Top Banner
Atomistická teorie (Dalton, 1803) Zákon stálých poměrů slučovacích: hmotnosti prvků tvořících čistou látku jsou k sobě vždy ve stejném poměru, bez ohledu na to jakým způsobem látka vznikla. Některé prvky spolu vytvářejí více sloučenin (např. C & O: CO a CO 2 ; N & O: N 2 O, NO, NO 2 , atd.). Daltonův zákon předpovídá že poměry hmotností zvoleného prvku v různých těchto látkách jsou vždy malá celá čísla (zákon násobných poměrů slučovacích). Např. baryum a dusík spolu tvoří 3 sloučeniny, ve kterých je poměr hmotnosti barya vztažený vždy na jednotkovou hmotnost dusíku 4.9021, 9.8050 a 14.7060. Ukažte že je splněn zákon o násobných poměrech slučovacích. Daltonovy zákony vedly k teorii o složení hmoty z malých dále nedělitelných částic - atomů. Atomy – základní částice které se nemění při chemických reakcích, slučováním atomů dvou či více prvků vznikají chemické sloučeniny, ve kterých se spojují jen celistvé počty jednotlivých atomů.
22

Atomistická teorie (Dalton, 1803)

Jan 20, 2016

Download

Documents

Atomistická teorie (Dalton, 1803). Zákon stálých poměrů slučovacích : hmotnosti prvků tvořících čistou látku jsou k sobě vždy ve stejném poměru, bez ohledu na to jakým způsobem látka vznikla . - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Atomistická teorie (Dalton, 1803)

Atomistická teorie (Dalton, 1803)

• Zákon stálých poměrů slučovacích: hmotnosti prvků tvořících čistou látku jsou k sobě vždy ve stejném poměru, bez ohledu na to jakým způsobem látka vznikla.

• Některé prvky spolu vytvářejí více sloučenin (např. C & O: CO a CO2; N & O:

N2O, NO, NO2, atd.). Daltonův zákon předpovídá že poměry hmotností

zvoleného prvku v různých těchto látkách jsou vždy malá celá čísla (zákon násobných poměrů slučovacích).

• Např. baryum a dusík spolu tvoří 3 sloučeniny, ve kterých je poměr hmotnosti barya vztažený vždy na jednotkovou hmotnost dusíku 4.9021, 9.8050 a 14.7060. Ukažte že je splněn zákon o násobných poměrech slučovacích.

• Daltonovy zákony vedly k teorii o složení hmoty z malých dále nedělitelných částic - atomů. Atomy – základní částice které se nemění při chemických reakcích, slučováním atomů dvou či více prvků vznikají chemické sloučeniny, ve kterých se spojují jen celistvé počty jednotlivých atomů.

Page 2: Atomistická teorie (Dalton, 1803)

Struktura atomu

Rutherford (1906) – experiment s Au-fólií a částicemi α(He2+) vedl k planetární představě o atomu

Thomson (1897) – v řadě experimentů s katodovými trubicemi dokázal existenci elektronů, atom je „kladně nabitá koule s rozptýlenými elektrony“

atom ~10-10 m = 1 Å jádro ~10-15 m, ρ ~1012 kg/m3

Page 3: Atomistická teorie (Dalton, 1803)

Struktura atomu

Millikan (1909) – experiment s olejovými kapkami k ověření existence elektronů a jejich náboje

Chadwick (1932) - jádro obsahuje kromě protonů ještě elektroneutrální neutrony

Page 4: Atomistická teorie (Dalton, 1803)

Struktura atomu

Atomové (protonové) číslo – Z počet protonů v jádře

U elektroneutrálních atomů rovno počtu elektronů v elektronovém obalu

Neutronové číslo - N počet neutronů v jádře

Nukleonové (hmotnostní) číslo - A = Z + N

Izotopy - atomy se stejným Z, mohou se lišit v N(A)

Nuklid - prvek obsahující pouze atomy s daným Z a N(A)

Page 5: Atomistická teorie (Dalton, 1803)

Struktura atomu

Page 6: Atomistická teorie (Dalton, 1803)

Mol

• Hmotnost jednotlivých atomů je velmi malá, zatímco v laboratoři obvykle pracujeme s množstvím látek v gramech. Proto je výhodné zavést novou jednotku pro množství – 1 mol.

• Mol: počet částic (atomů, molekul, iontů) rovný počtu atomů uhlíku ve 12.00 g C-12; 1 mol = 6.022x1023 částic (Avogadrovo číslo).

• Mol je tedy jistý počet částic.

• 1 mol vody zaujímá objem přibližně 18 ml a je v něm obsaženo 6.022x1023 molekul.

• 1 mol zlata zaujímá objem přibližně 10 ml a je v něm obsaženo 6.022x1023 atomů.

Page 7: Atomistická teorie (Dalton, 1803)

Molární hmotnost

• Molární hmotnosti prvků v tabulkách jsou váženým průměrem molárních

hmotností v přírodě se vyskytujících izotopů:

kde f1 = podíl izotopu 1 a AM1 = molární hmotnost izotopu 1.

• Příklady: Jaká je hmotnost 5.0 molů NaCl

• Kolik molů NaCl je v 15 g této látky

• Kolik molekul je v 3.222 molu NaCl

• Kolik atomů je ve 4.32 g NaCl

• Vypočtěte molární hmotnost bóru jestliže hmotnosti jeho dvou izotopů jsou

10.013 amu a 11.009 amu a jejich podíly 0.1978 a 0.8022.

• S použitím periodické tabulky vypočtěte podíly izotopů 35Cl a 37Cl, jestliže

jejich relativní hmotnosti jsou 34.969 a 36.966.

...332211 AMfAMfAMfAMobs

Page 8: Atomistická teorie (Dalton, 1803)

Empirický vzorec

• Empirický vzorec je nejjednodušší zápis složení látky ve kterém jsou

všechny koeficienty celá čísla. Fe2O3, Fe4O6, Fe6O9, Fe8O12 jsou

všechno možné vzorce oxidu železitého, empirický vzorec je ovšem

pouze Fe2O3.

• Empirické vzorce se často získávají z procentuálního složení (např.

vyjdeme ze 100 g látky, převedeme na počty molů, vydělíme nejmenším

počtem molů a upravíme tak, aby všechny koeficienty byly celá čísla).

• Př.: Zjistěte empirický vzorec látky s následujícím procentuálním

zastoupením jednotlivých prvků:

hmotnostní % O = 34.7%

hmotnostní % C = 52.1%

hmotnostní % H = 13.1%

Page 9: Atomistická teorie (Dalton, 1803)

Spalovací analýza

• Procentuální zastoupení prvků (C, H, N, S) je u organických

látek často zjišťováno spalovací analýzou:

– C se oxiduje na CO2

– H se oxiduje na H2O

– N se oxiduje na NOx a následně redukuje na N2

– S se oxiduje na SO3

• Př.: Spálením 1.621 g neznámého kapalného vzorku s

následným zachycením spalných produktů bylo získáno 3.095

g CO2 a 1.902 g H2O. O jakou látku by se mohlo jednat? Dusík

ani síra nebyly zjištěny.

Page 10: Atomistická teorie (Dalton, 1803)

Molekulární vzorec

• Molekulární vzorec se určí ze změřené molární

hmotnosti. Ta se podělí molární hmotností vypočtenou z

empirického vzorce a tímto podílem se vynásobí počty

všech atomů v empirickém vzorci.

• Př.: Určete molekulární vzorec sloučeniny která má

empirický vzorec NO2 a experimentálně určenou molární

hmotnost 92.00 g/mol.

Page 11: Atomistická teorie (Dalton, 1803)

Chemické reakce

• Při chemických reakcích si atomy vyměňují partnery za vzniku jiných sloučenin. V reakcích tedy vystupují reaktanty (levá strana) a produkty (pravá strana):

– 2H2(g) + O2(g) 2H2O(l)

– 4Fe(s) + 3O2(g) 2Fe2O3(s)

– NaCl(aq) + AgNO3(aq) AgCl(s) + NaNO3(aq)

• Celkový počet atomů jednoho druhu na obou stranách zápisu chemické reakce musí být podle zákona zachování hmoty shodný. Zápis chemické reakce s reaktanty a produkty je tedy nutné následně upravit tak, aby byla splněna bilance – vyčíslit stechiometrické koeficienty:

• Vyčíslete: CH3OH(l) + O2(g) CO2(g) + H2O(l)

P4(s) + N2O(g) P4O6(s) + N2(g)

P2O5(s) + H2O(l) H3PO4(aq)

Page 12: Atomistická teorie (Dalton, 1803)

Co to je chemická reakce

• makroskopické hledisko - děj při němž výchozí látky (reaktanty) zanikají a jiné (reakční produkty) vznikají.

• mikroskopické hledisko - proces reorganizace dosavadního uspořádání vazeb spojený s přestavbou atomové a elektronové konfigurace.

- nemění se celkový počet a druh atomů- všechny změny omezeny na elektronové obaly atomů

Page 13: Atomistická teorie (Dalton, 1803)

Klasifikace chemických reakcí

klasické členění:

– syntéza

– rozklad

– substituce

– podvojná záměna

povaha procesu :

– acidobazické (přenos protonů)

– redoxní (přenos elektronů)

– koordinační (komplexační)

– vylučovací (precipitační)

– tepelný rozklad

kinetické hledisko:

– řád reakce (molekularita)

typ reaktantů, produktů:

– molekulové

– iontové

– radikálové

– krystalizační

fázové hledisko:

– homogenní

– heterogenní

energetické hledisko:

– exotermní

– endotermní

Page 14: Atomistická teorie (Dalton, 1803)

Energetické změny při chemických reakcích

• zánik chemických vazeb nebo vznik nových

• prodlužování nebo zkracování vazeb

• změny vazebných úhlů

• vytváření nových elektronových konfigurací

• změny skupenského stavu

Všechny reakce směřují do energeticky výhodnějšího

stavu, kde je celková energie (součet termické a

netermické energie) minimální.

Page 15: Atomistická teorie (Dalton, 1803)

Stechiometrie

• Relativní množství zreagovaných reaktantů a vzniklých produktů v chemické

reakci je dáno poměrem stechiometrických koeficientů. Např. pro reakci:

• 2Na(s) + Cl2(g) 2NaCl(s)

• 2 moly Na = 1 mol Cl2 = 2 moly NaCl.

• Př.: Vypočtěte kolik molů Cl2 bude reagovat s 4.2 molu Na. Jaké množství

NaCl vznikne?

• Moly Cl2

• Moly NaCl:

• Obecně: pro aA + bB cC

2Cl mol 2.1x

Na mol 22

Cl mol 1Na mol 4.2x

Na mol 22

Cl mol 1

Na mol 4.2x

NaCl mol 4.2xNa mol 2

NaCl mol 2Na mol 4.2xNa mol 2

NaCl mol 2Na mol 4.2

x

acC molA mol

baB molA mol

Page 16: Atomistická teorie (Dalton, 1803)

Stechiometrie - příklady

• Vypočtěte množství Na které bude reagovat s 34.45 g

Cl2 a maximální možný výtěžek NaCl.

• Vypočtěte jaké množství kyslíku se spotřebuje reakcí s

10 g CH3CHO.

• Vypočtěte jaké množství kyslíku se spotřebuje reakcí se

100 g Al na Al2O3.

Page 17: Atomistická teorie (Dalton, 1803)

Reakce v roztocích

• Velká část chemických reakcí probíhá v roztocích.

• Množství reaktantů a produktů je dáno objemem a molární koncentrací v roztoku.

• Výchozí bilance je stejná jako pro jakoukoli jinou reakci:

– aA + bB cC

• V případě roztoků dosadit za látková množství pomocí koncentrace, např. za

počet molů A = CAVA .

• Př. Vypočítejte objem 0.200 M roztoku KI potřebného k reakci s 50.0 ml 0.300 M

roztoku Pb(NO3)2.

• Postup:

• Vyčíslit reakci: Pb(NO3)2 + 2KI PbI2 + 2KNO3.

• Ze stechiometrie:

• Dosadit za látková množství:

• Dopočítat objem roztoku KI

caC molA mol

baB molA mol

12Pb molK mol

12

PbV

PbC

KV

KC

Page 18: Atomistická teorie (Dalton, 1803)

Klíčový (limitující) reaktant

• Klíčový reaktant je ta z reagujících látek, která limituje maximální

možný výtěžek produktu. Tento reaktant bude reakcí zcela

spotřebován jako první. Informace o tom který z reaktantů je

klíčový je nutná pro určení maximálního (teoretického) výtěžku.

• Př.: Určete která z reagujících látek je klíčovým reaktantem, pokud

bude 3.00 molu Al reagovat s 2.15 molu O2 za vzniku Al2O3.

Postup:

– Určit kolik molů Al2O3 může vzniknout z Al

– Určit kolik molů Al2O3 může vzniknout z O2

– Reaktant ze kterého může vzniknou menší množství Al2O3 je klíčový.

• Př.: Vypočítejte teoretický výtěžek při reakci 20 g Al s 25 g O2.

Page 19: Atomistická teorie (Dalton, 1803)

Výtěžek chemické reakce

• Teoretický výtěžek: maximální množství produktu které lze získat z

daného množství reaktantů.

• Skutečný výtěžek: množství produktu které získáme příslušnou reakcí ve

skutečnosti. Nižší než teoretický, protože reakce probíhají pouze do

rovnovážného stavu.

• % výtěžek se spočítá:

• Př.: Jaký je % výtěžek při syntéze kyseliny octové, když reagovalo 15.0 g

metanolu se stechiometrickým množstvím CO za vzniku 19.1 g produktu?

CH3OH(l) + CO(g) CH3COOH(l)

x100%vytezek teoretickyvytezekskutecny =vytezek %

Page 20: Atomistická teorie (Dalton, 1803)

Oxidační číslo

• Oxidační číslo (stav): náboj atomu v látce nebo v

jednoatomovém iontu.

• Jednoduchá pravidla:

– Prvky: 0

– Jednoatomové ionty: náboj iontu

– Kyslík 2, kromě H2O2 a dalších peroxidů

– Vodík: +1, u kovových hydridů je 1.

– Halogeny: 1, kromě případů kdy se váže s

kyslíkem nebo s nižším halogenem

– Alkalické kovy a kovy alkalických zemin mají

náboj +1, resp. +2

– Sloučeniny a ionty: součet nábojů atomů ve

sloučenině je 0, v iontu je součet nábojů roven

celkovému náboji iontu

Ca v CaO +2

Ca2+(aq) +2

Cl(aq) 1

Cr v Cr2O3 +3

Fe v Fe2O3 +3

Cr v K2Cr2O7 +6

Page 21: Atomistická teorie (Dalton, 1803)

Vyčíslování chemických reakcí podle oxidačního čísla

• Určit oxidační číslo každého atomu na straně reaktantů i produktů.

• Určit změnu oxidačního stavu každého atomu.

• Bilancovat prvky které mění oxidační číslo – na obou stranách

musí být stejný náboj.

• Doplnit koeficienty u atomů které nemění oxidační stav.

Př.: Vyčíslete

FeS(s)+CaC2(s) + CaO(s) Fe(s)+ CO(g)+ CaS(s)

Page 22: Atomistická teorie (Dalton, 1803)

Shrnutí

• Mol je jednotka používaná pro experimentálně měřitelná množství látek (1 mol = 6.022x1023 částic).

• Chemické reakce probíhají pouze v definovaných poměrech a jsou reprezentovány vyčísleným zápisem.

• Poměr stechiometrických koeficientů dává informaci o množství zvolené reagující látky pokud známe množství dalších reagujících látek:

aA + bB cC

• Klíčový reaktant určuje maximální množství produktu (teoretický výtěžek reakce).

• Empirický vzorec je nejjednodušší zachycení složení látky.

• Molekulární vzorec je skutečným vyjádřením složení látky.