Top Banner
Ay 127, Winter 2017: The Early Universe
45

Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Jun 27, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Ay 127, Winter 2017: The Early Universe

Page 2: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheKeyIdeas•  Pushingbackwardin5metowardstheBigBang,theuniversewas

ho<eranddenserinafairlypredictablemanner(asidefromsurprising“glitches”suchastheinfla5on…)

•  Atanygiven5me,thetemperaturetranslatesintoacharacteris5cmassofpar5cles,whichdominatethatepoch:theUniverseastheul5mateaccelerator?

•  Astheenergiesincrease,differentphysicalregimesanddifferentfundamentalinterac5onscomeintoplay

•  ThecloserwegettotheBigBang(i.e.,furtherawayfromtheexperimentallyprobedregime),thelesscertainthephysics:theearlyUniverseasthelaboratoryofphysicsbeyondthestandardmodel?

•  Ourextrapola5onsmustbreakdownbytheepochof~10-43sec~Plack5me,wherequantumgravitymustbeimportant

Page 3: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheCosmicThermalHistory

(from M. Turner)

The Planck Era

… on a logarithmic time axis - a theorist’s delight!

Page 4: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

AnotherSchema5cOutline:

Page 5: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

SomeKeyMomentsintheThermalHistoryoftheUniverse:

•  Planckera,t~10-43sec:quantumgravity,…???…•  Infla5on,t~10-33sec:vacuumphasetransi5on,exponen5al

expansion•  GrandUnifica5on,t~10-32sec:strongandelectroweak

interac5onssplit•  Baryogenesis,t~10-6sec:quark-hadrontransi5on•  Nucleosynthesis,t~1msto3min:D,He,Li,Beform•  Radia5ontomaFerdominancetransi5on,t~105yr:structure

beginstoform•  Recombina5on,t~380,000yr:hydrogenbecomesneutral,

CMBRreleased,darkagesbegin•  Reioniza5on,t~0.3-1Gyr:firstgalaxiesandQSOsreionizethe

universe,thecosmicrenaissance

Page 6: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

t < 10-10 s T > 1015 K GUT

10-10 < t <10-4 s 1015>T>1012K e+, e-,quarks,γ,ν

t ~ 10-4 s T ~ 1012K Quarks-> n, p µ+µ−> νµ,νµ

10-10 < t <10-4 s 1012>T>1010K e+, e-, n, p, γ,νe

t ~ 0.01 s T ~ 1011K assymetry in n, p

t ~ 4 s T ~ 5x109K e+, e-−> νe,ν

e n->p+e-+νe

t ~ 100 s T ~ 104K nucleosynthesis

t ~ 1011 s T ~ 16 500 K Matter domination

t ~ 1013 s T ~ 3000 K Decoupling

ThermalHistoryoftheEarlyUniverseAge Temperature Processes

Page 7: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

EmpiricalEvidence•  TheCMBR:probestherecombina5onera,t~105yr,z~1100,

basedonawellunderstoodatomicandmacroscopicphysics

•  Nucleosynthesis:probesthet~10-3-102secera,z~109,comparethemodelpredic5onswithobservedabundancesofthelightestelements,basedonawellunderstoodnuclearphysics

•  MaFer-an5maFerasymmetry:probesthebaryogenesisera,t~10-6sec,z~1012,butonlyinsugges5ngthatsomesymmetrybreakingdidoccur

•  Predic5onsoftheinfla5onaryscenario:flatness,uniformityofCMBR,absenceofmonopoles,therighttypeofdensityfluctua5onspectrum-itallsupportstheideathatinfla5ondidhappen,butdoesnotsayalotaboutitsdetailedphysics

•  Cosmologicalobserva5onscanindicateorconstrainphysicswelloutsidethereachoflaboratoryexperiments

Page 8: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

CMBRandtheRecombina5onEraPrediction of CMB is trivial in Hot Big Bang model: •  Hot, ionised initial state should produce thermal radiation •  Photons decouple when universe stops being ionised (last

scattering) •  Expansion by factor a cools a

blackbody spectrum from T to T/a •  Therefore we should now see

a cool blackbody background –  Alpher and Herman, 1949,

“A temperature now of the order of 5 K”

–  Dicke et al., 1965, “<40 K” •  note that the Gamow, Alpher

& Herman prediction had been nearly forgotten at this time!

Page 9: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheCMBRDisoveries

CH

CN

Firstseenin1941(yes,1941!)

•  Linesseeninstellarspectraiden5fiedasinterstellarCHandCN(AndrewMcKellar,theory;WalterAdams,spectroscopy)

•  Comparisonoflinesfromdifferentrota5onalstatesgave“rota5onaltemperature”of2-3K

•  Unfortunately Gamow et al. did not have known about this •  Hoyle made the connection in 1950:

"[the Big Bang model] would lead to a temperature of the radiation at present maintained throughout the whole of space much greater than McKellar's determination for some regions within the Galaxy."

•  So, Penzias & Wilson made the recognized discovery in 1964

Page 10: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

DiscoveryoftheCosmicMicrowaveBackground(CMBR):ADirectEvidence

fortheBigBang

Arno Penzias & Robert Wilson (1965)

Nobel Prize, 1978

Page 11: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheCMBRSpectrum:ANearlyPerfectBlackbody Residuals from the BB

strongly limit possible energy injection (e.g., from hypothetical decaying DM particles) during and after the recombination - no new physics here…

Page 12: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TemperatureofRecombina5onMean photon energy: TkE B3~

Ionisation energy of H: eV 6.13=E

Photoionisation Temperature: K500003

eV 6.13==

BkT

But there are many more photons than H ions: pnn 910≈γ

!"#$

%&−∝> TkEEn

Bexp)(γBoltzmann distribution:

( )K2500

10ln93eV 6.13

==Bk

T

Thus, the T can be lower and have enough photons with high enough energies to ionize H!

So the actual T of recombination is:

And thus, zrec ~ 1100

Page 13: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheExtentofRecombina5onThis phase transition (ionized to neutral gas) has a finite thickness: most of the plasma recombines before the last scattering, which is the CMBR photosphere we see

Page 14: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

IntotheNucleosynthesisEra•  Inthepre-nucleosynthesisuniverse,theradia5onproduces

pairsofelectronsandpositrons,aswellasprotonsandan5protons,neutronsandan5neutrons,andtheycanannihilate;e+e-reac5onsproduceelectronneutrinos(νe)andan5neutrinos:

e-+e+←→νe+νee-+p←→n+νe,νe+p←→n+e+n←→p+e-+νee-+e+←→γ+γ

•  Thisoccursun5lthetemperaturedropstoT~1010K,t~1sec•  Inequilibriumtherewillslightlymoreprotonsthanneutrons

sincetheneutronmassisslightly(1.293MeV)larger•  Thisleadstoanasymmetrybetweenprotonsandneutrons…

Page 15: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

AsymmetryinNeutron/ProtonRa5oMass difference between n and p causes an asymmetry via reactions:

It is slightly easier (requires less energy) to produce p than n:

Thus, once e+, e- annihilation occurs only neutrons can decay

−+↔+ epn eν

epen ν+↔+ +

eepn ν++→ −

eenp ν++→ +

⎟⎠

⎞⎜⎝

⎛−+

=s1013

exp16.0~ tNN

NXpn

nn

at T~ 1012 K, n/p = 0.985

We can calculate the equilibrium ratio of n to p via the Boltzmann equation,

The n/p ratio is “frozen” at the value it had at when T= 1010 K , n/p = 0.223, i.e., for every 1000 protons, there are 223 neutrons

Page 16: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

BigBangNucleosynthesis(BBNS)Free neutrons are unstable to beta decay, with mean lifetime = 886 sec, n → p + e- + νe . This destroys ~ 25% of them, before they can combine with the protons

γ+↔+ Hpn 2

nHeHH +↔+ 322

pHnHe +↔+ 33

nHeHH +↔+ 423

When the temperature drops to ~ 109 K (t=230s), neutrons and protons combine to form deuterium, and then helium: Note that these are not the same reactions as in stars (the pp chain)!

Photons break the newly created nuclei, but as the temperature drops, the photodissociation stops

At t ~ 103 sec and T < 3Í108 K, the density also becomes too low for fusion, and BBN ends. This is another “freeze-out”, as no new nuclei are created and none are destroyed

Page 17: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

The actual reactions network is a tad more complicated… But the simplified version is pretty close, and conveys the important parts of the story

Page 18: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

StableMassGapsinthePeriodicTable

1H

2H

3He

4He

6Li

7Li

9Be

No stable nuclei

Since there are no stable mass-5 nuclides, combining He and tritium to get Li requires overcoming the Coulomb repulsion. So almost all of the neutrons end up in He instead!

There is another gap at mass-8, so BBN ends with Li, with only trace amounts of Be produced

Page 19: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheEvolu5onofAbundancesinBBNS

Page 20: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

BigBangNucleosynthesisEnd

Thus neutron/proton asymmetry caused by their mass difference and the beta decay of neutrons determines primordial abundance of He and other light elements

At this point n/p ratio has dropped to ~ 0.14. The excess protons account for about 75% of the total mass, and since essentially all neutrons are incorporated into He nuclei, the predicted primordial He abundance is ~ 25% - about as measured

Because all the neutrons are tied up in He, its abundance is not sensitive to the matter density. In contrast, the abundances of other elements produces in the early universe, D, 3He, and 7Li are dependent on the amount of baryonic matter in the universe

The universe expanded to rapidly to build up heavier elements!

Page 21: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

BBNSPredic5ons•  TheBBNSmakesdetailedpredic5onsoftheabundancesof

lightelements:2D,3He,4He,7Li,8Be

•  Thesearegenerallygivenasafunc5onofthebaryontophotonra5oη=nn/nγ,usuallydefinedinunitsof1010,anddirectlyrelatedtothebaryondensityΩb:η10=1010(nn/nγ)=274Ωbh2

•  Astheuniverseevolvesηispreserved,sothatwhatweobservetodayshouldreflectthecondi5onsintheearlyuniverse

•  Comparisonwithobserva5ons(consistentamongthedifferentelements)gives:

•  ThisisinaspectacularlygoodagreementwiththevaluefromtheCMBfluctua5ons:

Ωbaryonsh2 = 0.021→ 0.025

Ωbaryonsh2 = 0.024 ± 0.001

Page 22: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

BBNSPredic5ons4He: the higher the density, the more of it is made ➙

2D, 3He: easily burned into 4He, so abundances are lower at higher densities ➙

7Li: … complicated ➙

Boxes indicate observed values

Page 23: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Helium-4Measurements•  Heisalsoproducedin

stars,butthis“secondary”abundanceisexpectedtocorrelatewithabundancesofothernucleosynthe5cproducts,e.g.,oxygen

•  Observe 4He from recombination lines in extragalactic HII regions in low-metallicity starforming galaxies

•  The intercept at the zero oxygen abundance should represent the primordial (BBNS) value

•  The result is: YBBNS = 0.238 +/- 0.005

Page 24: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

DeuteriumMeasurements

DH

= 2.74 ×10−5

Deuterium is easily destroyed in stars, and there is no known astrophysical process where it can be created in large amounts after the BBNS

Thus, we need to measure it in a “pristine” environment, e.g., in QSO absorption line systems

It is a tricky measurement and it requires high resolution spectra from 8-10 m class telescopes

The result is:

Page 25: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

BBNSandPar5clePhysicsBBNS predictions also depend on the number of lepton

(neutrino) families. Indeed, only 3 are allowed:

Page 26: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheIdeaofInfla5on•  AlanGuth(1980);precursors:D.Kazanas,A.Starobinsky•  Explainsanumberoffundamentalcosmologicalproblems:

flatness,horizon,originofstructure,absenceoftopologicaldefects…

A. Guth A. Linde A. Starobinsky

•  Developed further by P. Steinhardt, A. Albrecht, A. Linde, and many others

A page from Guth’s notebook

Page 27: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheInfla5onaryScenarioItsolves3keyproblemsoftheBigBangcosmology:1.   Theflatnessproblem:whyistheuniversesocloseto

beingflattoday?2.   Thehorizonproblem:howcomestheCMBRisso

uniform?3.   Themonopoleproblem:wherearethecopious

amountsofmagne5cmonopolespredictedtoexistintheBBcosmology?

…ItalsoaccountsnaturallyfortheobservedpowerspectrumoftheiniCaldensityperturbaCons

…Itpredictsasimilar,scale-invariantspectrumforthecosmicgravita5onalwavebackground

…Anditimpliesamuch,much(!)biggeruniversethantheobservableone

Page 28: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheFlatnessProblem( )

)()(1

)()()(1 22

020

20

22

2

tatHH

RtatHkct Ω−

=−=Ω−

3m0

4r0

2

0

)(aaH

tH Ω+

Ω=⎟⎟

⎞⎜⎜⎝

The expanding universe evolves away from Ωtot = 1:

This creates an enormous fine-tuning problem: the early universe must have been remarkably close to Ωtot = 1 in order to have Ωtot ~ 1 today !

(from N. Wright)

Page 29: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheHorizonProblemConsiderma<er-onlyuniverse:•  HorizondistancedH(t)=3ct•  Scalefactora(t)=(t/t0)2/3

•  Thereforehorizonexpandsfasterthantheuniverse,sonew”objectsareconstantlycomingintoview

ConsiderCMBR:•  Itdecouplesat1+z~1000•  i.e.,tCMB=t0/104.5

•  ThendH(tCMB)=3ct0/104.5

•  Nowthishasexpandedbyafactorof1000to3ct0/101.5

•  Buthorizondistancenowis3ct0•  Soanglesubtendedonskybyone

CMBhorizondistanceisonly~2°

➙ Patches of CMB sky > 2° apart should not be causally connected!

0

0.5

1

1.5

2

2.5

3

3.5

0 0.25 0.5 0.75 1

t/t0

d/ct horizon

distance

distance to object at dhor for a =0.1

distance to object at dhor for a =1.0

Page 30: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

CMBRisUniformto∆T/T~10-6Yettheprojectedsizeofthepar5clehorizonatthedecouplingwas~2°-theseregionswerecausallydisconnected-sohowcome?

Page 31: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheMonopoleProblem•  Magne5cmonopolesarebelievedtobeaninevitableconsequenceofGrandUnifica5onTheories(GUTs)–  Point-liketopologicaldefectsarisingduringthephasetransi5onwhenthestrongandtheelectroweakforcesdecouple

•  Expectenormousnumbersofthem– Mass~1016mp;dominateallotherma<erdensitybyafactorof~1012andthusclosetheuniverseanddriveittoaBigCrunchalong5meago…

•  Notobserved!So,wherearethey?

Page 32: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Infla5onaryUniverseScenario•  IfthereisaTheoryofEverything(TOE)thatunifiesallfourforces

itwillbreakspontaneouslyatthePlanck5me(t~10-43sec)intothegravita5onandaunifiedversionofthemagne5c,electroweak,andstrongforces–aGrandUnifiedTheory(GUT)

•  TheGUTwillholdun5lT~1028K,ort~10-34sec.Atthispointtheuniverseenteredaperiodof“falsevacuum”:theenergylevelhigherthanthelowest,“ground”state

•  SymmetrybreakinginGUTtheoriesisassociatedwithmassiveHiggsbosons,whicharequantaofascalarfieldthathasanassociatedpoten5alwhichdescribestheenergyofthefield

•  Thefalsevacuumisametastablestate,withit’svacuumenergyac5ngasa“nega5vepressure”causingtheuniversetoexpandexponen5allyasit“rollsdownthescalarfield”

Page 33: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Infla5onWithaScalarField•  Needpoten5alUwithbroadnearlyflatplateaunearφ=0•  Thisisthemetastablefalsevacuum

U

ö

Potential U(φ) of a scalar field φ

φ < = <=

Inflation Reheating

•  Inflation occurs as φ moves slowly away from 0

•  It stops at drop to minimum U - the true vacuum

•  Decay of inflaton field φ at this point reheats universe, producing photons, quarks, etc. - all of the matter/energy content of the universe is created in this process

•  This is equivalent to latent heat of a phase transition

False vacuum

True vacuum

Page 34: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheCosmicInfla5onRecall that the energy density of the physical vacuum is described as the cosmological constant. If this is the dominant density term, the Friedmann Eqn. is:

The solution is obviously:

In the model where the GUT phase transition drives the inflation, the net expansion factor is:

The density parameter evolves as:

Thus:

Page 35: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheInfla5onaryScenario

Standard Big Bang

Inflationary Period

The universe inflates by > 40 orders of magnitude!

… and then the standard expansion resumes

Page 36: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Infla5onSolvestheFlatnessProblem

As the universe inflates, the local curvature effects become negligible in comparison to the vastly increased “global” radius of curvature: the universe becomes extremely close to flat locally (which is the observable region now). Thus, at the end of the inflation, Ω = 1 ± ε

Page 37: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Infla5onSolvestheHorizonProblemRegions of the universe which were causally disconnected at the end of the inflation used to be connected before the inflation - and thus in a thermal equilibrium

Note that the inflationary expansion is superluminal: the space can expand much faster than c

Page 38: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Infla5onandStructureForma5on•  UncertaintyPrinciplemeansthatinquantummechanics

vacuumconstantlyproducestemporarypar5cle-an5par5clepairs–  Thiscreatesminutedensityfluctua5ons

–  Infla5onblowstheseuptomacroscopicsize

–  Theybecometheseedsforstructureforma5on

•  Expectthemassspectrumofthesedensityfluctua5onstobeapproximatelyscaleinvariant

–  Thisisindeedasobserved!–  Nota“proof”ofinfla5on,butawelcomeconsistencytest

Page 39: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheInfla5onasaPhaseTransi5onThe universe undergoes a phase transition from a state of a false vacuum, to a ground state; this releases enormous amounts of energy (“latent heat”) which drives an exponential expansion

Regions of non-inflating universe are created through the nucleation of bubbles of true vacuum. When two such bubbles collide, the vast energy of the bubble walls is converted into the particles. This process is called reheating

Page 40: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

PhysicalInterac5onsintheEarlyUniverseAswegetclosertot→0andT→∞,weprobephysicalregimesinwhichdifferentfundamentalinterac5onsdominate.Theirstrengthisafunc5onofenergy,andatsufficientlyhighenergiestheybecomeunified

Page 41: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheElectroweakEra:upto10-10sec•  AtT~1028K,threedis5nctforcesintheuniverse:Gravity,

Strong,andElectroweak:unifiedElectromagne5smandWeaknuclearforce

•  AtT<1015K,Electromagne5smandWeaknuclearforcesplit;thisistheElectroweakphasetransi5on

•  Limitofwhatwecantestinpar5cleaccelerators

•  AtT>1029K,electroweakforceandstrongnuclearforcejointoformtheGUT(grandunifiedtheory)interac5on

•  Rela5velysolidtheore5calframework(butmaybewrong),butnotdirectlytestableinexperiments

•  ThisGUTphasetransi5onmaybedrivingtheInfla5on(butthereareothercandidates)

TheGUTEra:upto10-35sec

Page 42: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

Ma<er-An5ma<erAsymmetry

q q They basically have all annihilated away

except a tiny difference between them

Matter Particles

10,000,000,001

Antimatter Particles

10,000,000,000

Thisprocessleadstothepreponderanceofphotonsoverthelezoverbaryonstodaybythesamefactor…

Wheredoesitcomefrom?

Page 43: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

TheCosmicBaryogenesis•  Thecondi5onsrequiredforthecrea5onofmorema<erthan

an5-ma<erwerefirstderivedbyA.Sakharovin1967:1.   Baryonnumberviola5on

•  Otherwisehavesameno.ofpar5clesandan5par5cles•  Neverbeenobserved•  PredictedtooccurinseveralGUTtheories

2.   CandCPviola5on•  Parityofan5par5clesisoppositetothatofpar5cles•  CPviola5ondiscoveredin1964(CroninandFitch)

3.   Departurefromnon-thermalequilibrium•  Otherwiseallreac5onsgobothways•  Providedbytheexpansionoftheuniverse

•  Nowbelievedtobethemechanismresponsibleforthema<er-an5ma<erasymmetry

Page 44: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

PlanckUnitsProposedin1899byM.Planck,asthe“natural”systemofunits

basedonthephysicalconstants:

Theymaybeindica5veofthephysicalparametersandcondi5onsattheerawhengravityisunifiedwithotherforces…assumingthatG,c,andhdonotchange…andthattherearenootherequallyfundamentalconstants

Page 45: Ay 127, Winter 2017: The Early Universegeorge/ay127/Ay127_SGD_Lec05.pdf · • MaFer-an5maFer asymmetry: probes the baryogenesis era, t ~ 10-6 sec, z ~ 1012, but only in sugges5ng

“Derived”PlanckUnits