Top Banner
5

Assign 5 solutions - McMaster Universityms.mcmaster.ca/wolkowic/Courses/M3DC3/Assign_5_solutions1-5.pdf · Assign_5_solutions.jnt Author: hwolkowi Created Date: 4/5/2016 3:23:31 PM

Sep 08, 2018

Download

Documents

Lam Huong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Assign 5 solutions - McMaster Universityms.mcmaster.ca/wolkowic/Courses/M3DC3/Assign_5_solutions1-5.pdf · Assign_5_solutions.jnt Author: hwolkowi Created Date: 4/5/2016 3:23:31 PM
Page 2: Assign 5 solutions - McMaster Universityms.mcmaster.ca/wolkowic/Courses/M3DC3/Assign_5_solutions1-5.pdf · Assign_5_solutions.jnt Author: hwolkowi Created Date: 4/5/2016 3:23:31 PM
Page 3: Assign 5 solutions - McMaster Universityms.mcmaster.ca/wolkowic/Courses/M3DC3/Assign_5_solutions1-5.pdf · Assign_5_solutions.jnt Author: hwolkowi Created Date: 4/5/2016 3:23:31 PM

Mathematics 3DC3

ASSIGNMENT 5 Solutions

3.

#sierpinski.ode

#drawing the Sierpinski triangle

#

par c0=0,c1=2,c2=4

par d0=0,d1=2,d2=0

p=flr(ran(1)*3)

dx/dt=.5*x+.5*shift(c0,p)

dy/dt=.5*y+.5*shift(d0,p)

@ xp=cx,yp=cy

@ maxstor=20000000,total=20000,meth=discrete

@ xlo=0,xhi=4,ylo=0,yhi=2,lt=0

@ xp=x,yp=y

aux pp=p

done

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5

Figure 1: 3. Sierpinsky triangle with vertices (0,0), (2,2), (0,4).

Page 4: Assign 5 solutions - McMaster Universityms.mcmaster.ca/wolkowic/Courses/M3DC3/Assign_5_solutions1-5.pdf · Assign_5_solutions.jnt Author: hwolkowi Created Date: 4/5/2016 3:23:31 PM

4. In both cases the contraction factor is 1

3.

On the left the fixed points are:(0,.5), (0.25,0), (025,1), (0.75), (0.75,1), (1,.5)On the right the fixed points are:(0,.5), (0.3333333,0), (0.3333333,1), (0.666666770), (0.6666667,1), (1,.5)

#hexagon_fractal.ode on left

#

par c0=0.25,c1=.25,c2=.75,c3=.75,c4=0,c5=1

par d0=0,d1=1,d2=0,d3=1,d4=.5,d5=.5,s=6

p=flr(ran(1)*s)

dx/dt=(1/3)*(x-shift(c0,p))+shift(c0,p)

dy/dt=(1/3)*(y-shift(d0,p))+shift(d0,p)

@ xp=cx,yp=cy

@ maxstor=20000000,total=20000,meth=discrete

@ xlo=0,xhi=1,ylo=0,yhi=1,lt=0

@ xp=x,yp=y

aux pp=p

done

#hexagon_fractal.ode on right

#

par c0=0.3333333,c1=.3333333,c2=.6666667,c3=.6666667,c4=0,c5=1

par d0=0,d1=1,d2=0,d3=1,d4=.5,d5=.5,s=6

p=flr(ran(1)*s)

dx/dt=(1/3)*(x-shift(c0,p))+shift(c0,p)

dy/dt=(1/3)*(y-shift(d0,p))+shift(d0,p)

@ xp=cx,yp=cy

@ maxstor=20000000,total=20000,meth=discrete

@ xlo=0,xhi=1,ylo=0,yhi=1,lt=0

@ xp=x,yp=y

aux pp=p

done

-----------------

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

Figure 2:

Page 5: Assign 5 solutions - McMaster Universityms.mcmaster.ca/wolkowic/Courses/M3DC3/Assign_5_solutions1-5.pdf · Assign_5_solutions.jnt Author: hwolkowi Created Date: 4/5/2016 3:23:31 PM

5.

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

cy

-1.8 -1.79 -1.78 -1.77 -1.76 -1.75 -1.74cx

-2

-1.5

-1

-0.5

0

0.5

1

1.5x

-1.8 -1.79 -1.78 -1.77 -1.76 -1.75 -1.74c

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 3: 5. Period 3 window of the Mandelbrot set; the orbit diagram for the quadratic map in the period3 window; Julia set for a point in the period 3 bulb.