Top Banner

of 9

Austenitic Stainless Steel-To-Ferritic Steel Transition Joint Welding For Elevated Temperature Service.pdf

Apr 03, 2018

Download

Documents

Marcos Leite
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 Austenitic Stainless Steel-To-Ferritic Steel Transition Joint Welding For Elevated Temperature Service.pdf

    1/9

  • 7/28/2019 Austenitic Stainless Steel-To-Ferritic Steel Transition Joint Welding For Elevated Temperature Service.pdf

    2/9

  • 7/28/2019 Austenitic Stainless Steel-To-Ferritic Steel Transition Joint Welding For Elevated Temperature Service.pdf

    3/9

    the high" stresses created by the- a -cyclic temperature service. It was

    also found that a sharp increase inhardness occurred in a narrow bandin the weld metal adjacent to the

    T!T|_fusion line. The formation of car-UN^ bi de precipitates in this region

    caused the hardness increase and in-dicates carbon diffusion from the.ferritic steel to the weld metal.

    A as An exact failure mechanism could notbe determined from this examination,but it was reaffirmed that transi-tion joint design is very important.The basic concerns that have beenrecognized for many years are stillapplicable, including: (1) Select filler metals that\ ' minimize migration of carbon from the ferritic

    T W T ' steel;MARGIN- (2) Minimize the differences

    : L__iR.jpoefficients .of .thermal! expansion between the1 metals in the joint; and

    (3) Minimize stresses at thej weld interfaces.

    3. TRANSITION JOINT DESIGNA study^ ' was conducted to estab-lish the design of piping transitionjoints for a liquid metal fast breederreactor plant. The basic materialsto be joined are 2 1/4 Cr-1 Mo fer-fitic steel and type 316 austeniticstainless steel. The mismatch inthermal expansion properties ofthese two materials is the majorcause of high stresses at the ferriticsteel-austenitic steel weld jointduring cyclic temperature service.

    The least severe stress situationoccurs when the joint is maintainedat a constant temperature, since thestress level will decrease by relax-ation, which in turn lowers thecreep rate and the joint reachesequilibrium. When large temperature N

    ..." "fluctuations"cannotHbe avoided, asin this case, the effect of the differ-ence in thermal expansion must bereduced. A practical way of doingthis is to separate the dissimilar -C,INmetal pair with a material or seriesof materials whose coefficient of : .thermal expansion (CTE) are betweenthose of the two to be joined. Theeffect of this is to distribute thedifference in CTE over several inter-faces so that the mismatch at anyone interface is acceptably low.The coefficients of thermal expan-sion were examined for a number of :-.materials considered for. use in the MA,joint between 2 1/4 Cr-1 Mo and type316 stainless steel (Fig. 3 ) . Anattractive candidate for an inter-mediate material is alloy 800H.Other materials were ruled out be- :cause they were not approved for usein this application by ASME Code Case1592 which limits materials to 2 1/4Cr-1 Mo steel, alloy 800H, and types304 or 316 stainless steel. ' It wasalso desirable to select weldingfiller metals which have a CTE be-tween the base materials to bejoined in each joint.A welding filler metal meeting ANSspecification ERNiCr-3 (commonlyknown as Inconel 82) has a CTE

  • 7/28/2019 Austenitic Stainless Steel-To-Ferritic Steel Transition Joint Welding For Elevated Temperature Service.pdf

    4/9

    g r e a t e r t h a n t h e 2 1 /4 C r - 1M o s t e e l . T h i s f il l e r m e t a l , c o n -v e n t i o n a l l y u s e d i n a u s t e n i t i c /f e r r i t i c d i s s i m i l a r w e l d j o i n t s , w a ss e l e ct e d f o r t h e 2 1 /4 C r - 1 M o s t e e l

    T ! 7 L $ O a l l o y 8 0 0 H j o i n t . F i l l er m e t a l s- '^-"with C T E f a l l i n g b e t w e e n o r n e a r t h e

    a l l o y 8 0 0 H a n d t y p e 3 1 6 s t a i n l e s ss t e e l a r e t h e i r o n b a s e a u s t e n i t i c s .I t w a s c o n c l ud e d a f t e r e v a l u a t i o n

    A 8 S - p f A s e v e r a l f i l l e r m e t a l s o f t h i s .M A R c l a s s t h a t t y p e 1 6 - 8 -2 ( 1 6 % C r - 8 %

    N i 2 % M o ) w a s t h e b e s t c h o i c e f o rt h i s a p p l i c a t i o n . T h e s e c o n s i d e r a -t i o n s p r o d u c e d a t r a n s i t i o n j o i n ts p o o l p i e c e d e s i g n w i t h a g r a d u a lc h a n g e i n e x p a n s i o n p r o p e r t i e sj (Fi g. 4 ) .

    4 . D E S I G N A N A L Y S I S; i

    T o d e t e r m i n e i f s i gn i f i ca n t i m p r o v e -m e n t c o u l d b e o b t a i n e d f r o m t h i st h r e e - m e t a l t r a n s i t i o n j o i n t , a d e -" tS il ^a ^ sT rf e ss ' a n a l y s i s w a s ~ p e r f o r m e dt o c o m p a r e i t w i t h a c o n v e n t i o n a ld i r e c t j o i n t b e t w e e n 2 1/ 4 C r - 1 M os t e e l a n d t y p e 3 1 6 s t a i n l e s s s t e e l .A f i n i t e e l e m e n t c o m p u t e r m o d e l w a su s e d t o d e t e r m i n e t h e e f f e c t o f b o t ht h e j o i nt m a t e r i a l s a n d j o i n t g e o m e t r yo n s t r e s s e s a t t h e d i s s i m i l a r m e t a lw e l d . A n e l a s t i c a n a l y s i s w a s p e r -f o r m e d o n a 6 0 0 - m m ( 2 4 - i n . ) O D , 1 3 - m m-w a l l ( 0 . 5 - i n . - w a l l) t h i c k n e s s p i p eo p e r a t i n g a t 5 1 9 C ( 9 6 5 F ) w i t h a ni n t e r n al p r e s s u r e o f 1 .1 0 4 M P a . T h et h e r m a l t r a n s i e n t u s e d w a s a d ro p i nt e m p e r a t u r e f r o m 5 1 9 C ( 9 6 S F) t o3 4 3 C ( 6 5 0 F) i n 1 0 0 0 s e c . T h e c o n -t r i b u t i o n t o t h e t o t a l s t r e s s w a sf r o m t h r e e s o u r c e s : ( 1 ) t h e r m a l

    e x p a n s i o n m i s m a t c h , ( 2 ) t e m p e r a - :t u r e g r a d i e n t s t h r o u g h t h e w a l l t h i c k -n e s s , a n d ( 3) i n t e r n al p r e s s u r e .S t r e s s e s w e r e c a l c u l a t e d f o r a d i r e c tw e l d b e t w e e n 2 1 /4 C r - 1 M o a n d t y p e3 1 6 w i t h a 7 5 i n c lu d e d a n g l e u s i n g "ITL

    '_iNE. ER N iC r- 3. _f il le r. m e t a l . A s e c o n d .c a l c u l a t i on w a s m a d e w i t h a l l o y 8 0 0 Hs u b s t i t u te d f o r t y p e 3 1 6 . T h e m a x i -m u m s t r e s s e s w e r e o b s e r v e d t o o c c u ra t t h e s a m e l o c a t i o n f o r b o t h o f ' J S T S A C Tt h e s e w e l d s ( F ig s . 5 a n d 6 ) . M a x i - "m u m t e n s i l e s t r e s s e s o c c u r a t t h ei n s i de d i a m e t e r i n t h e t y p e 3 1 6 o ra l l o y 8 0 0 H a d j a c e n t t o t h e w e l d . T h em a x i m u m . c o m p r e s s i v e s t r e s s e s o c c u ra t t h e s a m e l o c a t i o n i n t h e 2 1 / 4C r - 1 M o s t e e l . C o m p a r i s o n o f t h e s et w o j o in t t y p e s r e v e a l e d t h e u s e o fa l l o y 8 0 0 H i n t h e t r a n s i t i o n j o i n tp r o v i d e d a 3 7 % d e c r e a s e i n p e a k h o o ps t r e s s i n t h e 2 1 /4 C r - 1 M o s t e e l , r c rH o o p s t r e s s e s r e p r e s e n t t h e - l a r g e s t . ;..;.-,c o m p o n e n t o f t o t a l s t r e s s .T h e e f f e c t o f w e l d j o i n t g r o o v e a n g l ew a s i n v e s t i g a t e d a f t e r t h e b e n e f i c i a le f f e c t o f a l l o y 8 0 0 H w a s d e m o n s t r a t e d .A n a l y s e s i d e n t i c a l t o t h e o n e j u s t