Top Banner
Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H. Zhang) Department of Mathematics, Shanghai Jiao Tong University Shanghai, 2011.10.4 Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 1 / 24
31

Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Jun 13, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Auslander-Reiten Translations in MonomorphismCategories

Bao-Lin Xiong(Joint work with P. Zhang and Y. H. Zhang)

Department of Mathematics, Shanghai Jiao Tong University

Shanghai, 2011.10.4

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 1 / 24

Page 2: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Motivation

C. M. Ringel and M. Schmidmeier, 2008:1 The submodule category S(A) of an Artin algebra A has

AR-sequences.

2 τSX ∼= Mimo τ CokX for X ∈ S(A), where τS (resp. τ ) is theAR-translation in S(A) (resp. A-mod).

3 If A is commutative uniserial then τ6SX ∼= X for each

indecomposable nonprojective object X ∈ S(A).

Question: Can we generalize the above theory?

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 2 / 24

Page 3: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Motivation

C. M. Ringel and M. Schmidmeier, 2008:1 The submodule category S(A) of an Artin algebra A has

AR-sequences.

2 τSX ∼= Mimo τ CokX for X ∈ S(A), where τS (resp. τ ) is theAR-translation in S(A) (resp. A-mod).

3 If A is commutative uniserial then τ6SX ∼= X for each

indecomposable nonprojective object X ∈ S(A).

Question: Can we generalize the above theory?

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 2 / 24

Page 4: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The notions

A: an Artin algebra, A-mod: the category of all fin. gen. left A-modules

Morn(A): the morphism category of A-mod, n ≥ 2

Objects: X(φi ) =

(X1...

Xn

)(φi )

, φi : Xi+1 → Xi are A-maps, i.e.

Xnφn−1 // Xn−1

φn−2 // · · · φ2 // X2φ1 // X1

Morphisms: f : X(φi ) → Y(θi ) is f =

(f1...fn

), where fi : Xi → Yi are

A-maps for 1 ≤ i ≤ n, such that the following diagram commutes

Xn

fn

φn−1

// Xn−1

fn−1

φn−2

// · · ·φ2

// X2 φ1

//

f2

X1

f1

Ynθn−1 // Yn−1

θn−2 // · · · θ2 // Y2θ1 // Y1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 3 / 24

Page 5: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The notions

A: an Artin algebra, A-mod: the category of all fin. gen. left A-modules

Morn(A): the morphism category of A-mod, n ≥ 2

Objects: X(φi ) =

(X1...

Xn

)(φi )

, φi : Xi+1 → Xi are A-maps, i.e.

Xnφn−1 // Xn−1

φn−2 // · · · φ2 // X2φ1 // X1

Morphisms: f : X(φi ) → Y(θi ) is f =

(f1...fn

), where fi : Xi → Yi are

A-maps for 1 ≤ i ≤ n, such that the following diagram commutes

Xn

fn

φn−1

// Xn−1

fn−1

φn−2

// · · ·φ2

// X2 φ1

//

f2

X1

f1

Ynθn−1 // Yn−1

θn−2 // · · · θ2 // Y2θ1 // Y1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 3 / 24

Page 6: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The notions

A: an Artin algebra, A-mod: the category of all fin. gen. left A-modules

Morn(A): the morphism category of A-mod, n ≥ 2

Objects: X(φi ) =

(X1...

Xn

)(φi )

, φi : Xi+1 → Xi are A-maps, i.e.

Xnφn−1 // Xn−1

φn−2 // · · · φ2 // X2φ1 // X1

Morphisms: f : X(φi ) → Y(θi ) is f =

(f1...fn

), where fi : Xi → Yi are

A-maps for 1 ≤ i ≤ n, such that the following diagram commutes

Xn

fn

φn−1

// Xn−1

fn−1

φn−2

// · · ·φ2

// X2 φ1

//

f2

X1

f1

Ynθn−1 // Yn−1

θn−2 // · · · θ2 // Y2θ1 // Y1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 3 / 24

Page 7: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The notions

The monomorphism category Sn(A) is the full subcategory ofMorn(A) consisting of all the objects X(φi ) where φi : Xi+1 −→ Xiare monomorphisms for 1 ≤ i ≤ n − 1.

The epimorphism category Fn(A) is the full subcategory ofMorn(A) consisting of all the objects X(φi ) where φi : Xi+1 −→ Xiare epimorphisms for 1 ≤ i ≤ n − 1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 4 / 24

Page 8: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The notions

The monomorphism category Sn(A) is the full subcategory ofMorn(A) consisting of all the objects X(φi ) where φi : Xi+1 −→ Xiare monomorphisms for 1 ≤ i ≤ n − 1.

The epimorphism category Fn(A) is the full subcategory ofMorn(A) consisting of all the objects X(φi ) where φi : Xi+1 −→ Xiare epimorphisms for 1 ≤ i ≤ n − 1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 4 / 24

Page 9: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The kernel and cokernel functors

Ker : Morn(A) −→ Sn(A),X1X2...

Xn−1Xn

(φi )

7→

Xn

Ker(φ1···φn−1)

...Ker(φn−2φn−1)

Kerφn−1

(φ′i )

,

where φ′i : Ker(φi · · ·φn−1) → Ker(φi−1 · · ·φn−1), 2 ≤ i ≤ n − 1, andφ′1 : Ker(φ1 · · ·φn−1) → Xn are the canonical monomorphisms.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 5 / 24

Page 10: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The kernel and cokernel functors

Cok : Morn(A) −→ Fn(A),X1X2...

Xn−1Xn

(φi )

7→

Cokerφ1

Coker(φ1φ2)

...Coker(φ1···φn−1)

X1

(φ′′i )

,

where φ′′i : Coker(φ1 · · ·φi+1) Coker(φ1 · · ·φi), 1 ≤ i ≤ n − 2, andφ′′n−1 : X1 Coker(φ1 · · ·φn−1) are the canonical epimorphisms.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 6 / 24

Page 11: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The functor: Mono

Mono : Morn(A) −→ Sn(A),X1X2...

Xn−1Xn

(φi )

7→

X1

Imφ1...

Im(φ1···φn−2)Im(φ1···φn−1)

(φ′i )

,

where φ′i : Im(φ1 · · ·φi) → Im(φ1 · · ·φi−1), 2 ≤ i ≤ n − 1, andφ′1 : Im φ1 → X1 are the canonical monomorphisms.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 7 / 24

Page 12: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The object MimoX(φi)

Let X(φi ) ∈ Morn(A).The object MimoX(φi ) ∈ Sn(A) is defined as follows.

For each 1 ≤ i ≤ n − 1, fix an injective envelope

e′i : Ker φi → IKer φi .

Then we have an extension

ei : Xi+1 −→ IKer φi .

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 8 / 24

Page 13: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The object MimoX(φi)

Define MimoX(φi ) to be the objectX1⊕IKerφ1⊕···⊕IKerφn−1X2⊕IKerφ2⊕···⊕IKerφn−1

...Xn−1⊕IKerφn−1

Xn

(θi )

where θi =

φi 0 0 ··· 0ei 0 0 ··· 00 1 0 ··· 00 0 1 ··· 0...

...... ···

...0 0 0 ··· 1

(n−i+1)×(n−i)

.

That is

Xnθn−1 // Xn−1 ⊕ IKer φn−1

θn−2 // · · · θ1 // X1 ⊕ IKer φ1 ⊕ · · · ⊕ IKer φn−1 .

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 9 / 24

Page 14: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The Auslander-Reiten translation in Sn(A)

Theorem 2.1(i) The subcategories Sn(A) and Fn(A) are functorially finite in

Morn(A) and hence have AR-sequences.

(ii) For an object X(φi ) ∈ Sn(A), the Auslander-Reiten translate isgiven by

τSX(φi )∼= Mimo τ CokX(φi ) (1).

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 10 / 24

Page 15: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Remark 2.2

τSX(φi )∼= Mimo τ CokX(φi ). (1)

The process means:Give an object X(φi ) in Sn(A)

Take the cokernel object X ′(φ′i )

= CokX(φi ).

Apply τ to these maps φ′i(1 ≤ i ≤ n − 1).

Represent τCokX(φi ) by an object X ′′(φ′′i ) =

( X ′′1...

X ′′n

)(φ′′i )

in Morn(A)

where X ′′1 , X ′′

2 , · · · , X ′′n−1 have no nonzero injective direct

summands.

Apply Mimo, there is a well-defined object in Sn(A) up toisomorphism.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 11 / 24

Page 16: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

An example

k : a field; A = k [X ]/〈X 2〉, S = k [X ]/〈X 〉, i : S −→ A, π : A −→ S.

τS

( AS0

)(0,i)

= Mimoτ( S

AA

)(1,π)

= Mimo( S

00

)(0,0)

=( S

00

)(0,0)

τS

( S00

)(0,0)

= Mimoτ( S

SS

)(1,1)

= Mimo( S

SS

)(1,1)

=( S

SS

)(1,1)

τS

( SSS

)(1,1)

= Mimoτ( 0

0S

)(0,0)

= Mimo( 0

0S

)(0,0)

=( A

AS

)(i,1)

τS

( AAS

)(i,1)

= Mimoτ( 0

SA

)(π,0)

= Mimo( 0

S0

)(0,0)

=( A

S0

)(1,i)

—————————————————————————————–

τS

( SS0

)(0,1)

= Mimoτ( 0

SS

)(1,0)

= Mimo( 0

SS

)(1,0)

=( A

SS

)(1,i)

τS

( ASS

)(1,i)

= Mimoτ( S

SA

)(π,1)

= Mimo( S

S0

)(0,1)

=( S

S0

)(0,1)

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 12 / 24

Page 17: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

An example

The Auslander-Reiten quiver of S3(A) looks like

A00

!!CCC

CCAA0

!!CCC

CCAAA

!!CCC

CC

S00

==

!!CCC

CCAS0

==

!!CCC

CCoo A

AS

==

!!CCC

CCoo S

SS

oo

SS0

==

!!CCC

CCASS

==

!!CCC

CCoo S

S0

==oo

SSS

== S00

==oo

Remark: This AR-quiver has been described by A.Moore.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 13 / 24

Page 18: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Applications to selfinjective algebras

A: a selfinjective Artin algebra,A-mod: the stable category of A-modMorn(A-mod): the morphism category of A-mod

Objects: X(φi ) =

(X1

...Xn

)(φi )

, φi : Xi+1 → Xi in A-mod,

Morphisms:

f1...fn

: X(φi ) → Y(θi ), fi : Xi → Yi such that the following

diagram commutes in A-mod

Xn

fn

φn−1// Xn−1

fn−1

φn−2// · · ·

φ2 // X2φ1 //

f2

X1

f1

Yn

θn−1// Yn−1

θn−2// · · ·

θ2 // Y2θ1 // Y1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 14 / 24

Page 19: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Applications to selfinjective algebras

A: a selfinjective Artin algebra,A-mod: the stable category of A-modMorn(A-mod): the morphism category of A-mod

Objects: X(φi ) =

(X1

...Xn

)(φi )

, φi : Xi+1 → Xi in A-mod,

Morphisms:

f1...fn

: X(φi ) → Y(θi ), fi : Xi → Yi such that the following

diagram commutes in A-mod

Xn

fn

φn−1// Xn−1

fn−1

φn−2// · · ·

φ2 // X2φ1 //

f2

X1

f1

Yn

θn−1// Yn−1

θn−2// · · ·

θ2 // Y2θ1 // Y1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 14 / 24

Page 20: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The rotation of X(φi)

For X(φi ) ∈ Morn(A-mod), we have the following commutative diagramwith exact rows in A-mod,

Xn //

φn−1

X1 ψn−1

// Y 1n

//

ψn−2

Ω−1Xn

Xn−1 //

φn−2

X1 // Y 1n−1

//

ψn−3

Ω−1Xn−1

...φ3

......ψ2

...

X3 //

φ2

X1 // Y 13

//

ψ1

Ω−1X3

X2

φ1 // X1 // Y 12

// Ω−1X2.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 15 / 24

Page 21: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

The rotation of X(φi)

The rotation RotX(φi ) of X(φi ) is defined to be

(X1ψn−1

//Y 1n

// · · ·ψ1 //Y 1

2 ) ∈ Morn(A-mod)

(here,a for convenience we write the rotation in a row). We remark thatRotX(φi ) is well-defined.

Lemma 3.1

Let X(φi ) ∈ Morn(A). Then RotX(φi )∼= Cok MimoX(φi ) in Morn(A-mod).

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 16 / 24

Page 22: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

For X(φi ) ∈ Morn(A-mod), define Ω−1X(φi ) to be(Ω−1X1

...Ω−1Xn

)(Ω−1φi )

∈ Morn(A-mod).

Proposition 3.2

Let A be a selfinjective algebra, X(φi ) ∈ Sn(A). Then there are thefollowing isomorphisms in Morn(A-mod)

(i) τ jSX(φi )

∼= τ j RotjX(φi ) for j ≥ 1. In particular, τSX(φi )∼= τ CokX(φi ).

(ii) τs(n+1)S X(φi )

∼= τ s(n+1) Ω−s(n−1)X(φi ), ∀ s ≥ 1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 17 / 24

Page 23: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

For X(φi ) ∈ Morn(A-mod), define Ω−1X(φi ) to be(Ω−1X1

...Ω−1Xn

)(Ω−1φi )

∈ Morn(A-mod).

Proposition 3.2

Let A be a selfinjective algebra, X(φi ) ∈ Sn(A). Then there are thefollowing isomorphisms in Morn(A-mod)

(i) τ jSX(φi )

∼= τ j RotjX(φi ) for j ≥ 1. In particular, τSX(φi )∼= τ CokX(φi ).

(ii) τs(n+1)S X(φi )

∼= τ s(n+1) Ω−s(n−1)X(φi ), ∀ s ≥ 1.

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 17 / 24

Page 24: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Theorem 3.3

Let A be a selfinjective algebra, and X(φi ) ∈ Sn(A). Then we have

τs(n+1)S X(φi )

∼= Mimo τ s(n+1) Ω−s(n−1)X(φi ), s ≥ 1. (2)

Applying the above theorem to the selfinjective Nakayama algebrasA(m, t), we get

Corollary 3.4

For an indecomposable nonprojective object X(φi ) ∈ Sn(A(m, t)),m ≥ 1, t ≥ 2, there are the following isomorphisms:

(i) If n is odd, then τm(n+1)S X(φi )

∼= X(φi );

(ii) If n is even, then τ2m(n+1)S X(φi )

∼= X(φi ).

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 18 / 24

Page 25: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Theorem 3.3

Let A be a selfinjective algebra, and X(φi ) ∈ Sn(A). Then we have

τs(n+1)S X(φi )

∼= Mimo τ s(n+1) Ω−s(n−1)X(φi ), s ≥ 1. (2)

Applying the above theorem to the selfinjective Nakayama algebrasA(m, t), we get

Corollary 3.4

For an indecomposable nonprojective object X(φi ) ∈ Sn(A(m, t)),m ≥ 1, t ≥ 2, there are the following isomorphisms:

(i) If n is odd, then τm(n+1)S X(φi )

∼= X(φi );

(ii) If n is even, then τ2m(n+1)S X(φi )

∼= X(φi ).

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 18 / 24

Page 26: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

An example

Let A = kQ/〈δα, βγ, αδ − γβ〉, where Q is the quiver 2•α //

1•β //

δoo 3•

γoo

Then A is selfinjective with τ ∼= Ω−1 and Ω6 ∼= id on the object ofA-mod. The Auslander-Reiten quiver of A is

312

<<<

<1

2 31

777

7777

7

3##F

FFF12

@@@

@

AAoo 3

1##GG

GGoo 2

%%KKKKKoo

12 3

##GGGG

;;wwww1

@@@

@

??~~~~oo 2 3

1

%%KKKKK

99sssss

CCoo 1

2 3oo

2

;;xxxx 13

<<<

<

??~~~~oo 2

1

;;wwwwoo 3

99sssssoo

213

AA

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 19 / 24

Page 27: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

An example

Let X(φi ) be an indecomposable nonprojective object in Sn(A).By (2), for s ≥ 1 we have

τs(n+1)S X(φi )

∼= Mimo τ s(n+1) Ω−s(n−1)X(φi )∼= Mimo Ω−2snX(φi )

in Sn(A).Then we get

(i) if n ≡ 0, or 3 (mod6), then τn+1S X(φi )

∼= X(φi ); and

(ii) if n ≡ ±1, or ± 2 (mod6), then τ3(n+1)S X(φi )

∼= X(φi ).

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 20 / 24

Page 28: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Serre functors of stable monomorphism categories

A: a finite-dimensional selfinjective algebra over a fieldSn(A) is a Frobenius category.

Sn(A): the stable category of Sn(A)

Sn(A) is a Hom-finite Krull-Schmidt triangulated category withsuspension functor Ω−1

S = Ω−1Sn(A). Since Sn(A) has Auslander-Reiten

sequences, it follows that Sn(A) has Auslander-Reiten triangles, and

hence, by a theorem of Reiten and Van den Bergh, it has a Serrefunctor FS = FSn(A), which coincides with Ω−1

S τS on the objects ofSn(A).

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 21 / 24

Page 29: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Theorem 4.1Let A be a selfinjective algebra, and FS be the Serre functor of Sn(A).

Then we have an isomorphism in Sn(A) for X(φi ) ∈ Sn(A) and for s ≥ 1

F s(n+1)S X(φi )

∼= Mimo τ s(n+1) Ω−2snX(φi ). (4.4)

Moreover, if d1 and d2 are positive integers such that τd1M ∼= M and

Ωd2M ∼= M for each indecomposable nonprojective A-module M, then

F N(n+1)S X(φi )

∼= X(φi ), where N = [ d1(n+1,d1)

, d2(2n,d2)

].

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 22 / 24

Page 30: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Applying the above theorem to the selfinjective Nakayama algebrasA(m, t), we get

Corollary 4.2Let FS be the Serre functor of Sn(A(m, t)) with m ≥ 1, t ≥ 2, and X be

an arbitrary object in Sn(A(m, t)). Then

(i) If t = 2, then F N(n+1)S X ∼= X, where N = m

(m,n−1) .

(ii) If t ≥ 3, then F N(n+1)S X ∼= X, where N = m

(m,t ,n+1) .

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 23 / 24

Page 31: Auslander-Reiten Translations in Monomorphism Categories Bao-Lin.pdf · Auslander-Reiten Translations in Monomorphism Categories Bao-Lin Xiong (Joint work with P. Zhang and Y. H.

Thank you!

E-mail: [email protected]

Bao-Lin Xiong (SJTU) Auslander-Reiten Translations in Monomorphism Categories ISPN ’80 24 / 24