Top Banner
Atomic Science Introductory Physics/ Environmental Science Canadian Academy Alpha decay image from h3p://en.wikipedia.org/wiki/Alpha_decay
45

Atomic Science

Jan 17, 2015

Download

Education

Stephen Taylor

How do we use the atom to generate electricity?
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Atomic Science

Atomic  Science  Introductory  Physics/  Environmental  Science  

Canadian  Academy  

Alpha  decay  image  from  h3p://en.wikipedia.org/wiki/Alpha_decay

Page 2: Atomic Science

Unit  Ques?ons:  “?”    Enduring  Understandings:    •  Nuclear  energy  can  be  used  to  generate  electricity  

 Areas  of  interac9on:  

 

Human  Ingenuity    The  development  of  electrical  technologies  revolu6onised  culture    

Environments    Can  we  maximise  efficiency  in  order  to  maximise  sustainability?  

Criterion   Assessment  Tasks

C:  Unit  Test

E:  Half-­‐life  inves?ga?on

A  &  B:  One  World  

Atomic  Science

Page 3: Atomic Science

Draw  an  Atom! What  are  the  names,  sizes,  charges  and  posi?ons  of  the  components?  What  is  the  relevance  of  this  to  radioac?vity?  

Page 4: Atomic Science

The  Ob-­‐Scertainer How  can  we  really  know  what  we  cannot  see?    Science  is  a  process  of  observa?ons,  hypotheses  and  tes?ng.    1.  Take  4  or  5  ob-­‐scertainers.  Play  a  bit.  Predict  the  shape  inside.    2.  Test  your  hypothesis  with  careful  movements  and  observa?ons.    3.  Draw  your  ‘final’  structure.  Conclude.    

 4.  Have  an  ob-­‐scertainer  class  conference  and  come  up  consensus  on  

the  best  structure  of  each  of  the  dishes  (there  are  12  in  total).    

Play,  predict,  draw Modify,  conclude

Test

Page 5: Atomic Science

The  Ob-­‐Scertainer

Page 6: Atomic Science

Atomic  Terminology Atom    Nuclide    Nucleus  &  Nucleons    Atomic  Number  (Z)    Mass  Number  (A)    Neutrons  (N)    Isotope    

Define  these  terms  and  then  arrange  them  into  a  mind-­‐map  or  diagram.  

Page 7: Atomic Science

Atomic  Terminology Atom:  ‘un-­‐cu3able’  –  the  smallest  unit  of  an  element    Nuclide:  an  atom  specified  by  an  atomic  and  mass  number    Nucleus  &  Nucleons  –  protons  (+)  and  neutrons  (0)  in  a  nucleus    Atomic  Number  (Z)  –  number  of  protons  in  the  nucleus,  defines  the  element    Mass  Number  (A)  –  number  of  nucleons.  Defines  the  isotope.      Neutrons  (N)  =  mass  number  –  atomic  number    Isotope  =  atoms  of  the  same  element  with  different  mass  numbers.                                        

Define  these  terms  and  then  arrange  them  into  a  mind-­‐map  or  diagram.  

atomZahl

Page 8: Atomic Science

8  Grid  from  Desmos  the  online  graphical  calculator  h3ps://www.abe3ercalculator.com/c

Atomic  Number  (Z)  

Mass  N

umbe

r  (A)  

Protons  vs  Neutrons Work  through  the  periodic  table  and  plot  every  figh  element.    What  trends  and  pa=erns  can  you  iden?fy?    Can  you  suggest  a  reason  for  this?

C Atomic  Number  (Z)

Mass  Number  (A)   12

6

Neutrons  (N)  =  mass  number  –  atomic  number  

Page 9: Atomic Science

Radioac9ve  Stability

Alpha  decay  image  from  h3p://en.wikipedia.org/wiki/Alpha_decay

Think  about  all  those  posi?vely-­‐charged  protons  next  to  each  other.      

What  do  they  want  to  do?              What  happens  if  you  add  more  protons?      

Page 10: Atomic Science

Radioac9ve  Stability

Alpha  decay  image  from  h3p://en.wikipedia.org/wiki/Alpha_decay

Think  about  all  those  posi?vely-­‐charged  protons  next  to  each  other.    What  do  they  want  to  do?  What  happens  if  you  add  more  protons?    This  repulsive  force  is  the  electromagne9c  force.    It  is  not  par?cularly  strong,  but  acts  over  a  large  distance.      So  how  does  the  nucleus  stay  together?      

electromagne?c  force

Page 11: Atomic Science

Radioac9ve  Stability

Alpha  decay  image  from  h3p://en.wikipedia.org/wiki/Alpha_decay

Think  about  all  those  posi?vely-­‐charged  protons  next  to  each  other.    What  do  they  want  to  do?  What  happens  if  you  add  more  protons?    This  repulsive  force  is  the  electromagne9c  force.    It  is  not  par?cularly  strong,  but  acts  over  a  large  distance.      So  how  does  the  nucleus  stay  together?      The  strong  force  acts  between    neutrons  and  protons.    It  s?cks  them  together  (using  gluons  –  yes,  really).    The  strong  force  is  strong,  but  acts  only    over  a  ?ny  distance.  As  the  size  of  the  atom  increases,  more  neutrons  are  required  to    keep  it  stable.      

electromagne?c  force

strong  force

Page 12: Atomic Science

Radioac9ve  Decay

Alpha  decay  image  from  h3p://en.wikipedia.org/wiki/Alpha_decay

When  the  forces  inside  the  nucleus  are  unbalanced,  decay  occurs.    

What  condi?ons  favour  these  different  forms  of  radioac?ve  decay?      

-­‐

β

α

γ

h3p://phet.colorado.edu/en/simula?on/alpha-­‐decay

h3p://phet.colorado.edu/en/simula?on/beta-­‐decay

α

β-­‐

Gamma  decay  (γ)  is  high-­‐frequency  energy  which  accompanies  other  forms  of  decay.    

Page 13: Atomic Science

Radioac9ve  Decay Radioac?ve  decay  is  a  natural,  random  change  in  atomic  nuclei  that  goes  on  all  around  us.  Radioac?ve  materials  are  going  through  radioac?ve  decay.    In  this  group  task,  find  out  about  one  type  of  decay  and  explain  to  others.    

Alpha  decay  symbol:  (      ) Beta-­‐  decay  symbol:  (      ) Gamma  Decay  symbol:  (  γ  )

Nucleus  is  too  large  and  posi?ve.  

Nucleus  has  too  many… Nucleus  has  too  much  energy  ager  α  or  β  decay.  

___________  is  released  from  the  nucleus.

_________  and  _______  are  released  from  the  nucleus.

A  gamma  ray  is  released  from  the  nucleus.  

The  alpha  par?cle  is  a  stable  ___________  nucleus  (__  protons  and  ___  neutrons)

The  beta-­‐par?cle  is  a  fast-­‐moving…

The  gamma  ray  is  a  photon  of  high-­‐frequency  energy.  

Diagram: Diagram:

Penetra?ng  ability: Penetra?ng  ability: Penetra?ng  ability:  Will  pass  through  thin  lead.  

Image  from:  h3p://en.wikipedia.org/wiki/Gamma_decay#Gamma_ray_produc?on

Page 14: Atomic Science

Radia9on

Penetra?on  image  from  h3p://en.wikipedia.org/wiki/Radia?on  

Radioac?ve  decay  emits  radia?on  in  different  forms.    

Radia?on  is  considered  harmful  if  it  is  ionizing.  This  means  it  interacts  with  electrons  in  living  things,  causing  them  to  become  ionised.    This  results  in  free  radical  forma?on,  and  lots  of  damage  to  cells  and  ?ssues.      

When  damage  is  caused  to  DNA,  this  can  lead  to  cancers.      

Although  α    radia?on  is  easily  stopped,  it  may  be  dangerous  if  inhaled  or  ingested.    

par?cles

energy

Page 15: Atomic Science

Decay  Equa9ons α  Decay  (proton:  neutron  ra?o  too  high)  An  α  par?cle  (He)  is  always  lost.  

92235U! 2

4He+ ??X

1940K! 2

4He+ ??X

84209Po! 82

205Pb+ ?? ?

24He

Alpha  decay  image  from  h3p://en.wikipedia.org/wiki/Alpha_decay

Some  gamma  energy  is  released,  but  is  not  a  par6cle  (so  does  figure  in  our  equa6ons)

Mass  number  decreases  by  4.  Atomic  number  decreases  by  2.    

Page 16: Atomic Science

Decay  Equa9ons β-­‐  Decay  (too  many  neutrons)  Neutron  decays  into  proton.    Electron  and  an?neutrino  released.  

β-­‐  Decay  (too  many  neutrons)  A  neutron  decays  into:  •  Proton  (remains  in  nucleus)  •  β-­‐  par?cle  (fast  electron)  •  An?neutrino  

Some  gamma  energy  is  released,  but  is  not  a  par6cle  (so  does  figure  in  our  equa6ons)

Alpha  decay  image  from  h3p://en.wikipedia.org/wiki/Beta_decay

Page 17: Atomic Science

Decay  Equa9ons α  Decay  (proton:  neutron  ra?o  too  high)  An  α  par?cle  (He)  is  always  lost.  

β-­‐  Decay  (too  many  neutrons)  Neutron  decays  into  proton.    Electron  and  an?neutrino  released.  

βplus  Decay  (too  many  protons)  Proton  decays  into  neutron.  Posi?ve  electron  (positron)and  neutrino  released.  

92235U! 2

4He+ 90231Th

1940K! 2

4He+ 1736Cl

84209Po! 82

205Pb+ 24He

Page 18: Atomic Science

Radioac9ve  Decay  of  Uranium  238 It  takes  billions  of  years  and  many  cycles  of  α  decay    and  β-­‐    decay  for  radioac9ve  238U  to  become  stable  206Pb.      Work  through  the  puzzle  on  the  sheet,  prac?cing  the  decay  equa?ons  and  proper  nota?on  of  the  isotopes  as  you  go.                If  you  finish:    Find  out  more  about  ‘half  life’.    What  does  it  mean?    

Page 19: Atomic Science

Decay  Lab Carry  out  this  inves6ga6on  to  learn  more  about  half-­‐lives.    Assessed  for  Criterion  E:  Processing  Data.  

extra    daughters

discard

100  Green  beads   100  White  beads   Radioac?ve  green  beads  decay  into  white  beads.    This  process  is  random.      

Record  the  start  ?me.      

Remove  4  greens  from  the            cup  and  put  in  ‘discard’.  Replace  with  white  4  daughter  beads.    Record  “4”  as  the  number  of  greens  removed.      

Cover,  shake  and  select  4  at  random  again.    Count  and  record  the  greens.  Discard  and  replace.      

Repeat  un?l  20  random  samples  have  been  taken.    Record  the  number  of  greens  each  ?me.      Record  the  finish  ?me.  Total  ?me/20  =  mean  ?me  per  sample.  Record.      Reset  the  simula9on  and  repeat,    this  9me  taking  8  beads  at  random  per  sample.    

1.  random  4  sample

2.  replace

How  could  you  graph  these  data  and  use  them  to  calculate  the  half  

life  of  the  green  beads?

green

white

Page 20: Atomic Science

Decay  Lab Carry  out  this  inves6ga6on  to  learn  more  about  half-­‐lives.    Assessed  for  Criterion  E:  Processing  Data.  

20  cycles  of  random  sampling  –  4  at  a  9me.    Then:  Reset  the  simula9on  and  repeat,    this  9me  taking  8  beads  at  random  per  sample.    

extra    daughters

discard

100  Green  beads   100  White  beads  

1.  random  4  sample

2.  replace

green

white Decreasing

Increasing

Total  6me  for  each  experiment

When  you  have  finished  the  sampling,  save  and  send  to  your  partner.  You’re  on  your  own  now.    Go  to  Tools  –  Protec6on  –Unprotect  Sheet  to  be  

able  to  complete  the  rest  of  the  task.  

Page 21: Atomic Science

Decay  Lab Carry  out  this  inves6ga6on  to  learn  more  about  half-­‐lives.    Assessed  for  Criterion  E:  Processing  Data.  

Plot  best-­‐fit  decay  curves  (no  need  for  the  increases).  Adjust  the  polynomial  order  so  the  curves  are  smooth  and  realis?c.  Remove  the  labels  for  the  curves  which  will  appear  in  this  legend.  

Page 22: Atomic Science

Decay  Lab Carry  out  this  inves6ga6on  to  learn  more  about  half-­‐lives.    Assessed  for  Criterion  E:  Processing  Data.  

Plot  best-­‐fit  decay  curves  (no  need  for  the  increases).  Adjust  the  polynomial  order  so  the  curves  are  smooth  and  realis?c.  Remove  the  labels  for  the  curves  which  will  appear  in  this  legend.  

Calcula9ng  Half  Life  For  each  curve,  find  as  many  ‘half  intervals’  as  possible  (e.g.  100-­‐>50,  80-­‐>40,  60-­‐>30).      Take  a  mean  of  these  half  intervals.  This  is  an  es?mate  of  the  half-­‐life  of  the  isotope.      What  differences  do  you  find  between  the  4-­‐sample  and  the  8-­‐sample?  Which  es?mate  of  half  life  is  more  reliable?  Why?    

Page 23: Atomic Science

Decay  Lab Carry  out  this  inves6ga6on  to  learn  more  about  half-­‐lives.    Assessed  for  Criterion  E:  Processing  Data.  

Plot  best-­‐fit  decay  curves  (no  need  for  the  increases).  Adjust  the  polynomial  order  so  the  curves  are  smooth  and  realis?c.  Remove  the  labels  for  the  curves  which  will  appear  in  this  legend.  

Page 24: Atomic Science

Decay  Lab Carry  out  this  inves6ga6on  to  learn  more  about  half-­‐lives.    Assessed  for  Criterion  E:  Processing  Data.  

In  the  conclusion,  work  through  this  scenario.    Assume  that  in  the  4-­‐sample  test,  1  minute  represents  100  years.    For  the  material  to  be  considered  ‘safe’,  it  needs  to  decay  to  1/16  of  its  original  amount.      Answer  the  following  ques9ons,  with  jus9fica9on.      

•  How  long  do  you  need  to  be  concerned  about  the  material?      •  How  might  you  store  it  safely  for  that  long?  

Page 25: Atomic Science

Half  Life Decay  occurs  at  random  –  we  can’t  predict  when  an  individual  atoms  will  decay.  However,  we  can  predict  the  rate  at  which  large  quan??es  will  decay,  and  this  is  called  half-­‐life.  

Use  this  PhET  Lab  to  find  out  more  about  half  lives  of  13C  and  238U  and  how  they  can  be  used  to  es?mate  the  age  of  geological  materials.  Cool.  

h3p://phet.colorado.edu/en/simula?on/radioac?ve-­‐da?ng-­‐game

“The  radioac6ve  half-­‐life  for  a  given  radioisotope  is  the  6me  for  half  the  radioac6ve  nuclei  in  any  

sample  to  undergo  radioac6ve  decay.”  Hyperphysics  

(h=p://hyperphysics.phy-­‐astr.gsu.edu/hbase/nuclear/halfli.html)

Page 26: Atomic Science

Biological  Effects  of  Radia9on Ionising  radia?on  can  damage  living  ?ssues  by  causing  atoms  to  become  ions,  which  can  in  turn  become  damaging  free-­‐radicals.    

Infographic  from:  h3p://www.theglobeandmail.com/news/world/asia-­‐pacific/how-­‐radia?on-­‐affects-­‐the-­‐body/ar?cle1942117/?from=1942081

Page 27: Atomic Science

Biological  Effects  of  Radia9on

Infographic  from:  h3p://www.theglobeandmail.com/news/world/asia-­‐pacific/how-­‐radia?on-­‐affects-­‐the-­‐body/ar?cle1942117/?from=1942081

Page 28: Atomic Science

Uses  of  Nuclear  Radia9on Find  out  more  about  these  uses  of  radia?on:  

•  What  type  of  radia?on?  •  How  is  it  used?

Radiocarbon  da?ng

Sterilising  food  &  medical  equipment Radioac?ve  tracers  &  diagnosis

Radiotherapy:  cancer  treatment Smoke  detectors

Page 29: Atomic Science

29  

92238U! 2

4He+ 90234Th

90234Th! "1

0e+ 91234Pa +!

Some  Decays.  Which  are  α  and  which  are  β-­‐?

91234Pa! "1

0e+ 92234U +!

92234U! 2

4He+ 90230Th

90230Th! 2

4He+ 88226Ra

88226Ra! 2

4He+ 86222Rn

86222Rn! 2

4He+ 84218Po

84218Po! 2

4He+ 82214Pb

82214Pb! "1

0e+ 83214Bi +!

83214Bi! "1

0e+ 84214Po +!

84214Po! 2

4He+ 82210Pb

82210Pb! "1

0e+ 83210Bi +!

83210Bi! "1

0e+ 84210Po +!

84210Po! 2

4He+ 82206Pb

Page 30: Atomic Science

91234Pa! "1

0e+ 92234U +!

92238U! 2

4He+ 90234Th 82

214Pb! +10e+ 83

214Bi +!

84214Po! 1

1H + 83213Bi

A.   B.  

C.   D.  

88226Ra! 2

4He+ ?? ?

86222Rn87

222Fr

86223Rn80

225U

A.   B.  

C.   D.  

90234Th! "1

0e+ ?? ? +! 86

222Rn87222Fr

91234Pa92

238U

A.   B.  

C.   D.  

Which  is  the  correct  α  decay  equa?on?  Which  is  the  correct  β-­‐  decay  equa?on?

Which  product  is  correct?

Which  product  is  correct?

Page 31: Atomic Science

817O! 2

4He+ ?? ?

917F

613C

A.   B.  

C.   D.  

82210Pb! "1

0e+ ?? ? +! 83

210Bi83211Bi

84214Po80

206Hg

A.   B.  

C.   D.  

713C

918F

?? ?! 2

4He+ 92235U

83210Bi84

220Po

94239Pu80

206Hg

A.   B.  

C.   D.  

Which  product  is  correct?

Which  product  is  correct?

Which  product  is  correct?

Page 32: Atomic Science

614C

612C

A.   B.  

C.   D.  

?? ?! "1

0e+ 56137Ba +! 55

137Cs

83211Bi

A.   B.  

C.   D.  

713C

612C

?? ?! 2

4He+ 93237Np

95236Am84

220Po

91233Pa95

241Am

A.   B.  

C.   D.  

A.   B.  

C.   D.  

83209Bi

84209Bi

83208Bi

58141La

55135Cs 53

131Xe

Check  the  periodic  table.  Which  are  the  most  common  isotopes?

Which  nuclide  is  correct?

Which  nuclide  is  correct?

Page 33: Atomic Science

Where  does  our  energy  come  from?

Page 34: Atomic Science

Where  does  our  energy  come  from?

Images  from:h3p://en.wikipedia.org/wiki/Sun

1.  Core  2.  Radia?ve  zone  3.  Convec?ve  zone  4.  Photosphere  

5.  Chromosphere  6.  Corona  7.  Sunspot  8.  Granules  9.  Prominence  

Nuclear  fusion  reac?ons  occur  in  the  core  of  the  Sun.      How  does  the  Sun’s  energy  give  us  the  energy  we  use  on  Earth?

Page 35: Atomic Science

Nuclear  Fusion is  how  the  Sun  generates  energy!

Images  from:  h3p://en.wikipedia.org/wiki/Nuclear_fusion

Iden?fy  these  nuclei.      What  happens  here?      What  are  the  products?      What  is  this?  

What  nuclear  force  must  be  overcome  in  order  for  fusion  t  occur?      For  us  to  achieve  this  on  Earth  takes  massive  amounts  of  energy  and  resources.  Fusion  is  not  (yet)  a  realis?c  way  of  genera?ng  energy.    

Page 36: Atomic Science

Nuclear  Fusion is  how  the  Sun  generates  energy…  

…  but  we  can’t  reliably  do  it  here  on  Earth.  

Images  from:  h3p://en.wikipedia.org/wiki/Nuclear_fusion

Nuclear  Fission is  what  we  mean  by  atomic  energy.  

Page 37: Atomic Science

Nuclear  Fission is  how  we  generate  ‘atomic  energy’.  

Open  this  PhET  Lab  on  Fission.      Describe  how  a  fission  reac?on  works.    •  What  is  the  role  of  the  neutron?  •  What  happens  to  the  235U  nuclide?  •  How  is  energy  released?

h3p://phet.colorado.edu/en/simula?on/nuclear-­‐fission

Switch  to  the  Chain  Reac9on  Set  it  up  in  a  containment  vessel.    •  What  happens  when  you  add  more  235U?  •  How  does  238U  behave?  •  Which  isotope  would  you  choose  to  sustain  a  

chain  reac?on,  releasing  energy?

Switch  to  the  Nuclear  Reactor  Set  it  up  and  get  it  running!  •  What  is  the  effect  of  removing  the  control  

rods  from  the  reactor?  •  How  could  control  rods  be  used  to  maintain  

safety  and  control  output  of  energy?  •  What  are  they  made  of?

Page 38: Atomic Science

Nuclear  Fission is  how  we  generate  ‘atomic  energy’.  

Annotate  this  diagram  to  describe  what  is  happening  in  a  nuclear  fission  reac?on.      This  fission  equa9on  represents  the  reac?on:          Complete  these  fission  equa?ons:    

92235U + 0

1n ! 301n+ 56

141Ba + 3692Kr

Image  from:  h3p://en.wikipedia.org/wiki/Nuclear_fission

92235U + 0

1n ! 301n+ 37

90Rb + ?? ?

92235U + 0

1n ! 301n+ 55

143Cs + ?? ?

3  neutrons    produced

1  neutron  in  

These  neutrons  can  go  on  to  split  other  235U  nuclides  in  a  chain  reac6on.  

energy

Page 39: Atomic Science

Nuclear  Energy how  do  we  get  electricity  from  this?  

Images  from:  h3p://en.wikipedia.org/wiki/Nuclear_fission      and  h3p://en.wikipedia.org/wiki/Pressurized_water_reactor

It  takes  a  lot  of  binding  energy  to  hold  a  nucleus  together.      When  we  split  the  atom,  we  release  the  daughter  par?cles,  some  neutrons  and  gamma  radia?on.  Gamma  radia?on  is  high-­‐frequency  energy!      This  energy  can  be  used  to  heat  water,  to  drive  a  turbine  and  power  a  generator,  just  like  conven?onal  electrical  genera?on.      It  all  needs  magnets  to  move  in  rela9on  to  coils!    

Control-­‐rods  are  neutron-­‐absorbent  materials  that  can  stop  or  control  the  

rate  of  the  chain  reac?on  and  therefore  control  the  temperature  and  

safety  of  the  reactor.  

Page 40: Atomic Science

Radioac9ve  Waste How  do  we  get  rid  of  it?

3692Kr

Data  from:  h3p://periodictable.com/Isotopes/056.141/index2.p.full.dm.html

56141Ba

?141 ??

92 ???,  18.3  min  

??-­‐,  3.9  h  

??-­‐,  32.5  days    

β-­‐,  1.8s

??,  4.5s

??,  2.7h

??,  3.5h

The  products  of  nuclear  fission  are  radioac?ve  but  will  decay  to  stable  nuclides.      Complete  the  decay  pathways  for  92Kr  and  141Ba.        

?92 ?

?92 ?

?141 ?

?141 ?

Page 41: Atomic Science

Radioac9ve  Waste How  do  we  get  rid  of  it?

3692Kr

Data  from:  h3p://periodictable.com/Isotopes/056.141/index2.p.full.dm.html

56141Ba

57141La37

92Rb

58141Ce

59141 Pr

β-­‐,  18.3  min  

β-­‐,  3.9  h  

β-­‐,  32.5  days     3892Sr

3992Y

4092Zr

β-­‐,  1.8s

β-­‐,  4.5s

β-­‐,  2.7h

β-­‐,  3.5h

The  products  of  nuclear  fission  are  radioac?ve  but  will  decay  to  stable  nuclides.      Because  nuclear  waste  is  radioac?ve,  it  needs  to  be  isolated  un?l  it  has  decayed  to  a  safe  level.  This  could  be  underground  or  in  special  treatment  facili?es.        Nuclear  reprocessing  plants  can  take  the  spent  fuel  rods  and  extract  fissionable  materials,  such  as  plutonium,  from  them.  These  can  be  used  in  other  reactors.        Next  genera?on  nuclear  reactors  will  use  current  nuclear  waste  as  fuel.        

Page 42: Atomic Science

42  

Can  nuclear  fission  power  the  planet?

Page 43: Atomic Science

43  

92235U + 0

1n ! 301n+ 55

143Cs + 3790Rb

92235U + 0

1n ! 301n+ 56

141Ba + 3692Kr

Fission,  Fusion,  α-­‐Decay  or  β–Decay?

12H + 1

3H ! 01n+ 2

4He + energy

92238U! 2

4He+ 90234Th

82214Pb! "1

0e+ 83214Bi +!

1940K! 2

4He+ 1736Cl

83214Bi! "1

0e+ 84214Po +!

1.        2.        3.        4.        5.        6.        7.  

1532P! "1

0e+ 1632S +!

53131I! "1

0e+ 54131Xe +!

Page 44: Atomic Science

What  do  you  think?

Clipart  people  from:  h3p://www.clker.com/search/krug/1

Ideas  based  on    Concept  Cartoons:  

h3p://www.conceptcartoons.com  

Page 45: Atomic Science

For  more  resources.  

This  is  a  Crea6ve  Commons  presenta?on.  It  may  be  linked  and  embedded  but  not  sold  or  re-­‐hosted.      

Please  consider  a  dona6on  to  charity  via  Biology4Good.  Click  here  for  more  informa6on  about  Biology4Good  charity  dona6ons.