Top Banner
By Haseeb Ahmed M.Phil Geophysics Institute of Geology, University of the Punjab AVO ANALYSIS
33

Avo ppt (Amplitude Variation with Offset)

May 25, 2015

Download

Education

Haseeb Ahmed

AVO/AVA can physically explain presence of hydrocarbon in the reservoirs and the thickness, porosity, density, velocity, lithology and fluid content of the reservoir of the rock can be estimated.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Avo ppt (Amplitude Variation with Offset)

By Haseeb AhmedM.Phil Geophysics

Institute of Geology, University of the Punjab

AVO ANALYSIS

Page 2: Avo ppt (Amplitude Variation with Offset)

Amplitude versus offset (AVO) is primarily the variation in seismic reflection amplitude with change in distance between shot point and the receiver

Its another name is AVA (amplitude variation with angle)

AVO analysis is conducted on CMP data

Page 3: Avo ppt (Amplitude Variation with Offset)

FIG. SHOWING AVO (A) & (B)

Page 4: Avo ppt (Amplitude Variation with Offset)

AVO INTRODUCTION

It can physically explain presence of hydrocarbon in the reservoirs and the thickness, porosity, density, velocity, lithology and fluid content of the reservoir of the rock can be estimated.

Page 5: Avo ppt (Amplitude Variation with Offset)

THE ZOEPPRITZ EQUATIONS

Zoeppritz derived the amplitudes of the reflected and transmitted waves using the conservation of stress and displacement across the layer boundary

which gives four equations with four unknowns.

Inverting the matrix form of the Zoeppritz equations gives us the exact amplitudes as a function of angle

Page 6: Avo ppt (Amplitude Variation with Offset)

THE ZOEPPRITZ EQUATIONS

1

1

1

1

1

21P1

2S22

1P1

2P21

1P

1S1

221S1

1P2S21

2P21S1

1P22S2

11S

1P1

2211

2211

S

P

S

P

2cos

2sin

cos

sin

2sinV

V2cos

V

V2sin

V

V2cos

2cosV

VV2cos

VV

VV2cos

V

V2sin

sincossincos

cossincossin

T

T

R

R

Page 7: Avo ppt (Amplitude Variation with Offset)

THE AKI-RICHARDS EQUATION

The Aki-Richards equation is a linearized approximation to the Zoeppritz equations.

The initial form (Richards and Frasier, 1976) separated the velocity and density terms:

S

S

P

P

V

Vcb

V

VaR

)(

Page 8: Avo ppt (Amplitude Variation with Offset)

THE AKI-RICHARDS EQUATION

Where;

,sin4

,sin25.0

,cos2

1

2

2

2

2

2

P

S

P

S

V

Vc

V

Vb

a

.2

,,2

,,2

,,2

1212

1212

1212

ti

SSSSS

S

PPPPP

P

and

VVVVV

V

VVVVV

V

Page 9: Avo ppt (Amplitude Variation with Offset)

WIGGINS’ VERSION OF THE AKI-RICHARDS EQUATION

A more intuitive, but totally equivalent, form was derived by Wiggins.

He separated the equation into three reflection terms, each weaker than the previous term:

222 sintanCsinBA)(R

Page 10: Avo ppt (Amplitude Variation with Offset)

WHERE ?

p

P

2

P

S

S

S

2

P

S

p

P

p

P

V

V

2

1C

V

V2

V

V

V

V4

V

V

2

1B

V

V

2

1A

Page 11: Avo ppt (Amplitude Variation with Offset)

INTERPRETING THE AKI-RICHARDS EQUATION

The first term, A, is a linearized version of the zero offset reflection coefficient and is thus a function of only density and P-wave velocity.

The second term, B, is a gradient multiplied by sin2, and has the biggest effect on amplitude change as a function of offset. It is dependent on changes in P-wave velocity, S-wave velocity, and density.

The third term, C, is called the curvature term and is dependent on changes in P-wave velocity only. It is multiplied by tan2*sin2 and thus contributes very little to the amplitude effects below angles of 30 degrees. (Note: Prove to yourself that tan2*sin2 = tan2 - sin2, since the equation is often written in this form.)

Page 12: Avo ppt (Amplitude Variation with Offset)

OSTRANDER’S GAS SAND MODEL

Ostrander (1984) was one of the first to write about AVO effects in gas sands and proposed a simple two-layer model which encased a low impedance, low Poisson’s ratio sand, between two higher impedance, higher Poisson’s ratio shales.

(This model is shown in the next slide).

Ostrander’s model worked well in the Sacramento valley gas fields. However, it represents only one type of AVO anomaly (Class 3) and the others will be discussed in the next section.

Page 13: Avo ppt (Amplitude Variation with Offset)

* Note : The model consists of a low acoustic impedance and Poisson’s ratio gas sand encased between two shales.

Page 14: Avo ppt (Amplitude Variation with Offset)

SYNTHETIC FROM OSTRANDER’S MODEL

(a) Well log responses for the model.

(b) Synthetic seismic.

Page 15: Avo ppt (Amplitude Variation with Offset)

WET AND GAS MODELS

Wet Sand Model Gas Saturated Model

Page 16: Avo ppt (Amplitude Variation with Offset)

AVO MODELS

In the next two slides, we are going to compute the top and base event responses from Models A and B, using the following values, where the Wet and Gas cases were computed using the Biot-Gassmann equations:

Wet: VP= 2500 m/s, VS= 1250 m/s, = 2.11 g/cc, s = 0.33

Gas: VP= 2000 m/s, VS= 1310 m/s, = 1.95 g/cc, s = 0.12

Shale: VP= 2250 m/s, VS= 1125 m/s, = 2.0 g/cc, s = 0.33

We will consider the AVO effects with and without the third term in the Aki-Richards equation.

Page 17: Avo ppt (Amplitude Variation with Offset)

AVO WET MODEL

AVO - Wet Sand (Model A) Top

0.000

0.020

0.040

0.060

0.080

0.100

0 5 10 15 20 25 30 35 40 45

Angle (degrees)

Am

plit

ud

e

R (All three terms) R (First two terms)

AVO - Wet Sand (Model A) Base

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

0 5 10 15 20 25 30 35 40 45

Angle (degrees)

Am

plit

ud

e

R (All three terms) R (First two terms)

These figures show the AVO responses from the (a) top and (b) base of the wet sand. Notice the decrease of amplitude, and also the fact that the two-term approximation is only valid out to 30 degrees.

Page 18: Avo ppt (Amplitude Variation with Offset)

AVO GAS MODEL

AVO - Gas Sand (Model B) Top

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

0 5 10 15 20 25 30 35 40 45

Angle (degrees)

Am

plit

ud

e

R (All three terms) R (First two terms)

AVO - Gas Sand (Model B) Base

0.000

0.050

0.100

0.150

0.200

0.250

0 5 10 15 20 25 30 35 40 45

Angle (degrees)

Am

plit

ud

e

R (All three terms) R (First two terms)

The above figures show the AVO responses from the (a) top and (b) base of the gas sand. Notice the increase of amplitude, and again the fact that the two-term approximation is only valid out to 30 degrees.

Page 19: Avo ppt (Amplitude Variation with Offset)

SHUEY’S EQUATION

Shuey (1985) rewrote the Aki-Richards equation using VP, , and . Only the gradient is different than in the Aki-Richards expression

2)1(1

21)D1(2DAB

12

12

2

,//

/:

PP

PP

VV

VVDwhere

Page 20: Avo ppt (Amplitude Variation with Offset)

THIS FIGURE SHOWS A COMPARISON BETWEEN THE TWO FORMS OF THE AKI-RICHARDS EQUATION FOR THE GAS SAND CONSIDERED

EARLIER.

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0 5 10 15 20 25 30 35 40 45

Am

plit

ud

e

Angle (degrees)

Gas Sand Model Aki-Richards vs Shuey

A-R Top Shuey Top

A-R Base Shuey Base

Page 21: Avo ppt (Amplitude Variation with Offset)

AVO EFFECTS

(a) Gas sandstone case: Note that the effect of Ddand De is to increase the AVO effects

b) Wet sandstone case: Note that the effect of Dd and Deis to create apparent AVO decreases.Class

1

Class 2

Class 3

Class 1

Class 2

Class 3

Page 22: Avo ppt (Amplitude Variation with Offset)

BACK-TREND AVO

For brine-saturated clastic rocks over a limited depth range in a particular locality, there may be a well-defined relationship between the AVO intercept (A) and the AVO gradient (B). linear A versus B trends, all of which pass through the origin (B = 0 when A = 0).

Thus, in a given time window, non-hydrocarbon-bearing clastic rocks often exhibit a well-defined back- ground trend; deviations from this background are indicative of hydrocarbons or unusual litholo- gies.

Page 23: Avo ppt (Amplitude Variation with Offset)

POSSIBLE DEVIATION B/W GAS AND BRINE

Deviations from the background petro- physical trends, as would be caused by hydrocarbons or unusual litholo- gies, cause deviations from the background A versus B trend. This figure shows brine sand-gas sand tie lines for shale over brine-sand reflections falling along a given background trend

Page 24: Avo ppt (Amplitude Variation with Offset)

GENERAL CLASSIFICATION

Rutherford and Williams (Geophysics, 1989) for Class I (high impedance) and Class II (small impedance contrast) sands. However, we differ from Rutherford and Williams in that we subdivide their Class III sands (low impedance) into two classes (III and IV).

Page 25: Avo ppt (Amplitude Variation with Offset)

AMPLITUDE VS ANGLE

Page 26: Avo ppt (Amplitude Variation with Offset)

 CLASS 1 (DIM OUT)

Amplitude decreases with increasing angle, and may reverse phase on the far angle stack

  Amplitude on the full stack is smaller for the

hydrocarbon zone than for an equivalent wet saturated zone.

Wavelet character is peak-trough on near angle stack

  Wavelet character may or may not be peak-trough

on the far angle stack.

Page 27: Avo ppt (Amplitude Variation with Offset)

CLASS 2 (PHASE REVERSAL)

There is little indication of the gas sand on the near angle stack.

The gas sand event increases amplitude with increasing angle. This attribute is more pronounced than anticipated because of the amplitude decrease of the shale- upon-shale reflections.

The gas sand event may or may not be evident on the full stack, depending on the far angle amplitude contribution to the stack. 

Wavelet character on the stack may or may not be trough-peak for a hydrocarbon charged thin bed.

Page 28: Avo ppt (Amplitude Variation with Offset)

CLASS 2 (PHASE REVERSAL)

Wavelet character is trough-peak on the far angle stack.

Inferences about lithology are contained in the amplitude variation with incident angle.

AVO alone, unless carefully calibrated, cannot unambiguously distinguish a clean wet sand from a gas sand, because both have similar (increasing ) behavior with offset.

Page 29: Avo ppt (Amplitude Variation with Offset)

CLASS 3 (BRIGHT SPOT)

Hydrocarbon zones are bright on the stack section and on all angle limited stacks.

  The hydrocarbon reflection amplitude, with respect

to the background reflection amplitude, is constant or increases slightly with incident angle range.

Even though the amplitude of the hydrocarbon event can decrease with angle, as suggested for the Class 4 AVO anomalies, the surrounding shale-upon-shale reflections normally decrease in amplitude with angle at a faster rate.

 

Page 30: Avo ppt (Amplitude Variation with Offset)

CLASS 3 (BRIGHT SPOT)

Wavelet character is trough-peak on all angle stacks. This assumes that the dominant phase of the seismic wavelet is zero and the reservoir is below tuning thickness

Hydrocarbon prediction is possible from the stack section.

Page 31: Avo ppt (Amplitude Variation with Offset)

CONT…

Page 32: Avo ppt (Amplitude Variation with Offset)

BEHAVIOR OF THE VARIOUS GAS SAND CLASSES.

Page 33: Avo ppt (Amplitude Variation with Offset)

Thank you