Top Banner
LAB 08 Astronomy 105 Laboratory
22

Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Jul 12, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

LAB 08

Astronomy 105 Laboratory

Page 2: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

STELLAR PARALLAX

Lab 08 – Part 1

Page 3: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Heliocentric Parallax300 ly

1 AU Radar1 A.U.

Main-Sequence Fitting30,000 ly

Variable Stars300 Mly

billions of ly WD Supernovae

Cosmic

Distance

Ladder

Page 4: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae
Page 5: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Stellar Parallax

Sky - Angular Measurements

Locate “Star A” above the reference stars and “Star B” below

X

Distant

background

starsX

X X

Angular shifts

Page 6: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Telescope Field of View and Scale

Image of star Field

?

28”

A B

Known separation of stars A & B is 28 arc seconds

What is the angular separation of Stars C & D?

Find a unit conversion ( cm to arc seconds).

Measure the distance between A and B.

28 arc seconds is equivalent to 0.8 cm.

28 arc sec = 0.8 cm

0.8 cm

0.8 cm28 arc sec=

0.8 cm

cm1

arc sec=35

Plate Scale

Angular separation of Stars C & D

2.5 cm X 35 cm

arc sec = 88 arc sec

CD

Page 7: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

MAIN-SEQUENCE FITTING

Lab 08 – Part 2

Page 8: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Open or Galactic Cluster

M13 - Globular Cluster

Distance-23,000 ly Size-150 ly

Finding a Star’s Distance

Stellar Parallax

Main-Sequence Fitting

Page 9: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

1 2 3 4 5 6Brighter Dimmer

Magnitude Scale

Brightest stars in the night sky Faintest stars visible to

naked-eye

Measuring a Star’s Brightness

2.512

Magnitude Difference

Brightness Ratio (Brightness Difference)

1 (2.512)1 2.5 2 (2.512)2 6.3 3 (2.512)3 15.9 4 (2.512)4 40 5 (2.512)5 100 6 (2.512)6 251

Page 10: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Magnitude

Stellar Brightness

Apparent Magnitude (mv) - Brightness from Earth

Absolute Magnitude (Mv) - Brightness from 10 pc

Page 11: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Photometer

(measures

brightness)

10 meters1/4

Apparent Brightness and the Inverse-Square Law of Light

Apparent Brightness 1/d2

If this 100 Watt light bulb were observed to be 100 times fainter compared to the 10 meter distance; how far away is it?

√100 = 10

10 times farther away or 10 x (10 meters) = 100 m

100 W

100 W

100 W

100 W

20 meters

30 meters

40 meters

1/9

1/16

Page 12: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

1370 watts/m2 343 watts/m2 55 watts/m2

Apparent Brightness 1/d2

Apparent Brightness and the Inverse-Square Law of Light

1 AU

= 4____1370

343

4 = 2

2 AU

= 25____1370

55

25 = 5

5 AU

Page 13: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Mv = 5

mv = 10

10 pc

Is the star closer than 10 pc

or farther away than 10 pc?

?

How much farther?

Distance Modulus = m - M

Distance Modulus = 10 – 5

If m-M > 0 then star’s distance > 10 pc.

If m-M = 0 then star’s distance = 10 pc.

If m-M < 0 then star’s distance < 10 pc.

Brightness Difference = 2.5125 = 100

= +5

Inverse-Square Law - Apparent Brightness ~ 1/d2

Star is 10x farther away than 10 pc or 10 X 10 pc = 100 pc

G2 V

√100 = 10

Page 14: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Finding a Star’s Distance

1. Brightness at standard distance (10 pc)

• Absolute magnitude

2. Measure apparent brightness

• Apparent magnitude

3. Use inverse-square law of light to find distance

Page 15: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Hyades Star Cluster

Pleiades Star Cluster

Taurus

Main-Sequence Fitting

Stars in a Cluster•Common Properties

•Distance

•Age

•Different Properties

•Spectral Types (temperature)

•Luminosity Class (size)

Page 16: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Main-Sequence Fitting

Pleiades stars have the same luminosities as the Hyades stars.

The Pleiades is 2.73 times farther away!

√7.5 = 2.73

They are farther away!

How much farther?

Why are the Pleiades stars 7.5 times dimmer?

Page 17: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Interstellar Dust

Reddens Light (stars appear cooler)

Dims Light (stars appear further away)

Page 18: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Ab

so

lute

Ma

gn

itu

de

(M

v)

Color Index(mb-mv)

Standard Main-Sequence

Page 19: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Pleiades Color-Magnitude Diagram

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60

Color Index

(mb-mv)

Ap

pa

ren

t M

ag

nit

ud

e (

mv)

9

1820

31

27

22

Color Index = 0.415

mv = 9.8temperature

Page 20: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

Standard Main-Sequence

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60

Color Index

(mb-mv)

Ab

so

lute

Ma

gn

itu

de

(M

v)

Color Index = 0.415

Mv = 3.6

mv = 9.8

mv – Mv = 9.8 - 3.6 = +6.2

1. Using the average distance modulus

from several stars, calculate the

distance to the Pleiades star cluster.

2. Use the main-sequence fitting

technique to find the distance modulus

and calculate the distance to the

Pleiades again.

Page 21: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Ab

so

lute

Ma

gn

itu

de

(M

v)

Color Index(mb-mv)

Standard Main-Sequence

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Ap

pa

ren

t M

ag

nit

ud

e (

mv)

Color Index(mb-mv)

Pleiades Color-Magnitude DiagramAbsolute

Zero

Magnitude

Page 22: Astronomy 105 Laboratory LAB 08 · 2018-07-02 · 300 ly Heliocentric Parallax 1 A.U. 1 AU Radar Main-Sequence Fitting 30,000 ly 300 Mly Variable Stars billions of ly WD Supernovae

THE END