Top Banner
Atomic physics in Intense Laser Field M. A. Bouchene Laboratoire « Collisions, Agrégats, Réactivité », Université Paul Sabatier, Toulouse, France
26

Atomic physics in Intense Laser Field

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Atomic physics in Intense Laser Field

Atomic physics in Intense Laser Field

M. A. BoucheneLaboratoire « Collisions, Agrégats, Réactivité »,

Université Paul Sabatier, Toulouse, France

Page 2: Atomic physics in Intense Laser Field

“Popular”

Page 3: Atomic physics in Intense Laser Field
Page 4: Atomic physics in Intense Laser Field

Tradit.NLO

Extr.NLO:Reality

May be

Page 5: Atomic physics in Intense Laser Field

OUTLOOKI- Free electron in an EM field: - Classical treatment

- Relativistic treatment- Quantum treatment

II- Atom is a strong Laser field: - Scenario with I- Experimental results

III- Above Threshold Ionisation

IV- Tunnel ionisation

Page 6: Atomic physics in Intense Laser Field

I-Free electron in an EM field:Classical treatment

Drift motion

Oscillatory motion

magn0

elec

v BF vF qE ( 1); E E cos tF E c

×= = << = ω

E dv

2 2 2d 0

2k 2T

v q EdvF m E mdt 2 4m

π=ω

= → = +ω

PONDEROMOTIVE ENERGYUP

Page 7: Atomic physics in Intense Laser Field

214 2

P m W /cmU (eV) 9.3410 I−

µ= λ

13 2

18 2P 2P

forU

fo1eV I 10 W / cm

100keV I 10 W /r (U 0.2mccm )

=

Force on the electron in a laser spot: PI I(r) F U= → = −∇

2 2x yρ = +

I

I−∇I−∇

The electron is ejected

Page 8: Atomic physics in Intense Laser Field

I-Free electron in an EM field:Relativistic treatment( ) x 0 y 0F q E v B ; E E cos t; B B cos t= + × = ω = ω

E

Bk

electron at rest

e-

2pU /mc 1≤

ω2ω

ωPhoton dragging

Radiation pattern

Newton Relat. (pert reg. )

ω 2ω

Page 9: Atomic physics in Intense Laser Field

General case: analytical solution

Periodic motionHARMONIC DECOMPOSITION

Fundamental oscillation frequency:

Fundamental emission frequency :

P2

e

4Um c

ε = t t;x kx;z kz= ω = =

osc2

20

111 sin

2 2

ω=

εω + + ξ

( )em

21

1 1 cos4

ω=

εω + − θ

0z(0) = −ξ

0 0ξ =

Page 10: Atomic physics in Intense Laser Field

I-Free electron in an EM field:Quantum treatment

Hamiltonian: ( )2

0

P qAH

2AE E c; os ttm

∂= − =

∂= ω

Schrödinger equation: (r, t)i H (r, t)t

∂Ψ= Ψ

∂Analytical solution!

( )d p p 0E U U sin 2 t qkEi k r t i i cos t 12 m

0(r, t) e e e + ω − − ω − ω ωΨ = Ψ

2 2

driftkE2m

=

VOLKOV STATE

- STATIONNARY STATE BUT TIME DEPENDENT ENERGY

Page 11: Atomic physics in Intense Laser Field

VOLKOV STATE( )

d p 0pE U U sin 2 t qkEi k r t i i cos t 12 m

0(r, t) e e e ω − − ω − ω ω

+

Ψ = Ψ

Classical part

mi cos m im

mm

e i J ( )e=∞

α θ θ

=−∞

= α∑d pi k rE U

2t

i t m i t0 n m

n m

dP n P mU EU2

(r, t) e J e i J 2 2 e

−+

ω ω

Ψ =ω ω

Ψ − ∑ ∑

Even harmonics Odd + Even harmonics:Needs dE 0≠

New effects : p dU ,E ≥ ω

Page 12: Atomic physics in Intense Laser Field

( )2k d p

00qEV V sin t

E E 2U si

m

t

;

n= −

= −ω

ω

ω

d pE E U n= + + ω

Page 13: Atomic physics in Intense Laser Field

II- Atom in a strong laser fieldModel: Bound - Unbound transition for a single electron

Fundamental state

continuum

ionE

ionEω<<

Dynamics depends strongly on the laser intensity

12 2 NP ion ionI 10 W / cmU E ; P; I<< ω<< ∝≤

N ω

I

Perturbative multiphoton ionisation :

Page 14: Atomic physics in Intense Laser Field

Above Threshold Ionisation

Scenario with I

P ionU Eω<< ≤

ion PE Uω<< ∼

)P p ioncrit.U U E> ≥ >> ω

VALID IF I < Isat (depletion of the ground state)

Page 15: Atomic physics in Intense Laser Field

Experimental manifestation

Page 16: Atomic physics in Intense Laser Field

Electron spectrum Radiation spectrum

p2U∼

Ee

p10U∼

PLATEAU

ion pE 3.17U+∼

PLATEAU2 ω

ω(2n 1)+ ω

- Quantification: transition into a Volkov state

- Cut-off energy? -Odd harmonics: inversion symmetry

-Cut-off energy?

ATI Tunneling→ Intra at.trans. ATI Tunneling→ +

Page 17: Atomic physics in Intense Laser Field

Above Threshold Ionisation:Important features

Classical explanation.

P2U

0 0E E cos t;v(t ) 0 (electron created at rest)= ω =

2kin P 0 PE 2U cos t : 0 2U= ω →

1- Cut off energy

Drift motion even if v(t0)= 0 (phase shift effect)

Page 18: Atomic physics in Intense Laser Field

2- Peak suppression

( ) Pelec. ion

U if conversion potential kineticE n s E

0 else≥ ↔

= + ω− ≥

PPeak sup ressi(1) long pulse on when U→ ≥ ω

(1)

(2)

(2) Short pulse

13 22 10 /I W cm×

12 22.2 10 /I W cm= ×

12 27.2 10 /I W cm= ×

12 27.2 10 /I W cm= ×

Page 19: Atomic physics in Intense Laser Field

Tunnel Ionisation

Time dependent Barrier

Maximum of Ionisation when

0U(x) V(x) eE sin t x= + ω

t [ ]2π

ω = π

Page 20: Atomic physics in Intense Laser Field

( )( ) ( )3/ 2ion ion

0

2Z m 13/ 2 22E 2E2 3Eion0ion n*l* ion3/ 2

0ion

2 2E3E C f (l,m)E eE2E

− −

− Γ = π

Tunnel Ionisation: Keldysh parameter

time needed t o escapeoptical period

γ = ion

P

E2U

γ =

1 Tunneling1 Multiphoton Ionisation

γ < →γ > →

Ionis. rate in the quasi-static regime (Amnosov, Delone, Krainov formula):

em c 1= = =1/ 2ioninitially electron n*,l,m ;l* n * 1;m Z(2E )= − =

( )( )( )m

2l 1 l mf (l,m)

2 m ! l m !

+ +=

ln*2

n*l*2C

n* (n * l* 1) (m* l*)=

Γ + + Γ −

Page 21: Atomic physics in Intense Laser Field

Tunnel Ionisation: cut-off energies

Three-step model

Re-collision

0E E sin t= ω

0t t= ( )

( )

002

002

eEx sin t sin tm

eE t tm

−= ω − ω

ω

+ ω −ωω

1 0t t (t )=

0t [ ]2π

ω π

Force on e-

Force on e-

Page 22: Atomic physics in Intense Laser Field

TRAJECTORIES

…. : No return

: Return

Several t0

0t [ ]2π≤ ω ≤ π π

00 t [ ]2π

≤ ω ≤ π

t / 2ω − π

Page 23: Atomic physics in Intense Laser Field

Re-collision:

Diffusion ATI Plateau

Recombinaison HHG plateau

( )

1 12 2

20kin 1 02

0 0kin P

max io

0

n

1

P

t t x(t ) 0

e EE cos t cos t2m

maxwhen t E 3.17UN E 3.17U

108 t 342

= =

= ω − ωωω →ω =

→ = +

ω

( )

1 1 12

20drift 1 02

0 00 rift P1 d

t t x(t ) x(t ) (best situation)

eEE 2cos t cos t2m

maxwhen t 105 t 351. 1 U7 E 0

+ += = −

= ω − ωωω →ω → =

PERIOD T/2 2ω

Page 24: Atomic physics in Intense Laser Field

FURTHER DEVELOMENTS

• Attosecond pulse generation (mode locking of HH)

• Coherent sources in the VUV and XUV• Cluster explosion :

neutron sourcesHighly energetic particles

Page 25: Atomic physics in Intense Laser Field

CLUSTER EXPLOSION

Page 26: Atomic physics in Intense Laser Field