Top Banner
JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013 23 Audio Watermarking in Image by Using Radon – Wavelet Transforms Osama Qasim Jumah Al-Thahab and Heba Abdul-Jaleel Alasady Abstract-The rapid growth of digital media and communication network has highlighted the need for Intellectual Property Rights (IRP) protection technology for digital multimedia. Watermarking of multimedia data has become a hotspot for research in recent years. Watermarking can be used to identify the owners, license information, or other information related to the digital object carrying the watermark. Watermarks can provide the mechanism for determining if a particular work has been tampered with or copied illegally. In this paper, a novel algorithm for robust audio watermarking is presented in image using wavelet transform based on image, and radon transform on audio file for the first time. The motivation of choosing image as a cover is driven by the fact that human visual system is less sensitive than human auditory system thus an image provides better masking effect. The algorithm is based on decomposition of images using Haar wavelet basis. Performance of the algorithm has been evaluated extensively, and simulation results are presented to demonstrate the imperceptibility and robustness of the proposed algorithm. KeywordDiscrete wavelet transform, radon transform, audio watermarking, image watermarking . Osama Qasim Jumah Al-Thahab Lecturer in Engineering College Electrical Departement of Babylon university. Heba Abdul- Jaleel Alasady Msc student at Babylon University. 1 INTRODUCTION Digital watermarking is a new technology used for copyright protection of digital media. Digital watermarking was introduced at the end of the 20th century to provide means of enforcing copyright protection of digital data. Where, ownership information data called watermark is embedded into the digital media (image, audio, and video) without affecting its perceptual quality. In case of any dispute, the watermark data can be detected or extracted from the media and used as a proof of ownership. Imperceptibility and robustness against attacks are the fundamental issues in digital watermarking techniques[1]. Audio watermarking techniques reported in literature can be grouped into two types; timedomain techniques and frequencytransform domain technique. The two domains have different characteristics, and thus performances of their techniques may vary with respect to the robustness and imperceptibility (inaudibility) requirements of audio watermarking. Inaudibility refers to the condition that the embedded watermark should not produce audible distortion to the sound quality of the original audio, in such a way that the watermarked marked version of the file is indistinguishable from the original one[2]. watermarking gets divided into the following categories nonblind, semiblind and blind methods. In nonblind methods, to extract the watermark the original image itself is being employed, while the semiblind methods engages particular characteristics of the original image, in exception of the other two cases, the detection process in the blind methods do not
8

Audio Watermarking in Image by Using Radon – Wavelet Transforms

Oct 29, 2015

Download

Documents

Journal of Telecommunications, ISSN 2042-8839, Volume 21, Issue 1, July 2013

www.journaloftelecommunications.co.uk
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

23

Audio Watermarking in Image by Using Radon – Wavelet Transforms

Osama Qasim Jumah Al-Thahab and Heba Abdul-Jaleel Alasady

Abstract-The rapid growth of digital media and communication network has highlighted the need for Intellectual Property Rights (IRP) protection technology for digital multimedia. Watermarking of multimedia data has become a hotspot for research in recent years. Watermarking can be used to identify the owners, license information, or other information related to the digital object carrying the watermark. Watermarks can provide the mechanism for determining if a particular work has been tampered with or copied illegally. In this paper, a novel algorithm for robust audio watermarking is presented in image using wavelet transform based on image, and radon transform on audio file for the first time. The motivation of choosing image as a cover is driven by the fact that human visual system is less sensitive than human auditory system thus an image provides better masking effect. The algorithm is based on decomposition of images using Haar wavelet basis. Performance of the algorithm has been evaluated extensively, and simulation results are presented to demonstrate the imperceptibility and robustness of the proposed algorithm.

Keyword-­‐Discrete   wavelet   transform,   radon   transform,   audio   watermarking,   image  watermarking  

.

• Osama Qasim Jumah Al-Thahab Lecturer in Engineering College Electrical Departement of Babylon university.

• Heba Abdul- Jaleel Alasady Msc student at Babylon University.

1    INTRODUCTION  

Digital  watermarking   is  a  new  technology  used  for       copyright   protection   of   digital   media.  Digital    watermarking  was  introduced  at  the  end  of   the   20th   century   to   provide   means   of  enforcing   copyright   protection   of   digital   data.  Where,   ownership   information   data   called  watermark   is   embedded   into   the   digital  media  (image,   audio,   and   video)   without   affecting   its  perceptual  quality.       In   case   of   any   dispute,   the   watermark    data   can   be   detected   or   extracted   from   the  media   and   used   as   a   proof   of   ownership.  Imperceptibility  and    robustness  against  attacks  are   the   fundamental   issues   in   digital  watermarking   techniques[1].   Audio  watermarking   techniques   reported   in   literature  can   be   grouped   into   two   types;   time-­‐domain  

techniques   and   frequency-­‐transform   domain  technique.   The   two   domains   have   different  characteristics,   and   thus   performances   of   their  techniques   may   vary   with   respect   to   the  robustness   and   imperceptibility   (inaudibility)  requirements   of   audio   watermarking.  Inaudibility   refers   to   the   condition   that   the  embedded   watermark   should   not   produce  audible   distortion   to   the   sound   quality   of   the  original   audio,   in   such   a   way   that   the  watermarked   marked   version   of   the   file   is  indistinguishable  from  the  original  one[2].  

watermarking   gets   divided   into   the  following   categories   non-­‐blind,   semi-­‐blind   and  blind  methods.  In  non-­‐blind  methods,  to  extract  the  watermark  the  original   image   itself   is  being  employed,   while   the   semi-­‐blind   methods  engages  particular  characteristics  of  the  original  image,   in  exception  of  the  other  two  cases,  the  detection   process   in   the   blind  methods   do   not  

Page 2: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

24

necessarily   requires   the   original   image.   To  progress   the   robustness,   majority   of   the  researches,   embed   the   watermark   in   the  frequency  domain.  As  a  substitute  for  the  spatial  domain,   diverse   transformations   widely  employed  are  of   the  Discrete  Cosine  Transform  (DCT),   the   Discrete   Wavelet   Transform   (DWT),  the   Discrete   Fourier   Transform   (DFT),   Discrete  Hadamard  Transform  (DHT)  and  more[3].  A   fair  amount   of   research   has   been   done   related   to  watermarking  a  binary  sequence  in  an  audio    or  an   image   which   is   relatively   easy   as   the  watermark   consists   of   just   two   binary   values  and   deviation   of   the   coefficients   of   the  transformed   host   from   a   predefined   threshold  are  monitored  to  find  out  either  a  ‘1’  or  ‘0’  value  of  the  watermark[4].    

The  basis   for   using   an   image   as   a   cover  for   watermarking   an   audio   is   the   fact   that  Human  Visual  System  (HVS)  is  less  sensitive  than  Human   Auditory   System   (HAS)   and   provides  better   masking   properties   [4-­‐5].   Embedded  watermarks   are   recovered   by   running   the  inverse  process  that  was  used  to  embed  them  in  the   cover  work,   that   is,   the   original   work.   This  means  that  all  watermarking  systems  consist  of  at   least   two   generic   building   blocks:   a  watermark  embedding  system  and  a  watermark  recovery   system.   Figure   1   shows   a   basic  watermarking  scheme,   in  which  a  watermark   is  both  embedded  and  recovered   in  an  audio   file.  As   can  be   seen,   this  process  might  also   involve  the  use  of  a  secret  key.   In  general   terms,  given  the  audio  file  A,  the  watermark  W  and  the  key  K,  the  embedding  process  is  a  mapping  of  the  form    A*K*W=A'    [5].    

 

 

 

 Figure  1:  Basic  watermarking  system        

This  paper  is  organized  as  follows.  In  Sec.  2.   DWT  method   is   briefly   described.   Section   3.  the   Radon   transform   .   Section   4.   Audio  watermarking   .   The   Result   &Discussion  proposed  in  Section  5.  Finally,  The  conclusion  in  section  6.      2    Discrete  Wavelet  transform:  

Wavelets  are   special   functions  which,   in  a  form  analogous  to  sines  and  cosines  in  Fourier  analysis,   are   used   as   basal   functions   for  representing   signals[2-­‐6].   Discrete   wavelet  transform   divides   an   image   into   4   coefficient  images  in  the  single  level.  Each  coefficient  image  contains   one   of   low   frequency   bands   and   high  frequency  bands.  With  an  M×N  image,  2-­‐D  DWT  generates  four  M/2×N/2  coefficients:  LL,  LH,  HL,  and   HH,   where   LL   represents   a   low   frequency  band,   LH   a   horizontal   high   frequency   band,   HL  vertical  high  frequency  band,  HH  a  diagonal  high  frequency  band.    

The  low  frequency  band  is  utilized  to  the  net   level  of  DWT.   In  DWT,   the  most  prominent  information   in   the   signal   appears   in   high  amplitudes  and   the   less  prominent   information  appears   in   very   low   amplitudes.   Data  compression   can   be   achieved   by   discarding  these  low  amplitudes.  

 The   wavelet   transforms   enables   high  compression   ratios   with   good   quality   of  reconstruction  Wavelet  transform    is  capable  of  providing   the     time   and   frequency   information  simultaneously,   hence   giving   a   time   frequency  representation  of  the  signal.  DWT  is  believed  to  more   accurately   model   aspects   of   the   HVS  (Human  Visual  System)  as  compared  to  the  FFT  or   DCT.   This   allows   to   use   higher   energy  watermarks  in  regions  that  the  HVS  is  known  to  be   less   sensitive   to.   Inserting   watermarks   in  these   regions   increases   the   robustness   of  watermark,  additional   impact  on   image  quality.  Experimentally  it  is  being  found  that  insertion  in  the   LL   portion   of   the   DWT   proves   to   be   most  robust  against  various  kinds  of  attacks  [7].  

 The   wavelet   functions   induce   an  orthonormal   decomposition   of   L2(R)   using   the  equations  (1,2):    

Page 3: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

25

 

)2....(....................)(2)2/(

)1.....(....................)(2)2/(

∑∑

−=

−=

kk

k k

kxgx

kxh

ψψ

φχφ  

The   mother   wavelet   function   is  represented   by   ψ,   φ   is   the   scaling   function  (father  wavelet),  hk  and  gk  are  respectively  low-­‐pass  and  high-­‐pass  filters.  The  decomposition  of  a  function  f(x)  can  be  done  in  two  ways  as  seen  in  equations  (3,4).  

 

)4)....((,)(,)(

)3...(..............................).........(,)(

,,0

,,0,0

,,

,

xfxfxf

xfxf

nmnmm

nmnmn

nm

nmnm

nm

ψψφφ

ψψ

∑∑

+=

=  

Since   most   dynamic   processes   have   a  low-­‐pass   character,   the   scaling   function   term  only  is  able  to  approximate  the  dynamic  system  [8].   Discrete  Wavelet   Transformation   (DWT)   of  image   produces   the   multi-­‐resolution  representation   of   image.   A   multi-­‐resolution  representation   provides   a   simple   hierarchical  framework   for   interpreting   the   image  information.  At  different  resolutions,  the  details  of   an   image   generally   characterize   different  physical   structures  of   the   image.  At  a   low   level  resolution,   these   details   correspond   to   the  larger   structures   which   provide   the   image  content.  Wavelet  transformation  consist  of  two  main   steps   namely   DWT   and   IDWT   (Inverse  DWT).   DWT   segments   a   digital   signal   into   high  frequency   quadrant   and   low   frequency  quadrants.   The   low   frequency   quadrant   is   split  again   into   two   more   parts   of   high   and   low  frequencies  and  this  process   is  repeated  till   the  signal  has  been  entirely  decomposed.    

In   watermarking,   generally   1-­‐5   level   of  decompositions   is   used.   The   reconstruct   of   the  original   signal   from   the   decomposed   image   is  performed   by   IDWT.   Several   types   of   wavelets  exist  for  decomposition.  Some  examples  include  Haar,  Daubes  chies,  Coif  lets,  Sym  lets,  Mor  lets,  Mexican   Hat   Meyer   and   Bi-­‐orthogonal  wavelets[9].   For     example     starting   from   the  original   audio   signal   S,  DWT  produces   two   sets  of   coefficients   as   shown   in   Figure   2.   The  

approximated   coefficients   A   (low   frequencies)  are  produced  by  passing   the  signal  S   through  a  low  pass  filter  y.  The  details  coefficients  D  (high  frequencies)  are  produced  by  passing  the  signal  S  through  a  low  pass  filter  g.    

 

 

 

Figure  2:  One-­‐level  DWT  decomposition      Depending   on   the   application   and   the  

length   of   the   signal,   the   low   frequencies   part  might  be  further  decomposed  into  two  parts  of  high   and   low   frequencies.   Figure   3   shows   a   3-­‐level   DWT   decomposition   of   signal   S.   The  original   signal  S  can  be  reconstructed  using   the  inverse  DWT  process[10].                                                                                              

 

 

   

Figure  3:  Three-­‐level  DWT  decomposition.  

3    Radon  transform:  

The  Radon  transform  is  named  after  the  Austrian   mathematician   Johann   Karl   August  Radon.   The   main   application   of   the   Radon  transform   is   CAT   scans.   where   the   inverse  Radon   transform   is  applied[11].   In   recent  years  the   Radon   transform   have   received   much  attention.   This   transform   is   able   to   transform  two   dimensional   images   with   lines   into   a  domain  of  possible  line  parameters,  where  each  line   in   the   image  will   give  a  peak  positioned  at  the  corresponding  line  parameters.    

This   have   led   to   many   line   detection  applications  within   image  processing,  computer  vision,  and  seismic   .  The  Radon  Transformation  is   a   fundamental   tool   which   is   used   in   various  applications   such   as   radar   imaging,   geophysical  imaging,   nondestructive   testing   and   medical  

Page 4: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

26

imaging.   The   Radon   transform   computes  projections   of   an   image   matrix   along   specified  directions.   A   projection   of   a   two-­‐dimensional  function   f(x,y)   is   a   set   of   line   integrals.   The  Radon  function  computes  the  line  integrals  from  multiple  sources  along  parallel  paths,  or  beams,  in  a  certain  direction.  The  beams  are  spaced  one  pixel  unit  apart.    

To   represent   an   image,   the     radon  function   takes   multiple,   parallel-­‐beam  projections  of   the   image   from  different     angles  by  rotating  the  source  around  the  center  of  the  image.   Figure   4   shows   a   single   projection   at   a  specified  rotation  angle.      

 

 

 

 

 

 Figure  4:  Single  projection  at  a  specified  rotation                                  angle.  

 The  Radon  transform  is  the  projection  of  

the   image   intensity   along   a   radial   line  oriented  at   a   specific   angle.   The   radial   coordinates   are  the  values  along  the  x'-­‐axis,  which  is  oriented  at  θ   degrees   counter   clockwise   from   the   x-­‐axis.  The  origin  of  both  axes  is  the  center  pixel  of  the  image.  For  example,  the  line  integral  of  f(x,y)  in  the   vertical   direction   is   the   projection   of   f(x,y)  onto   the   x-­‐axis;   the   line   integral   in   the  horizontal   direction   is   the   projection   of   f(x,y)  onto   the   y   axis.   Figure   5   shows   the   horizontal  and   vertical   projections   for   a   simple   two-­‐dimensional  function.  

Projections   can   be   computed   along   any  angle  θ,  by  using  general  equation  of  the  Radon  transform  as  seen  in  equation  (5).  

)5.........()'sincos(),()'( dxdyxyxyxfxR −+= ∫ ∫∞

∞−

∞−

θθδθ  

)6.(........................................sincos' θθ yxx +=  

where   δ(·∙)   is   the   delta   function  with   value   not  equal   zero  only   for  argument  equal  0,  and  x'   is  the   perpendicular   distance   of   the   beam   from  the  origin,  and  θ  is  the  angle  of  incidence  of  the  beams.    

Figure   6   illustrates   the   geometry   of   the  Radon  Transformation.  The  very  strong  property  of   the  Radon   transform   is   the  ability   to  extract  lines  (curves  in  general)  from  very  noise  images.  Radon   transform   has   some   interesting  properties   relating   to   the   application   of   affine  transformations.   We   can   compute   the   Radon  transform   of   any   translated,   rotated   or   scaled  image,   knowing   the   Radon   transform   of   the  original   image  and  the  parameters  of  the  affine  transformation  applied  to  it.  

                                                                                   

Figure  5:  Horizontal  and  Vertical  Projections  of  a                                      Simple  Function.  

   

                     

Figure  6:    Geometry  of  the  Radon  Transform.    

This  is  an  interesting  property  for  symbol  representation  because  it  permits  to  distinguish  

Page 5: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

27

Host  image DWT            

Audio  file  

Radon        transform  

Detail  coefficients  

 

Embed              

Water-­‐marked  image

IDWT

between   transformed   objects,   but  we   can   also  know   if   two   objects   are   related     by   an   affine  transformation   by   analyzing   their   Radon  transforms.   It   is   also   possible   to   generalize   the  radon  transform  to  detect  parameterized  curves  with  nonlinear  behavior  [12].  4    The  Proposed    Audio  Watermarking          Scheme  

The  proposed   system   is   shown   in   figure  7,   and   it   can   be   seen   that   the   addition   is   the  using  of  radon  transform  for  encoding  the  audio  signal,   then  the  result  of   it  will  embedded  with  the   host   encoded   image   to   produce   the  watermarking  image.  

         

             

Figure  7:  block  diagram    of  the  proposed  system    

4.1  Embedding  process  The  embedding  process  can  be  described  

in  the  following  steps:  a)   Convert   the   original   image     to   gray   of   size  N*N.  b)  Apply  the    DWT  to    the  cover  image    which  is  the  original  image.  c)  Apply    the  Radon  transform  on  the  audio  file.  d)  Embed  the  audio  file  after  Radon  transform  in  the   wavelet   coefficients   which   is   the  approximation  coefficients  matrix   (ca)  &  details  coefficients  matrices  (cd).  e)   finally,   Apply     the   IDWT   to   reconstruct   the  original   image     which   is   called     watermarked  image.  

 4.2  Extraction  process  

The  audio  signal  can  be  introduced  from  the  watermarking  image  by  using  the  extraction  process  as  seen  in  figure  8.    

     

                 Figure  8:  block  diagram  of    extraction  process.  

The  extraction    process  can  be  described  in  the  following  steps:  a)   Read   the   watermarked   image     of   size   N*N.                                                                                                                                            b)  Apply   the  discrete  wavelet   transform  on   the  watermarked  image.                                                              c)   Extract   the   watermark   from     the     wavelet  coefficients   and   resize   it   to   the   desired   size.                                                                                                                                                                                                                                                                                d)   Finally   ,     Apply   the   inverse  Radon   transform  and  read  the  Audio  file.    5  Result  &Discussion      

In   this   section   the   effect   of   embedding  algorithm  on   cover   image   is  discussed   in   terms  of   perceptual   similarity   between   the   original  image  and  watermarked   image  using  PSNR  and  Entropy.   The     proposed   technique   uses   the  wavelet   transformation   and   Radon  transformation   domains   to   embed   the   data   so  as   to   exploit   the   advantages   of   wavelet     and  Radon   transformations   being   resistant   to  frequency  attacks.  The  host  image    is  (Lena.jpg)  cover  images  of  size  512*512  as  shown  in  figure  9.  The  performance  of  extraction  algorithm  can  be   tested   by   considering   different   types   of  image  processing  attacks  on  watermarked  gray-­‐level  image  such  as  rotation,  adding  salt,  pepper  noise,   contrast   enhancement,   and   adding  Gaussian   noise.   A   host   of   these   attacks   can   be  depicted  in  Table  1.  

From   the   table   1,   it   is   cleared   that   the  proposed   algorithm   works   well   and   have   a  resistant  to  a  different  types  of  attacks.  

The  effect  of  different  noise  on  the  cover  image   can   be   seen   in   figure   10,   while   The  original  audio  signal  is  seen  in  figure  11,  and  the  extracted   audio   signal   is   shown   in   figure   11  which   shows   the   effect   of   noise   on   the   audio  signal.  

Watermarked  image  

Audio  file

DWT  Watermark  extraction  process

Inverse  Radon  

transform  

Size  of  watermark  

Page 6: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

28

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

                 

 Figure  9:  the  host  image  

Table  1:  The  effect  of  attacks        

                     

                   

(a)    

             

     

(b)    

                     

(c)                            

   

                   

(d)                    

 (e)    

Parameter   No  attack  

Salt  &  pepper  

noise(0.05)  

Gaussian  noise  (0.01)  

Rotation  (900)  

Poisson  noise  

Contrast  Enhancement  

PSNR    

79.7797   79.3061   73.2712   79.7489   75.2240   54.9120  

SNR    

27.7403   27.5237   23.4097   27.7583   25.8337   11.2002  

Rate    

0.2921   0.2916   0.3345   0.2915   0.3141   0.4422  

RMS    

4.6049   4.7026   6.3073   4.5995   5.7902   15.9240  

Entropy  (Original  image)  

7.5239   7.5239   7.5239   7.5239   7.5239   7.5239  

Entropy  (Watermarked  image)  

7.5239   7.6441   7.8014   7.6302   7.7022   7.9002  

Page 7: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

29

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-1500

-1000

-500

0

500

1000

1500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

                       

(f)  Figure  10:  Noise  effect  a)  Salt  &  pepper.    b)  Gaussian  noise.  c)  Rotation  (900).  d)  Poisson    noise.  e)  Contrast  effect.  f)  cover  image.        

           

 Figure  11:  The  original  audio  signal  

 

                 

 

Figure  12:  The  effect  of  noise  on  audio  file    6    Conclusion  

This  work   proposes   an   innovative   audio  watermarking   scheme   employing   image   as   a  host  medium  and  audio  as  watermark  that  uses  randomness  as  a  metric  for  selecting  the  target  area   in   an   image.   However,   fine   correlation  between   the   original   audio  watermark   and   the  extracted   watermark   using   the   proposed  technique   is   observed   from   their   respective  

RMS  values.  Selecting   the   target  area  based  on  the   randomness   metric   allows   us   in   achieving  better  PSNR.    

The  wavelet  domain  was  chosen  for  data  hiding   due   to   its   low   processing   noise   and  suitability   for   frequency  analysis,  because  of   its  multi  resolutional  properties  that  provide  access  both  to  the  most  significant  parts  and  details  of  signal’s   spectrum   Furthermore,   the  watermarked   image   is   subjected   to   various  noisy   attacks.   Here   a   watermarking   algorithm  based   on   hybrid   technique   which   uses   the  methods   of   (DWT-­‐Radon)   transform   is   a   highly  robust   and   can   resist   many   image   processing  attacks.   The   quality   of   the  watermarked   image  is  good  in  terms  of  perceptibility  and  PSNR  .    

The   proposed   algorithm   is   shown   to   be  robust   to   all   the   attacks   mentioned   earlier  except  for  Contrast  Enhancement  attack  a  good    PSNR  values  can  be  get.  

 7    References  

[1]   Ni.   I.   Yassin1,   N.   M.   Salem2,   and   M.   I.   El  Adawy,   ''Block   Based   Video   Watermarking  Scheme  Using  Wavelet  Transform  and  Principle  Component  Analysis'',  IJCSI  International  Journal  of  Computer   Science   Issues,  Vol.   9,   Issue  1,  No  3,  January.  [2]  A.  Al-­‐Haj,  A.  Mohammad  and  L.  Bata,''  DWT–Based   Audio  Watermarking''.   The   International  Arab  Journal  of   Information  Technology,  Vol.  8,  No.  3,  July  2011  [3]   P.   Vundela   and   V.   Sourirajan,   ''A   Robust  Multiwavelet-­‐Based   Watermarking   Scheme   for  Copyright   Protection   of   Digital   Images   Using  Human  Visual  System''.  [4]   M.   A.   Bhat,   P.   G.   Arfaat,   S.   M.   Hussain,  ''Audio  Watermarking   in   Images   using  Wavelet  Transform'',   IJCST   Vol.   2,   Iss   ue   4,   Oct   .   -­‐   Dec.  2011,  International  Journal  of  Computer  Science  And  Technology.  [5]  C.  S.  Lu,  ''Multimedia  security    steganography  and   digital   watermarking   techniques   for  protection  of   intellectual  property'',  Chun-­‐Shien  Lu     Institute   of   Information   Science   Academia  Sinica,  Taiwan,  ROC,  2005.  [6]   S.   Murty,   P.   R.   Kumar,   ''A   Robust   Digital  Image       Watermarking   Scheme   Using     Hybrid  

Page 8: Audio Watermarking in Image by Using Radon – Wavelet Transforms

JOURNAL OF TELECOMMUNICATIONS, VOLUME 21, ISSUE 1, JULY 2013

30

DWT-­‐DCT-­‐SVD  Technique'',  IJCSNS    International  Journal   of   Computer   Science   and   Network  Security,  VOL.10  No.10,  October  2010.  [7]   S.   N.   Ahmed,   B.   Sridhar,   C.   Arun,   ''Robust  Video  Watermarking  based  on  Discrete  Wavelet  Transform'',   International   Journal   of   Computer  Network   and   Security(IJCNS)   Vol   4.   No   1.   Jan-­‐Mar  2012.    [8]   M.   Steinbuch,   and   V.   D.   Molengraft.,  ''Wavelet  Theory  and  Applications'',    Eindhoven,  June  7,  2005.    [9]   M.   L.   Valarmathi,   and   S.   Radharani,  ''Multiple   Watermarking   Scheme   for   Image  Authentication   and   Copyright   Protection   using  Wavelet   based   Texture   Properties   and   Visual  Cryptography'',   International   Journal   of  Computer   Applications   (0975   –   8887)   Volume  23–  No.3,  June  2011.  [10]   A.   Al-­‐Haj,   A.   Mohammad,   ''Digital   Audio  Watermarking   Based   on   the   Discrete  Wavelets    Transform   and   Singular   Value   Decomposition''  European   Journal   of   Scientific   Research   Vol.39  No.1  (2010),  pp.6-­‐21.  [11]     C.   Hoilund,   ''The   Radon   Transform''  November  12,  2007.  [12]     M.   Miciak,   ''   radon   transformation   and  principal  component  analysis  Method  applied  in  postal   address   recognition   task'',   International  Journal   of   Computer   Science   and   Applications,  Techno-­‐mathematics   Research   Foundation   Vol.  7  No.  3,  pp.  33  -­‐  44.