuc ng thng d :x 4y 2 0 = , cnh BC

    song song vi d, phng trnh ng cao BH : x y 3 0+ + = v trung im cnh

    AC l ( )M 1;1 . Tm ta cc nh A,B,C.

    Ch hh h ABCD c hg h ha ch AB AD he h

    x 2y 2 0+ = 2x y 1 0+ + = . Ch BD cha ( )M 1;2 . T a cc hca hh h

    Trong mt phng to cc vung gc O,

    Cho tam gic ABC cn ti A c nh ( )A 6;6 , ng thng i qua trung im

    ca cc cnh AB v AC c phng trnh x y 4 0+ = . Tm ta cc nh B v

    C , bit im ( )E 1; 3 nm trn ng cao i qua nh C ca tam gic cho.

    Cho hai ng thng 1d : x y 2 0, = 2d : 2x y 5 0+ = . Vit phng trnh

    ng thng i qua gc ta O ct 1d , 2d ln lt ti A , B sao cho

    OA.OB 10= .

    14. Trong mt phng to cc vung gc O,cho tam gic ABC , bit

    ( )C 4;3 v cc ng phn gic trong, trung tuyn k t A ln lt cphng trnh x 2y 5 0, 4x 13y 10 0+ = + = .Tm ta im A,B .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    7/38

    3

    Nguyn Ph Khnh

    555

    Trong mt phng to cc vung gc O,cho tam gic ABCcn tiA c nh A( 1;4) v cc nh B, C thuc ng thng : x y 4 0 = .

    Xc nh to cc im B v C , bit din tch tam gic ABCbng 18.

    Trong mt phng to cc vung gc O,cho tam gic ABC vi

    ( ) ( )A 2 ; 4 ,B 0 ; 2 v trng tm G thuc ng thng d : 3x y 1 0 + = . Hy tm

    ta ca C , bit rng din tch tam gic ABC bng 3 .

    Trong mt phng to cc vung gc O,cho tam gic ABC vungti A, c nh C( 4;1) , phn gic trong gc A c phng trnh x y 5 0+ = . Vit

    phng trnh ng thng BC, bit din tch tam gic ABC bng 24 v nh A c honh dng.

    Trong mt phng to cc vung gc O,cho tam gic ABC c( ) ( )M 1;0 ,N 4; 3 ln lt l trung im ca AB,AC ; ( )D 2;6 l chn ng cao

    h t A ln BC . Tm ta cc nh ca tam gic ABC .

    Trong mt phng to cc vung gc O,cho a gc ABC c

    ( )M 2;2 g BC hg h ch ( ) =AB : 2 2 0,

    ( ) + + =AC :2 5 3 0 . H c h a h ca a gc.

    Trong mt phng to cc vung gc O,cho a gc ABC cg ( ) G 2; 1 hg h cc ch ( ) + + =AB : 4 15 0,

    ( ) + + =AC :2 5 3 0 . T a h A , g M ca BC , h B,C.

    Trong mt phng to cc vung gc O,cho ABC c ( )B 3;5 ,g A c hg h : + =2 5 3 0 g C c hg

    h : + = 5 0 . T a h A , g M AB .

    Vit phng trnh cc cnh hnh vung ABCD, bit rng ( )M 0; 2 AB,

    ( )N 5; 3 BC, ( )P 2; 2 CD, ( )Q 2; 4 DA .

    Trong mt phng to cc vung gc O,cho 2

    ( ) ( )A 1;1 ,B 2;2 . T C g hg ( ) =d : 3 , a ch =ABCS 2 (d).

    Kh h b h R ca g g ABC .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    8/38

    3

    Nguyn Ph Khnh

    556

    Trong mt phng to cc vung gc O, cho hnh bnh hnh

    ABCD c ( )B 1;5 , ng cao AH : 2 2 0+ = , ng phn gic trong d ca gc

    ACB c phng trnh 1 0 = . Tm ta cc nh cn li ca hnh bnhhnh.

    Trong mt phng to cc vung gc O, cho tam gic ABCvung cn ti A , cc nh A ,B,C ln lt nm trn cc ng thng d :

    x y 5 0,+ = 1d : x 1 0 ,+ = 2d : y 2 0+ = v BC 5 2= . Tm ta nh A,B,C

    ca tam gic.

    Trong mt phng to cc vung gc O, cho ABC c ( )C 1;1 v

    AB 5= v AB: x 2y 3 0+ = , trng tm ABC thuc ng thng

    x y 2 0+ = . Tm ta im A, B.

    Trong mt phng to cc vung gc O, cho hnh vung ABCD

    c ( )A 2; 6 , nh B thuc ng thng d :x 2y 6 0 + = . Gi M, N ln lt l

    hai im trn 2 cnh BC,CD sao cho BM CN= . Xc nh ta nh C , bit

    rng AM ct BN ti2 14

    I ;5 5

    .

    Trong mt phng to cc vung gc O, cho ABC c ( )A 2;7 ,

    ng thng AB ct trc Oyti E sao cho AE 2EB= , ng thi AEC cn ti

    A v c trng tm13

    G 2;3

    . Vit phng trnh cha cnh BC.

    Trong mt phng to cc vung gc O, cho hnh ch nht

    ABCD c din tch bng 12, tm I l giao im ca ng thng 1d : 3 0 =

    v 2d : 6 0+ = . Trung im ca AB l giao im ca 1d vi trc Ox.

    Tm to cc nh ca hnh ch nht.

    Trong mt phng to cc vung gc O,cho hnh vung ABCD

    bit ( )M 2;1 , ( )N 4; 2 ; ( ) ( )P 2;0 ; Q 1;2 ln lt thuc cnh AB, BC, CD, AD . Hy lp

    phng trnh cc cnh ca hnh vung.

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    9/38

    3

    Nguyn Ph Khnh

    557

    31. Trong mt phng to cc vung gc O, cho hnh thoi ABCD c tm

    I(2; 1) v AC = 2BD. im 1M 0; 3 thuc ng thng AB; im ( )N 0; 7 thuc

    ng thng CD. Tm ta nh B bit B c honh dng.

    . Trong mt phng to cc vung gc O, cho im ( )A 2;0 v 2

    ng thng 1d : x y 0, = 2d : x 2y 1 0+ + = . Tm cc im 1B d , 2C d

    tam gic ABC vung cn ti A .

    Trong mt phng to cc vung gc Oxy cho hai ng thng

    1 2d : x 2y 1 0,d : 2x 3y 0 + = + = . Xc nh ta cc nh ca hnh vung

    ABCD, bit A thuc ng thng d1

    , C thuc ng thng d2

    v hai im B, Dthuc trc Ox .

    Cho hnh bnh hnh ABCD . Bit7 5

    I ;2 2

    l trung im ca cnh CD ,

    3D 3;

    2

    v

    ng phn gic gc BAC c phng trnh l : x y 1 0 + = . Xc nh ta nh

    B .

    . Trong mt phng to cc vung gc O,cho ba im ( )I 1; 1 ,( ) ( ) J 2; 2 , K 2; 2 . Tm ta cc nh ca hnh vung ABCD sao cho I l tm

    hnh vung, J thuc cnh ABv K thuc cnh CD.

    Trong mt phng to cc vung gc O,cho ba ng thng

    1d : 4 9 0,+ = 2d : 2 6 0, + = 3d : 2 0 + = . Tm ta cc nh ca hnh

    thoi ABCD, bit hnh thoi ABCD c din tch bng 15, cc nh A,C thuc 3d , B

    thuc 1d v D thuc 2d .

    Trong mt phng to cc vung gc O,cho ( ) ( )A 2;2 ,B 7;2 g hg ( ) + =: 3 3 0 . H ( ) cc C D a ch : ABC c A ;

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    10/38

    3

    Nguyn Ph Khnh

    558

    ( )+AD BD g h.

    Trong mt phng vi h ta Oxy, cho ba im ( )A 1; 1 , ( )B 0;2 ,

    ( )C 0;1 . Vit phng trnh ng thng i qua A sao cho tng khong cch t

    B v C ti l ln nht.

    ( ) 2

    d : 2 0

    = + =

    = R ; ( )C d ( )C 2;

    ( ) ( )AC 3; 2 ,BC 1; 3= + = +

    ABC g C h ( ) ( ) = + =AC BC AC.BC 0 3 2 3 0

    ( ) = 1 1 3 C 1;3 hc

    =

    2 23 7 3

    C ;2 2 2

    Gi G l trong tm ca tam gic, suy ra ta ca G l nghim ca h

    + = = = =

    73 x 4 y 3 0 x 7G ; 13

    3x 10y 17 0 3y 1.

    Gi E l trung im ca BC, suy ra3 5

    EA GA E 2;2 2

    =

    .

    Gi s ( )B a;b , suy ra ( )C 4 a; 5 b . T ta c h:

    ( ) ( )

    3a 4b 3 0 3a 4b 3 0 a 53 4 a 10 5 b 17 0 3a 10b 45 0 b 3

    + = + = =

    = + + = =

    .

    Vy, ( ) ( )B 5; 3 , C 1; 2 .

    Gi 1A i xng vi A qua BD, suy ra 1A BC v ( )1A 1; 4

    2A i xng vi A qua CE, suy ra 2A BC v 243 56

    A ;5 5

    .

    Suy ra phng trnh =BC : 3x 4y 19 0.

    Ta B l nghim ca h: ( )x y 1 0 x 15

    B 15; 163x 4y 19 0 y 16

    = =

    = = .

    Ta C l nghim ca h: ( )x 2y 17 0 x 3 C 3; 73x 4y 19 0 y 7

    + + = = = =

    .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    11/38

    3

    Nguyn Ph Khnh

    559

    Vy, ( ) ( )B 15; 16 , C 3; 7 .

    AB i qua ( )M 2; 3 c phng trnh: ( ) ( ) + + =x 2 b y 3 0a

    ABC vung cn ti A =2 212a 7ab 12b 0Gi s ( )+ + = + = AB : 4x 3y 1 0 AC : 3x 4y 7 0 A 1;1 , ( )B 4; 5 , ( )C 3;4 .

    + =B C : 2 x y 3 0 Gi A' l im i xng ca B qua phn gic ACB, ta tm

    c ( )A' 6;0 . Ta im A l giao im A'C v AH ( ) A 4; 1

    Dg g hg ( )d a ( )A 1;3

    ( ) ( ) ( ) ( ) ( )d d :2 1 1 3 0 + + =

    ha ( )d :2 1 0+ =

    ( ) ( ) ( ){ }

    d B 0;1 AB 5 = =

    G ( )C C C CC ; , 0; 0> > . Ta c( )

    ( )C C

    22C C

    2 2 0C 2;2

    1 5

    + =

    + =

    Hh ABCD hh g : BA CD=

    ; a c :

    ( )D D

    D D

    1 2 1D 1;4

    2 2 4

    = =

    = =

    Ch hh g : 2P 4.AB 4 5 S AB 5= = = =

    NP i qua N v vung gc vi ng cao h t M , nn c phng

    trnh: 4x 3y 5 0+ = . ( )P 1; 3 l ta giao im ca NP v phn gic tronggc P . Gi s PI l phn gic trong P th MPI IPN= .PM : y 3 0, = MN : 4x 7y 1 0+ =

    :

    MH : 3x 4y 27 0, + = phn gic PI : x 2y 5 0+ =

    Ly N' i xng vi N qua PI .

    Vit NP qua N v vung gc MH

    Vit PM qua P c PMu PN'=

    Ta c phng trnh BC : + =x y 2 0

    Suy ra ta ca B l nghim ca h: x y 2 0 x 12x 5y 13 0 y 3

    + = = + = =

    ( )B 1; 3 .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    12/38

    3

    Nguyn Ph Khnh

    560

    Gi ( )A a; a 2+ , suy ra ta ca trung im AC l +

    a 5 a 1M ;

    2 2

    M M BM nn ( )a 5 a 12 5 13 0 a 3 A 3;52 2+ + = = .

    Vy, ( ) ( )A 3;5 ,B 1;3 .

    Ta c phng trnh + + =BC : x 2y 5 0.

    Ta im C l nghim ca h ( )x y 2 0 x 9

    C 9 ; 7x 2y 5 0 y 7

    + = =

    + + = = .

    Gi B' l im i xng vi B qua CE, suy ra ( )B' 5;1 v B' AC

    Do , ta c phng trnh + =AC : 2x y 11 0.

    Ta im A l nghim ca h: + = =

    + = =

    52x y 1 0 x 5A ;62

    2 x y 1 1 0 2y 6.

    Vy, ( )5

    A ;6 ,C 9; 72

    .

    Gi hnh vung cho l ABCD . ( )AB l + =x 2y 12 0.

    Gi H l hnh chiu ca E ln ng thng AB . Suy ra ( )H 2; 5

    A, B thuc ng trn tm H , bn knh =EH 45 c phng trnh:

    ( ) ( )+ + =

    2 2

    x 2 y 5 45

    To hai im A, B l nghim ca h:( ) ( )

    + =

    + + =2 2

    x 2y 12 0

    x 2 y 5 45.

    Gii h tm c ( ) ( )A 4;8 ,B 8;2 . Suy ra ( ) C 2; 10

    + =AD : 2x y 16 0, + + =BC : 2x y 14 0, =CD : x 2y 18 0.

    Chu vi bng 6 2 =3 2

    AB2

    . A thuc Ox v ( ) ( )= 3 2

    d A,Ox A 2;02

    B l hnh chiu ca A trn d nn c to : + =

    + =

    x y 1 0 1 3B ;

    x y 2 0 2 2 .

    BD hp vi d gc 045 v c VTPT ( )= n a; b 0 tho :

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    13/38

    3

    Nguyn Ph Khnh

    561

    = =

    +

    0

    2 2

    a.1 b.1cos 45 BD : 2x 1 0

    2 a bhoc =2y 3 0

    Gi ( )B BB x ; y , ( )C CC x ; y l ta cn tm.

    G l trng tm tam gic nn c: ( )1

    GI AI I 1; 33

    =

    I l trung im BC v tam gic ABC vung cn ti A nn c:

    ( ) ( )

    ( ) ( )

    B C I

    B C I

    x x 2x 1

    y y 2y 1 B 4;1 ,C 3;2

    AB AC B 3;2 ,C 4;1

    ABAC 0

    + = = + = = = =

    Ta A tha mn h: ( ) =

    =

    7x 2y 3 0A 1; 2

    6x y 4 0

    V B i xng vi A qua M nn suy ra ( )B 3; 2 .

    ng thng BCi qua B v vung gc vi ng thng: =6x y 4 0nn suy

    ra phng trnh + + =BC : x 6y 9 0.

    Ta trung im N ca BC tha mn h: =

    + + =

    7x 2y 3 0 3N 0;

    x 6y 9 0 2

    Suy ra ( )= = AC 2.MN 4; 3 .

    Phng trnh ng thng + =AC : 3x 4y 5 0

    Gi 3a 4 16 3aA a; B 4 a;4 4

    +

    .

    Khi din tch tam gic ABC l: ( )ABC1

    S AB.d C, 3AB2

    = =

    Theo gi thit ta c: ( )2

    2 6 3aAB 5 4 2a 25 a 0

    2

    = + = =

    hoc a 4=

    Vy hai im cn tm l ( )A 0;1 v ( )B 4;4 .

    9 3I ;

    2 2 . Gi s M l trung im ( )AD M 3; 0 . = =AB 2IM 3 2

    =AD 2 2 ,

    = =MA MD 2 . ( )

    + =AD : x y 3 0 .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    14/38

    3

    Nguyn Ph Khnh

    562

    Ta A, D l nghim ca h:( )

    2 2

    x y 3 0

    x 3 y 2

    + =

    + =

    ( ) ( ) ( ) ( )A 2;1 ,D 4; 1 ,C 7 ;2 ,B 5 ;4 Ta c: = B AB BD suy ra ta B l nghim h:

    ( ) = =

    = + = =

    x 2y 1 0 x 7B 7; 3

    x 7y 14 0 y 3

    Gi s ( ) ( )+ A 2a 1; a AB, D 7d 14; d BD

    ( ) ( ) ( ) = = = AB 6 2a; 3 a , BD 7d 21; d 3 , AD 7d 2a 15; d a

    Do ( )( ) = = =AB AD AB.AD 0 3 a 15d 5a 30 0 3d a 6 0

    ( ) = = a 3d 6 AD d 3; 6 2d

    .

    Li c:( )

    = C C

    BC x 7; y 3

    . M ABCD l hnh ch nht nn =AD BC

    ( ) = = +

    = + = =

    C C

    C C

    d 3 x 7 x d 4C d 4; 9 2d

    6 2d y 3 y 9 2d .

    ( ) ( ) = = + EA 6d 13; 3d 7 , EC d 2; 8 2d

    vi ( )=E 2;1

    Mt khc im ( ) E 2; 1 AC EA, EC

    cng phng

    ( )( ) ( )( ) = + + =26d 13 8 2d d 2 3d 7 d 5d 6 0 = =d 2 a 0

    Vy ( ) ( ) ( ) ( )= = = =A 1; 0 , B 7; 3 , C 6; 5 , D 0; 0 l cc nh ca hnh ch nht cn

    tm.

    ( )

    ( )

    = = =

    = =

    1 1 2

    1 2

    2 1 3

    3c c d ;d 34

    3c c d ;d

    34

    V, ABC c c ch + = 6 0 .

    V ( ) ( )1 2B d B b; 2 b ,C d C c; c 8 .

    Ta c h:( )( )

    ( ) ( )

    = =

    = = 2 2

    b 1 c 4 2AB.AC 0AB AC b 1 c 4 3

    t = = x b 1;y c 4 ta c h: 2 2xy 2 x 2

    y 1x y 3

    = =

    = =

    hocx 2y 1

    =

    =

    Vy, ( ) ( )B 3; 1 ,C 5;3 hoc ( ) ( )B 1;3 ,C 3;5 .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    15/38

    3

    Nguyn Ph Khnh

    563

    Gi vect php tuyn AB, AC, BCln lt l: ( ) ( ) ( )1 2 3n 1; 2 , n 2; 1 , n a; b

    Phng trnh BCc dng: ( ) ( ) + = + >2 2a x 1 b y 2 0,a b 0

    Tam gic ABC cn ti A nn: ( ) ( )= =1 3 2 3cos B cos C cos n , n cos n , n

    + + = = =+ +2 2 2 2

    a 2b 2a b a b

    a ba b . 5 a b . 5

    Vi = a b , chn = =b 1 a 1 + =BC: x y 1 0 ( )

    2 1B 0;1 ,C ;

    3 3 . Khng

    tha mn M thuc on BC.Vi =a b , chn = =a b 1 + =BC: x y 3 0 ( ) ( ) B 4; 1 ,C 4;7 . Tha mn M

    thuc on BC. Gi trung im ca BC l

    ( )K 0;3 .

    Ta c: ( )( )= + + = 2 2

    2 BC BCDB.DC DK KB . DK KC DK4 4

    Du bng xy ra khi D K . Vy ( )D 0;3

    Ta c ( ) ( )+ + = + + =2 22 2x y 2x 2y 14 0 x 1 y 1 16

    Do vy ng trn ( )C c tm ( )I 1;1 v bn knh =R 4.

    ng thng d ct ( )C ti hai im phn bit ( ) 2 2a b 0 ) . Khi ta c: ( ) ( )=AB BD AC ABcos n ,n cos n ,n

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    16/38

    3

    Nguyn Ph Khnh

    564

    = = + + + = =

    2 2 2 2a b

    3a 2b a b 7a 8ab b 0 b

    a27

    Vi = a b , chn = = =a 1 b 1 AC : x y 1 0

    Vi = b

    a7

    , chn = = + =a 1 b 7 AC : x 7y 5 0 ( khng tha v AC

    khng ct BD )Gi I l tm hnh ch nht th = I AC BD nn to I l nghim ca h:

    = =

    + = =

    7xx y 1 0 7 52 I ;

    x 7y 14 0 5 2 2y

    2

    Hn na A, C khc pha so vi BD nn: + NA NC AC

    ng thc xy ra khi = N AC BD N I . Vy

    7 5N ;2 2 .

    1B BB ( )B b; 8b 3 , 1C l trung im ca AB nn c

    1b 4

    C ; 4b 22

    +

    Mt khc: 1 1C CC nn suy ra

    ( ) ( )7 b 4 13 4b 2 9 0+ =

    ( )b 1 B 1; 11 = Gi G l trng tm tam gic ABC, suy ra

    ta ca G l nghim ca h :

    1x8x y 3 0 1 13 G ;

    14x 13y 9 0 1 3 3y

    3

    = =

    = =

    B1C1

    B

    C

    Suy ra ( )C G A BC G A B

    x 3x x x 2C 2; 11

    y 3y y y 11

    = =

    = =.

    Gi I l giao im 2 ng cho hnh ch nht ABCD. V G l trngtm tam gic ABD nn A,G,I thng hng. Theo tnh cht trng tm tam gic ta

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    17/38

    3

    Nguyn Ph Khnh

    565

    d dng tm ra ta im5 3

    I ; .2 2

    V I l trung im AC nn bit ta A, I

    ta s tm ra ta ( )

    C 4;2 .

    V D thc ng thng x y 2 0 = m C tha mn phng trnh ny . Do

    DC: x y 2 0 = .

    Bit phng trnh DC s vit c phng trnh AB m ABCD l hnh chnht nn bit php tuyn AB ta s bit php tuyn AD t vit c phngtrnh AD . Ta D l giao im ca AD v DC . Ta tm c D . V I l trungim BD nn ta tm c nt B

    Gi I l trung im ca BD . Theo tnh cht trng tm ta c :

    ( )

    ( )

    IG A I G

    G A I GI

    3xx x 2 x x 2AG 2GI

    5y y 2 y yy 2

    = =

    = =

    =

    Do ABCD l hnh ch nht nn ta c I l trung im ca AC . T :

    C M A

    C M A

    x 2x x 4

    x 2y y 2

    = =

    = = ( )C 4;2

    AD DC DA.DC 0 =

    ( ){ }AB BD B 9; 7 =

    Gi I l giao im AC v BD , suy ra ( ) ( )I a; 2 a , D 9 2a; 11 2a +

    V BC AB BC : 4x 3y m 0 + = . BCqua im B nn ta tm c m.

    Theo gi thit din tch hnh ch nht l 22 nn ta c: AB BC 22. = Hn na

    BC AB BC.AB 0 =

    d dng tm ra ta C,D.

    Gi ( )P PP x ;y i xng vi ( )M 4;6 qua I nnP I

    P I

    4 x 2x

    6 y 2y

    + =

    + =

    I thuc ( )d nn ( ) ( )P P

    P P3 4 x 5 6 y

    6 0 3x 5y 6 02 2

    + + + = = ( )1

    Li c PM PN ( ) ( ) ( ) ( )P P P PPM.PN 0 x 4 x 6 y 6 y 2 0 = + =

    ( )2

    T ( )1 v ( )2 , suy ra: 2P P P34y 162y 180 0 y 3 + = = hoc P30

    y17

    =

    Gi M l im i xng vi A qua CF, suy ra M BC . V AM CF

    nn AM :x y 3 0+ = .

    ( )D d :x y 2 0 D x; x 2 . =

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    18/38

    3

    Nguyn Ph Khnh

    566

    Do AM CF ti ( )I 2;1 , M i xng vi A qua I ( )M 0;3 .

    Tng t, gi N l im i xng

    vi A qua BE , suy ra N BC v

    ( )N 2; 1 .

    Suy ra ( )MN 2; 4=

    phng

    trnh BC : 2x y 3 0 + = .

    x 1 0B BE BC B :

    2x y 3 0 =

    = + =

    I EF

    A

    BC

    ( )x 1

    B 1;5y 5

    =

    =

    x y 1 0C CF BC C :

    2x y 3 0 =

    = + =

    ( )x 4

    C 4; 5y 5

    =

    = .

    Gi s rng: ( ) ( )B 3b; 4b 4 ,C 0;c . +

    Ta c: ( ) ( )AC 3;c ,BC 3b; 4b c 4= = +

    Gi thit tam gic ABC vung ti C ta c: AC.BC 0=

    29b 4bc c 4c 0 + + =

    ( )1

    ( )ABC1

    S AB.d C; AB2

    = , trong : ( ) 3c 12

    AB 5 b 1 , d C;AB5

    = =

    Theo bi ton, ta c: ( ) ( )3c 121 .5 b 1 6 b 1 c 4 42 5

    = = ( )2

    BC i qua ( )B 1;5 v vung gc AH nn BC: 2x y 3 0 + =

    To C l nghim ca h: ( )2x y 3 0

    C 4; 5x y 1 0

    + =

    =

    Gi A' l im i xng B qua ng phn gic ( )d : x y 1 0, =

    ( )BA d K = . ng thng KB i qua B v vung gc ( )d nn KB c phng

    trnh : x y 6 0+ =

    To im K l nghim ca h: ( )x y 6 0 7 5

    K ; A' 6;0x y 1 0 2 2 + =

    =

    Phng trnh AC : x 2y 6 0= , ( )A CA' AH A 4; 1=

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    19/38

    0

    Nguyn Ph Khnh

    567

    Trung im ( )I 0 ; 3 ca AC, ng thi I l trung im BDnn ( )D 1; 11 .

    AB : x y 3 0= Gi s ( ) ( )G m; 2 m d C 3m 3;9 3m .

    ( ) ( )ABC3 1 3 3S .AB.d C;AB d C;AB2 2 2 2

    = = = 6m 15 m 23

    m 3.2 2 = = =

    Phng trnh DC qua D v vung gc ( )d l: 3x 2y 6 0 + = .

    Giao im ca DC v ( )d l: ( )M 4; 3 v cng l trung im DC . Suy ra ta

    ( )C 2; 0 .

    Gi C l im i xng ca C qua d' th C AB, phng trnh CC :

    x 5y 2 0 + = . Giao im CC v d' l1 1

    I ;2 2

    .Suy ra ta ( )C' 3;1 .

    Phng trnh AB qua C vung gc( )d l: 3x 2y 7 0. =

    .V BC AD nn phng trnh BC : 2x y 3 0 + = .

    18x y 3 0

    B BC BB B :2x y 3 0

    ==

    + =

    ( )x 1

    B 1;5y 5

    =

    =

    Do A AD , suy ra ( )A 2 2a;a .

    Do 1a 5

    B a 1;2

    .

    D

    1

    C

    M 1B BB nn ta c: ( ) ( )a 5

    8 a 1 3 0 a 1 A 4; 12

    = = .

    Gi H l hnh chiu ca M ln AD ta c2 2

    H ;3 3

    . t AB x=

    BC CD 2x = = 3x 1

    MH2 3

    = = . Vy,2

    AD3

    = .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    20/38

    0

    Nguyn Ph Khnh

    568

    Gi ( )A 2a; a v H l trung im ca AD suy ra ( )D ; v 2AD 3= suy ra

    2t 3=

    2 2A ;3 3

    Gi M l trung im AB 5 5M ; AB : x y 5 0

    2 2

    =

    V G l trng tm ABG ABC1 1

    ABC S S .3 2

    = =

    Gi s ( )0 0G x ; y , ta c:

    ( ) 0 0 ABGx y 5 2S 1

    d G;ABAB2 2 = = = ( )0 0x y 5 1 1 =

    V ( )0 0G : 3x y 8 0 3x y 8 0 2 = = T ( )1 v ( )2 suy ra ( ) ( )G 1; 5 C 2; 10 hoc ( ) ( )G 2; 2 C 1; 1

    Gi ta im ( ) ( )B 2b 5; b C 2b 5; b + .

    im O BC . Ly i xng O qua phn gic ca gc B ta c im

    ( )M 2; 4 AB ( )BM 7 2b; 4 b = +

    ( )CK 1 2b; 2 b= +

    V tam gic ABC vung ti A nn c: BM.CK 0 b 3= =

    hoc b 1= .

    Gi ta im ( ) ( )B B B BB 2y ; y A 8 2y ; 4 y

    Phng trnh ng thng CI : 2x y 10 0+ =

    Gi ta im ( )C CC x ;10 2x CCI 5 4 x , =

    BAB 20 y 2=

    Din tch tam gic ABC l: ABC B C C B1S CI.AB 10 4y 2x x y 8 22= = + =

    ( )C B B Cx y 4y 2x 6 1 = hoc ( )C B B Cx y 4y 2x 10 2 =

    V( )C B

    C B

    4 x k 2y 4M BC CM kMB 11 9

    2x k y2 2

    =

    = + =

    v By 3

    C B B C2x y 6y 5x 16 0 + = ( )3

    T ( )1 v ( )3 ta c h: C B B C BC B B C C

    x y 4y 2x 6 y 1 2

    2x y 6y 5x 16 0 x 1 2

    = =

    + = = +

    T ( )2 v ( )3 ta c h: C B B C BCC B B C

    x y 4y 2x 10 y 3

    x 22x y 6y 5x 16 0

    = =

    = + =

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    21/38

    Nguyn Ph Khnh

    569

    Vy, ta cc nh ca tam gic ABC l: ( ) ( ) ( )A 2;1 , B 6;3 , C 2;6

    Ta c phng trnh BC : 2x y 3 0 + = .

    V ( )12x y 3 0 x 4

    C CC BC C : C 4; 5x y 1 0 y 5

    + = = =

    = = .

    Gi N l im i xng vi B qua

    1CC , ta c N AC v ( )N 6;0

    NC (10;5) =

    , phng trnh

    AC : x 2y 6 0 = .

    Ta ca A l nghim ca h

    ( )x 2y 6 0 x 4

    A 4 ; 1x 2y 2 0 y 1

    = =

    + = = .

    I

    C1

    D

    A

    BC

    Gi im ( )0 0A A 4y 6; y ( )AC 0 0n y 1; 5 4y =

    Tam gic ABC vung cn ti A, nn c:

    ( )0

    20 0

    6y 7 1cosACB

    25 17y 42y 26

    = =

    +

    20 0 0 013y 42y 32 0 y 2 x 2 + = = = hoc 0 0

    16 14y x

    13 13

    = = ( loi ).

    Vy, ( ) ( ) ( )A 2;2 , B 3 ; 1 , C 5;3 l ta cn tm. Giao im ca ( )1d v ( )2d l ( )M 3;1 .

    : OAB1

    S AB.OH2

    = vi H l chn ng cao h t O ln AB

    2

    2OAB

    AB 4S OH

    =

    V OH OM OHmax OM = th

    2

    4

    OHnh nht.

    Khi AB nhn OM lm vc t php tuyn. Ta vit c phng trnh AB

    :

    Phng trnh ng thng d c dng: ( ) ( ) ( )a x 3 b y 1 0 , a,b 0 + = >

    Theo bi ton, ta tm c:3a b

    A ;0 ,a

    +

    3a b

    B 0;b

    +

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    22/38

    Nguyn Ph Khnh

    570

    2 2b a

    AB 3 1 3a b

    = + + +

    2

    2 2OAB

    AB 4 4S a b

    1 3 3b a

    = +

    + +

    . ta

    t , t 0b

    = >

    Xt hm s: ( )( )

    2

    2

    t 1f t 4.

    3t 1

    +=

    +vi t 0>

    Gi tr nh nht ca ( )f t l25

    t c khi t 3= hay a 3b=

    Phng trnh ng thng cn tm l: 3x y 10 0+ =

    I thuc cung AB ca ( )P sao cho din tch IAB ln nht I xa AB nht,

    tc I l tip im ca tip tuyn ( )d AB ca ( )P .

    Phng trnh ng thng ( )AB : y 3x 1 d : y 3x c= = +

    ( )d tip xc ( )P ti im I 1 7 17 1

    I ; C 1; , D 2;2 4 2 2

    ( )1B BC d B 0; 1= ( )BM 2; 2 =

    . Do BM

    l mt vc t php tuyn

    ca BC MB BC

    K MN BC ct 2d ti N ,v tam gic ABCcn ti A nn t gic BCNM l

    hnh ch nht.

    Do ( )MN BCQua M 2;1 MN : x y 3 0 + = , 2 8 1N MN d N ;3 3 =

    DoNC BC

    8 1Qua N ;

    3 3

    7NC : x y 0

    3 = , 1

    2 5C NC d C ;

    3 3

    =

    Hn na: ( )4 8

    CM ; n 1;23 3

    l mt vc t php tuyn ca AB nn phng

    trnh A B : x 2 y 2 0+ + = v ( )8 4

    BN ; u 2;1 AC : 6x 3y 1 03 3

    + + =

    ( ) ( ) ( )A a ; 0 ,B b ; b 1 ,C 4 2c ; c .+

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    23/38

    Nguyn Ph Khnh

    571

    Ta c:d2

    d1

    2a 1bAB.n 0 2a 1 2a 2 2a 4 4 a3 B ; , C ;

    4 a 3 3 3 3AC.n 0c 3

    = = + +

    = =

    Gi H l trc tm tam gic ABC, suy ra ta ca H l nghim ca h

    1x2x y 1 0 1 53 H ;

    x y 2 0 5 3 3y

    3

    = + =

    + = =

    .

    V C d C(a; 6 a) . Do AC BE nn

    phng trnh AC c dng:

    x y 6 2a 0 + =

    Tng t, phng trnh

    BC : x 2y a 12 0 0+ + = = .

    Suy rax 2y a 12 0

    B :x y 2 0

    + + =

    + =

    ( )x a 8 B a 8; 10 ay 10 a =

    =

    d

    D

    E

    H

    A

    B

    C

    2x y 1 0A :

    x y 6 2a 0 + =

    + = ( )

    x 5 2aA 5 2a;11 4a

    y 11 4a =

    =

    Suy ra ( ) ( )MC a;3 a ,MB a 8;7 a= =

    .

    V B,C,M thng hng nna 8 a 7

    a 6a a 3

    = =

    .

    Vy , ( ) ( ) ( )A 7; 13 , B 2; 4 , C 6; 0 .

    Vit BC qua M v vung gc vi AD

    Vit CA qua C v vung gc vi BE

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    24/38

    Nguyn Ph Khnh

    572

    C, D ln lt thuc 2 ng thng 1d : 3x y 4 0, = 2d : x y 6 0+ =

    ( )C a; 3a 4 , ( )D b; 6 b ( )CD b a;10 b 3a =

    Gi ( )n 2;1=

    l mt vect php tuyn ca AB.

    V ABCD l hnh vung nn( )

    CD n

    d C; AB CD

    =

    ( ) ( )

    ( ) ( )2 2

    2 2

    2 b a 1. 10 b 3a 0b 5a 10

    2b 6 b 1a 1 4a 10b a 10 b 3a

    2 1

    + = =

    + = = +

    +

    Vit phng trnh ng thng qua A song song vi CM

    Tm cc giao im E, F ca AE,CM vi BD suy ra I l trung im ca EF.

    Tnh c im C

    Tm c trung im H ca CM chnh l hnh chiu vung gc ca A lnCM suy ra ta im M .

    Vit phng trnh AD i qua A, M . Tm c im D suy ra B .

    ng thng AB i qua M nn c phng trnh ( ) ( )a x 2 b y 3 0 + + =

    ( )2 2a b 0+ . ( ) 0AB;BC 45= nn 02 2

    a 7b 3a 4bcos45

    4a 3b50 a b

    + == = +

    .

    Nu 3a 4b,= chn a 4, b 3= = c ( )AB : 4x 3y 1 0+ + = . ( )AC : 3x 4y 7 0 + = .

    T ( )A 1;1 v ( )B 4; 5 . Kim tra MB 2MA=

    nn M nm ngoi on AB

    Nu 4a 3b,= chn a 3, b 4= = c ( )AB : 3x 4y 18 0 = ,

    ( )AC : 4x 3y 49 0+ = ( )A 10; 3 , ( )B 10;3 ( khng tha )

    Ta nh B l nghim ca h ( )x 2y 4 0

    B 0; 27x 4y 8 0

    =

    =

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    25/38

    Nguyn Ph Khnh

    573

    V ABC cn ti A nn AG l ng cao

    ca ABC , suy ra phng trnh AG c

    dng: 4 12 x 1 y 03 3

    + =

    2x y 3 0 + =

    Gi H AG BC= th ta im H l

    nghim ca h : ( )2x y 3 0

    H 2 ; 1x 2y 4 0

    + =

    =

    HB C

    A

    G

    V H l trung im ca ( )C H BC H B

    x 2x xBC C 4; 0

    y 2y y

    =

    = .

    Ta c ( ) ( ) ( )G A B C G A B C1 1x x x x ,y y y y A 0; 33 3= + + = + + .

    Vy, ( ) ( ) ( )A 0;3 ,B 0; 2 ,C 4 ;0 .

    ( ) ( )I I t; 3 2t , t 0 >

    2IC 2IB 15t 10t 25 0= + = 5

    t3

    = ( khng tha t 0> ) hoc t 1= ( )I 1;1 .

    Phng trnh ng thng IC: x y 2 0+ =

    ( )ABC1

    S AC.d B; AC AC 6 22

    = = .

    V ( )A IC A a; 2 a nn c: ( )2a 5 36 a 11 = = hoc a 1= ( )A 1; 3 Phng trnh ng thng CD : y 3 0+ =

    Ta D l nghim ca h: ( )x y 0

    D 3; 3y 3 0

    =

    + =

    Cnh AC nm trn ng thng i qua M v vung gc vi BH

    Phng trnh cnh AC : x y 0 = .

    Ta im A l nghim ca h:x 4y 2 0

    x y 0

    =

    =

    2

    x y

    3

    = =

    2 2A ;

    3 3

    .Suy ra ta im8 8

    C ;3 3

    .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    26/38

    Nguyn Ph Khnh

    574

    Cnh BCi qua C v song song vi ng thng d nn c phng trnhBC : x 4y 8 0 + =

    Ta nh B l nghim ca h: ( )x y 3 0 x 4 B 4;1x 4y 8 0 y 1 + + = = + = = .

    Ta h A ga ca AB AD ( )A x;y gh ca h

    4xx 2y 2 0 4 53 A ;

    2x y 1 0 5 3 3y

    3

    = + =

    + + = =

    .

    Phg h g h gc gc A

    x 2y 2 2x y 1

    5 5

    + + += ha

    ( )

    ( )1

    1

    d : x y 3 0

    d : 3x 3y 1 0

    + =

    + =.

    Tg h ( )1d : x y 3 0 + = .g hg ( )BD a M g gc ( )1d ( )BD : x y 3 0+ = .

    S a ( )B AB BD B 4; 1= , ( )D AD BD D 4;7= .

    G ( ) ( )1I BD d I 0; 3= . V C g A a I 4 13

    C ;3 3

    .

    Tg h ( )2d : 3x 3y 1 0+ = . B c g .

    Gi d : x y 4 0+ = .

    V BC d

    nn phng trnhBC

    c dng: x y m 0+ + =

    Ly ( )I 1; 3 d , ta c: ( ) ( )d I, BC d A,d 4 2= = m 4 8 + = m 12,m 4 = =

    V A v I cng pha so vi BC nn ta c m 4 BC : x y 4 0= + + = .

    ng cao h t nh A c phng trnh : x y 0 = .

    Ta trung im P ca ( )x y 0

    BC : P 2; 2x y 4 0

    =

    + + =

    Do ( )B BC B b; 4 b v P l trung im BCsuy ra ( )C 4 b; b

    Mt khc AB CE nn ta c ( )( ) ( )( )b 6 b 4 b 10 b 3 0 + + + + =

    b 0, b 6 = =

    Vy c hai b im tha yu cu bi ton:

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    27/38

    0

    Nguyn Ph Khnh

    575

    ( ) ( )B 0; 4 , C 4; 0 hoc ( ) ( )B 6; 2 , C 2; 6 .

    Do qua O, nn c phng trnh dng : x 0= hoc y kx=

    Nu phng trnh : x 0= , khi ( )1A d : x y 2 0 A 0; 2= =

    ( )2d : 2x y 5 0 B 0; 5 OA.OB 10 + = = ( tha mn )

    Nu phng trnh : y kx=

    Do 1A d= nn ta ca A l nghim ca h phng trnh:

    x y 2 0

    y kx =

    =

    2x

    1 k2k

    y1 k

    =

    =

    2 2kA ;

    1 k 1 k

    Do 2B d= nn ta ca B l nghim ca h phng trnh:

    2x y 5 0y kx

    + =

    =

    5x2 k

    5ky

    2 k

    = + = +

    5 5kB ;

    2 k 2 k

    + +

    Khi : OA.OB 10= ( ) ( )

    2 22 2

    2 2

    4 4k 25 25kOA .OB 100 . 100

    1 k 2 k

    + + = =

    +

    ( ) ( ) 2 22 22 2

    2 2

    k 1 k k 2k 1 k k 2

    k 1 k k 2

    + = + + = + + = +

    k 3

    1k 1,k

    2

    = = =

    Phng trnh ca ng thng l y 3x, y x ,= =

    1

    y x2=

    Gi C ' l im i xng ca C qua ng phn gic AD .

    Khi C ' AB .

    Gi ( ) ( )H AD CC' H 5 2t; t CH 1 2t; t 3= =

    Mt khc ADc ( )u 2;1=

    l VTCP v do CH u

    nn ta c:

    ( ) ( )CH.u 0 2 1 2t 1 t 3 0 t 1= + = =

    ( )H 3;1 .

    Do H l trung im ca CC ' , nn ( )C' 2 ; 1 .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    28/38

    Nguyn Ph Khnh

    576

    V A AD AM= ( M l trung im ca BC ) nn ta ca A l nghim ca h

    phng trnh : ( )x 2y 5 0 x 9

    A 9 ; 24x 13y 10 0 y 2

    + = =

    + = = .

    Khi ng thng AB c phng trnh x 7 y 5 0+ + = nn ( )B 7t 5; t .

    V13s 10

    M AM M ; s4

    +

    .

    Li v M l trung im ca BC nn ( )13s 10 14t 2

    B 12;12s 3 t

    + =

    = +.

    Gi M l trung im cnh BC, do tam gic ABC cn ti A nn

    AM BC .Suy ra phng trnh ca AM : x y 3 0+ = .

    Ta im M l nghim ca h:x y 4 0

    x y 3 0 =

    + =

    7x

    21

    y2

    =

    =

    7 1 9M ; AM

    2 2 2

    =

    .

    Ta c: ABC1 18

    S AM.BC AM.BM 18 BM 2 22 AM

    = = = = =

    Mt khc: B , suy ra ( )B b; b 4 nn:

    2 22 7 7BM 8 b b 8

    2 2

    = + =

    27 11 3

    b 4 b ,b2 2 2

    = = =

    .

    Vi11 11 3 3 5

    b B ; ,C ;2 2 2 2 2

    =

    .

    Vi11 3 5 11 3

    b B ; ,C ;2 2 2 2 2

    =

    .

    Trung im I ca AB l ( )I 1; 3 , v G l trng tm tam gic ABC nn

    suy ra : ( ) ( )AGB ABC1 1 1

    S S 1 d G,AB .AB 1 d G,AB3 2 2

    = = = =

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    29/38

    Nguyn Ph Khnh

    577

    V G d nn suy ra ( )G a;3a 1+ .

    Phng trnh ng thng AB :x y 2 0+ + =

    nn ( )

    4a 3

    d G,AB 2

    +=

    Do ( ) 4a 31 1 1

    d G,AB a 1,a22 2 2

    += = = =

    1 1 1

    a G ;2 2 2

    =

    , m

    CA B C G

    A B C GC

    7xx x x 3x 2

    y y y 3y 9y

    2

    = + + =

    + + = =

    .

    Do 7 9

    C ;2 2

    Tng t vi a 1= ta tm c ( )C 5; 0 .

    Gi ( )M 1; 3 l trung im AB , ( )G d G t;1 3t +

    G l trng tm tam gic ABC nn

    2CM CG

    32

    AN AG3

    =

    =

    Hn na Nl trung im BC v ( )ABC1

    S AB.d C,AB2

    =

    Gi D l im i xng vi C qua ng thng d : x y 5 0+ = , ta tm

    c ( )D 4;9 .

    V Athuc ng trn ng knh CD nn A l giao im ca ng thng d v ng trn ng knh CD, suy ra ta ca A l nghim ca h:

    ( ) ( )22

    x y 5 0A 4;1

    x y 5 32

    + =

    + =v Ax 0>

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    30/38

    Nguyn Ph Khnh

    578

    Suy ra ABC2S

    AC 8 AB 6AC= = = .

    V B thuc ng thng AD : x 4 0 = nn( )B 4;y .

    T ( )2

    AB 6 y 1 36 y 5,y 7= = = =

    V AB

    v AD

    cng hng nn ta c

    ( )B 4;7 BC : 3x 4y 16 0 + = .

    Gi ( )A a;b , suy ra ( )DA a 2; b 6 ,=

    ( )MN 3; 3=

    .

    V AD MN DA.MN 0 a 2 b 6 0 a b 4 = + = =

    ( )1 .Ly i xng im A qua M,N ta c: ( ) ( )B 2 a; b , C 8 a; 6 b

    Suy ra ( ) ( )BD a; 6 b , CD a 6; b 12= + = +

    V B,C,D thng hng nn ta c:a 6 b 12

    a b 6a b 6 +

    = + = +

    ( )2 .

    T ( )1 v ( )2 ta suy ra a 5, b 1= = .

    Vy, ( ) ( ) ( )A 5; 1 ,B 7 ;1 ,C 13; 5 .

    MN : x y 1 0+ =

    Vit AD qua D v vung gc MN nn c x y 4 0 + =

    AD ct MN ti3 5

    H ;2 2

    . Sau s dng tnh cht trung im .

    ( ) ( ) =

    4 4AB AC A ;

    9 9 . ( )

    ( ) ( ) ( )

    + =

    a M: :2 5 6 0

    AC

    ( ) ( ) =

    22 2AB N ;

    9 9 . V Ng ( )AB =

    AB 2AN

    D

    C A

    B

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    31/38

    Nguyn Ph Khnh

    579

    =

    + = +

    4 22 4 2

    9 9 9 40 11B ;

    9 97 2 7

    29 9 2

    . V M g ( )BC

    76 25C ;

    9 9

    ( ) ( ) ( ) = AB AC A 4;1 : ( )= 1

    GM AG M 1; 22

    M g BC ( )

    ( )

    + = = + = =

    + + =

    + + =

    B C M

    B C M

    B B

    C C

    2 2

    B 3; 3 2 4B AB

    C AC 4 15 0 C 1; 1

    2 5 3 0

    G ( ) ( )0 0 M MA ; ,M ; g ( )AB

    + += =0 0M M

    3 5 ,

    2 2 M hc g : + =M M 5 0

    + =0 0 2 0 , A hc g ca : + =0 02 5 3 0

    Ta c( )

    ( )

    + =

    + =

    0 0

    0 0

    A 1;1 2 0

    2 5 3 0 M 2;3

    ( ) ( )AB : ax b y 2 0,+ = ( ) ( ) ( )AD : b x 2 a y 4 0 =

    d P,AB d N,AD 3a b 0 = + = hoc a 7b 0+ =

    ( ) ( ) ( ) = = = +

    0 0C ;3 3 AB 3;3 ,AC 1;2

    ( ) ( )= = + = =

    0 01 1

    S 2 de AB;AC 2 3.2 1 1 2 92 2

    hc =0 1

    ( ) 1C 1;3 hc ( )2C 9;3

    * ( ) ( ) ( ) = = =

    C 1;3 AC 2;2 ,BC 1;1 AC.BC 0 AC BC

    ABC g = =AB 10

    C R2 2

    * ( ) ( ) ( ) ( ) = = =

    C 9;3 AC 10;2 , BC 7;1 , AB 3;1

    ( )= = = =

    28 1cA c AB;AC A 1 c A65 65

    The h h : = =BC 5

    R 1302 A 2

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    32/38

    Nguyn Ph Khnh

    580

    Phng trnhBC :2 3 0 + = ,

    ta ca im C l nghim

    ca h: + =

    =

    2 3 0

    1 0

    =

    =

    4

    5

    ( ) C 4; 5 .

    B'

    HB C

    Gi B' i xng vi B qua d, ta tm c ( )B' 6;0 v B' AC .

    Suy ra phng trnh AC : 2 6 0 = .

    Ta im A l nghim ca h: ( ) 2 6 0 4

    A 4; 1 2 2 0 1

    = =

    + = = .

    V ( )AD BC D 1; 11=

    .

    V 1 2d d v ABC vung cn ti A nn A cch u 1 2d ,d , do A

    l giao im ca d v phn gic hp bi 1 2d ,d .

    Phng trnh phn gic hp bi 1 2d ,d l ( )x 1 y 2 = ( )1t : x y 1 0 =

    hoc ( )2t : x y 3 0+ + = khng tha v ( ) ( )2t d .

    Ta im A l nghim h: ( )x y 1 0

    A 3;2x y 5 0

    =

    + =

    Gi ( ) 1B 1; b d , ( ) 2C c; 2 d

    Theo bi ton ta c:( ) ( )

    ( ) ( )2B 1; 5 , C 0; 2AB.AC 0

    B 1; 1 , C 6; 2BC 50

    = =

    Gi ( )A 3 2a; a , ( )B 3 2b; b l ta cn tm. G l trng tm ABC

    v

    thuc ng thng x y 2 0+ = nn suy ra a b 2 0+ = . Hn na AB 5= suy ra

    ( )2

    a b 1 = . T y, tm c3

    a ,

    2

    = 1

    b

    2

    =

    ( )B d : x 2y 6 0 B 2y 6; y + =

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    33/38

    Nguyn Ph Khnh

    581

    Ta thy AMB v BNC vung bng nhau AI BI IA.IB 0 =

    y 4 =

    ( )B 2;4 . ( )BC : 2x y 0 C c; 2c , = AB 2 5,= ( ) ( )2 2BC c 2 2c 4= +

    Theo bi ton, ( ) ( )AB BC c 2 2 C 0;0 ,C 4;8= =

    V I nm trong hnh vung nn I, C cng pha vi ng thng

    ( )AB C 0; 0 .

    Gi I l trung im ca EC . V G l trng tm AEC nn

    2AG AI

    3=

    ( )I 2;3 .Hn na E Oy nn ( )E o ;e

    V AEC cn ti A nn AI EC AI.EC 0 e 3 = =

    ( )E 0;3 , ( )C 4;3 .

    Mt khc, ( )AE 2EB B 1;1=

    Ta c 1 2 3 0 9 3

    d d I : I ; 6 0 2 2

    = = + =

    Gi M l giao ca ng thng 1d vi O, suy ra ( )M 3;0 .

    V AB MI nn suy ra phng trnh AB: 3 0+ =

    ABCDSAD 2MI 3 2 AB 2 2 AM 2AD

    = = = = =

    M ( ) ( )2

    2A AB A a;3 a AM 2 a 3 1 = = a 2,a 4 = = , ta chn( ) ( )A 2;1 ,B 4; 1 .

    Do I l tm ca hnh ch nht nn ( ) ( )C 7;2 , D 5;4 .

    Vy, ta cc nh ca hnh ch nht l: ( ) ( )A 2;1 ,B 4; 1 , ( ) ( )C 7;2 , D 5;4 .

    Trc ht ta chng minh tnh cht sau y:

    Cho hnh vung ABCD, cc im M,N,P,Q ln lt nm trn cc ng thng

    AB, BC, CD, DA. Khi MP NQ MP NQ= .

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    34/38

    Nguyn Ph Khnh

    582

    Chng minh: V ME CD, E CD,

    NF AD, F AD

    Hai tam gic vung MEP v NFQ cNF ME= .

    Do MP NQ MEP NFQ= =

    0EPM FQN QIM 90 MP NQ = =

    Tr li bi ton:

    Ta c: ( )MP 0; 1 MP 1= =

    . Gi d l

    I

    E

    F Q

    B C

    D

    M

    P

    N

    ng thng i qua N v vung gc vi MP .

    Suy ra phng trnh d : 4 0 = .Gi E l giao im ca d vi ng thng AD, p dng tnh cht trn ta suy ra

    NE MP=

    M ( )E 4; nn ( )2

    NE MP 2 1 3, 1= = = = .

    Vi 3= ( ) ( )E 4;3 QE 3;1 =

    , suy ra phng trnh AD : 3 5 0 + =

    Phng trnh AB :3 7 0, BC : 3 10 0, CD :3 6 0+ = = + = .

    Vi 1= ( ) ( )E 4;1 QE 3; 1 =

    , suy ra phng trnh AD : 3 7 0+ =

    Phng trnh AB :3 5 0, BC : 3 2 0, CD :3 6 0 = + + = = .

    Gi N l im i xng ca N qua tm I th ta c N(4; 5) v N thuccnh AB .Suy ra

    16MN' 4;

    3

    =

    nn phng trnh AB: 4x + 3y 1 = 0

    V AC = 2BD nn AI = 2BI. Gi H l hnhchiu ca I ln AB, ta c:

    ( ) 8 3 1

    IH d I,AB 25

    + = = = v

    2 2 2 2

    1 1 1 5 IH 5IB 5

    2IH IA IB 4IB= + = = =

    Mt khc ( )2

    221 4b 4b 2B AB B b; ,b 0 IB b 2 5

    3 3

    + > = + =

    b 1 = . Vy ( )B 1; 1 cnh BC : 2x 5y 7 0 + = .

    '

    H

    D

    B

    IA

    C

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    35/38

    Nguyn Ph Khnh

    583

    ( ) ( )1 2B d ,C d B b; b , C 1 2c; c

    4c 6AB AC AB.AC 0 bc 3b 4c 6 0 b

    c 3

    + = + + = =

    +

    ( )1

    ( )2 2AB AC 2 b 1 5c 12c 7= = + + ( )2

    T ( )1 v ( )2 suy ra2

    24c 62 1 5c 12c 73 c

    + = + + +

    ( )( )( )4 3 2 25c 42c 106c 114c 45 0 c 1 c 5 5c 12c 9 0 + + + + = + + + + = ( ) ( )c 1 B 1;1 , C 1; 1= hoc ( ) ( )c 5 B 7;7 , C 9; 5= .

    V 1 2A d ,C d nn ( ) ( )A 2a 1;a ,C 3c; 2c , suy ra

    2a 3c 1 a 2cI ;2 2 + l trung im AC

    Do ABCD l hnh vung nn I l trung im ca BD, hay I Ox.

    Do =a 2c.

    Mt khc AC BD Ox nn suy ra 2a 1 3c c 1 = = .

    T , ta tm c ( ) ( ) ( )A 3;2 , C 3; 2 , I 3;0 .

    V ( )B Ox B b;0 , m IB IA 2 b 3 2 b 5,b 1= = = = = .

    Vy ta cc nh ca hnh vung ABCD l:

    ( ) ( ) ( ) ( )A 3;2 , B 1;0 , C 3; 2 , D 5;0 hoc ( ) ( ) ( ) ( )A 3;2 , B 5;0 , C 3; 2 , D 1;0 .

    : im I l trung im ca CD nnC I D

    C I D

    x 2x x 4

    7y 2x y

    2

    = =

    = =

    7

    C 4;2

    V A nn ta im A c dng ( )A a; a 1+

    Mt khc ABCD l hnh bnh hnh tng ng vi DA,DC

    khng cng phng

    v ( )B

    B

    BB

    x a 4 3 x a 1AB DC B a 1;a 37 3 y a 3y a 1

    2 2

    = = + = + +

    = + =

    DA,DC

    khng cng phng khi v ch khi

    3a 1a 3 112 a

    1 2 2

    +

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    36/38

    Nguyn Ph Khnh

    584

    ng thng l phn gic gc BAC nhn vect ( )u 1;1=

    lm vec t ch

    phng nn

    ( ) ( )

    AB.u AC.ucos AB;u cos AC;u

    AB u AC u= =

    ( )

    C ( ) 5

    AB 1; 2 , AC 4 a; a2

    nn ( )

    ( )2

    2

    132a3 2

    5 54 a a

    2

    =

    +

    22a 13a 11 0 a 1 + = = hoc11

    a2

    = ( loi )

    Vy, ta im ( )B 2;4

    : Ta c7

    C 4;

    2

    .

    ng thng d i qua C vung gc vi nhn ( )u 1;1

    lm vect php

    tuyn nn c phng trnh l ( ) 7

    1. x 4 1. y 02

    + =

    hay 2x 2y 15 0+ =

    Ta giao im H ca v d l nghim ca h:

    13xx y 1 0 13 174 H ;

    2x 2y 15 0 17 4 4y

    4

    = + =

    + = =

    Gi C' l im i xng vi C qua th khi C' thuc ng thng cha cnh

    AB v H l trung im ca CC' do C' H C

    C' H C

    x 2x x

    y 2y y

    =

    = C'

    C'

    5x2

    y 5

    =

    =

    5

    C' ; 52

    Suy ra ng thng cha cnh AB i qua C' v nhn ( )DC 1;2

    lm vect ch

    phng nn c phng trnh l5

    x t2

    y 5 2t

    = +

    = +

    Thay x, y t phng trnh ng thng cha cnh AB vo phng trnh ng

    thng ta c5 3

    t 5 2t 1 0 t

    2 2

    + + = = suy ra ( )A 1;2

    ABCD l hnh bnh hnh nn B B

    B B

    x 1 1 x 2AB DC

    y 2 2 y 4 = =

    = = =

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    37/38

    Nguyn Ph Khnh

    585

    Vy, ta im ( )B 2;4

    Gi J i xng vi J qua I, ta c J(4; 0) v J CD.

    Ta c: ( )KJ ' 2; 2=

    , suy ra phng trnh

    CD : x y 4 0 = .

    V AB / /CD nn phng trnh:AB : x y 4 0 + =

    Do ( )d I,AB 2 2= nn suy ra AB 4 2 IA 4= =

    ( )A AB A a; 4 a + , do ( ) ( )2 2

    IA 4 a 1 a 3 16= + + =

    2a 2a 3 0 a 1,a 3 + = = =

    a = 1, ta c ( ) ( ) ( ) ( )A 1;3 , B 3;1 , C 1; 1 , D 5 ;1

    a = 3, ta c ( ) ( ) ( ) ( )A 3;1 , B 1;3 , C 5 ;1 , D 1; 1 .

    V BD AC nn phng trnh BD: = +

    1B BD d= , suy ra 9 4 9

    B B ;4 9 0 3 3

    = + + =

    Tng t2

    6 2 6D BD d D ;

    3 3

    + =

    .

    Suy ra ta trung im ca BD l1 2 1

    I ;2 2

    .

    V1 2 1

    I AC 2 0 32 2

    + = = . Suy ra ( ) ( )

    1 5B 2;1 ,D 1;4 ,I ;

    2 2

    Ta c: 2BAD ABCD1 15 15 5 25

    S S AI AI2 2 BD 22

    = = = = =

    M ( )2

    23

    1A d A a;a 2 AI 2 a

    2

    + =

    nn ta c:

    21 25

    a a 3,a 22 4

    = = =

    Vy ta cc nh ca hnh thoi l:

    ( ) ( ) ( ) ( )A 3;5 ,B 2;1 ,C 2;0 ,D 1;4 hoc ( ) ( ) ( ) ( )A 2;0 ,B 2;1 ,C 3;5 ,D 1;4 .

    '

    I

    B C

    D

    K

    www.VNMATH.com

  • 5/28/2018 b Duong Thang.doc

    38/38

    Nguyn Ph Khnh

    586

    ( ) ( ) x 3t

    : x 3y 3 0 :

    y 1 t

    = + =

    =

    . V ( )C ( )C 3;1

    ABC c =A AB AC AB,AC hg cg hg

    ( ) ( ) = + 2 2

    5 3 2 1 2 AB,AC hg cg hg

    1

    2

    = =

    V AB,AC hg cg hg 2 = ( )AB 5;0=

    hg cg hg

    ( )AC 4; 3=

    ( )C 6; 1

    . G ( ) ( ) 2 2D D 3;1 AD BD 10 10 5 10 40 50 + = + + +

    X

    10 10

    a 10 ;2 2

    =

    ( )b 2 10 10; 10=

    Ta c AB BD a b a b 3 3+ = + + =

    V ( )AB BD 3 5+ = . Kh ( )

    = =

    1

    2 2a b 1 D 3;01 12

    38. Gi s i qua im A v c vect php tuyn l ( )n a; b 0=

    , nn

    c phng trnh: ( ) ( )a x 1 b y 1 0+ + + =

    ( )2 2

    a 3bd B, ,

    a b

    + =

    + ( )

    2 2

    a 2bd C,

    a b

    + =

    +

    Gi ( ) ( )2 2 2 2

    a 3b a 2bd d B, d C,

    a b a b

    + += + = +

    + + ( )

    2 2

    1a 3b a 2b

    a b= + + +

    +

    ( ) ( )( )2 2 2 22 22 21 1

    d 2 a 5 b 2 5 a b 29a ba b

    + + + =++

    ng thc xy ra khi

    ab 0

    a a 2,b 5 :25b

    >

    = = =

    2x 5y 7 0+ + =

    www.VNMATH.com