Top Banner
Askaryan Radio Array
15

Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Jan 01, 2016

Download

Documents

Brianne Haynes
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Askaryan Radio Array

Page 2: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

2

T. Gaisser 2005

Atmospheric neutrinos:AMANDA, IceCube

Galactic neutrinoflux model: e.g., Ingelman & Thunman

Cosmogenic neutrino flux, e.g. ESS (blue line)

Waxman –Bahcall upper bound

IceCube E^-2 upper limit

T. Gaisser 2005

Page 3: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Neutrinos as messengersStudy of the highest energy processes and particles throughout the universe requires PeV-ZeV neutrino detectors

To “guarantee”EeV neutrino detection, design for the GZK neutrino flux

Existence of extragalactic neutrinos inferred from CR spectrum, up to 1020 eV, and similarly, Galactic up to 1018

eV

Need gigaton (km3) mass (volume) for TeV to PeV detection, and teraton at 1019 eV

Neutrino detection associated with EM sources will ID the UHECR sources

“EM Hidden” sources may exist, visible only in neutrinos.

Neutrino eyes see farther (z>1), and deeper (into compact objects), than gamma-photons, and straighter than UHECRs,with no absorption at (almost) any energy

Page 4: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

L is the length of the bunch

wavelengths shorter than the bunch length suffer from destructive interference

Add coherently!

charge asymmetry in particle shower development results in a 20% excess of electrons over positrons in a particle shower

moves as a compact bunch, a few cm wide and ~1cm thick Moving net charge in a dielectric

electric field strength proportional to the square of the shower energy

Detection mechanism proposed by G. Askaryan (1962): Measure the coherent RF signal generated by neutrino interaction in dielectric media (such as ice)

E > 1017eV

nucleus

Particle cascade

Page 5: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

April 2010

Validation at SLACANITA I beamtest at SLAC (June06): proof of Askaryan effect in ice Coherent (Power ~ E2) Linearly Polarized

“Little Antarctica”

Page 6: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

~15m

~15m

Page 7: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

IceCubeTest Bed

ARA37Rev 2/4/13

2 km

3 1

2

Deployed ARA Station

Planned ARA Station 13/14

Skiway

South Pole Station

5 4

7 (?) 6Deployed Cabling

Planned 13/14 Cabling

WT3

Page 8: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

ARA- Collaboration

• ARA is an international Collaboration– 14 institutions– ~50 authors

.

Page 9: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

DM-Ice

Page 10: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

A World of Dark Matter Searches

Walter C. Pettus 10

Homestake:• LUX

Soudan:• CDMS• CoGeNT

SNOLAB:• DEAP/CLEAN• PICASSO• COUPP

Boulby:• DRIFT

Canfranc:• ANAIS• ArDM• Rosebud

Modane:• EDELWEISS

Gran Sasso:• CRESST• DAMA/LIBRA• DarkSide• XENON

Kamioka:• XMASS

YangYang:• KIMS

Jinping:• Panda-X• CDEX

South Pole:• DM-ICE

ANDES:(planned)

Page 11: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Walter C. Pettus 11

Addressing PotentialInstrumental Effects

DAMA/LIBRA• 250 kg NaI(Tl) crystals• 5x5 array• LNGS, Italy

DM-Ice• 250 kg NaI(Tl) crystals• 7-crystal arrays (x2)• Northern Hemisphere

+ South Pole, Antarctica

UCLA Dark Matter: February 2014

Solution:Replicate experiment with same target material and setup,but different systematics and well-characterized backgrounds.

Page 12: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Walter C. Pettus 12

DM-ICE Phases

UCLA Dark Matter: February 2014

Goal:Unambiguously test DAMA claim• Exclusion within 500 kg*yr

Experimental Phases:DM-ICE17 DM-ICE250 North DM-ICE250 South

Cherwinka et al. Astropart. Phys. 35 (2012)

17 kg NaI(Tl) at 2450 m under South Pole ice

Operating since 2011

2x125 kg NaI(Tl) modules at underground lab

Same detectors deployed at South Pole (as necessary)

Page 13: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Walter C. Pettus 13

DM-ICE17 (Phase I)

(2x) 8.5-kg NaI(Tl) modules

• Installed Dec 2010• Data run from June 2011

Goals:– Demonstrate the feasibility of deploying

NaI(Tl) crystals in the Antarctic Ice for a dark matter detector

– In-situ measurement of the radiopurity of the Antarctic ice / hole ice at 2450 m depth

– Study environmental stability– Study the capability of IceCube to veto

muonsUCLA Dark Matter: February 2014

String #7 String #79

Page 14: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Walter C. Pettus 14

DM-ICE250 (Phase II and III)

Modular detector– 125 kg NaI(Tl)– 7-crystal array• 3:1 aspect ratio

Test crystal work begins next month!

UCLA Dark Matter: February 2014

Page 15: Askaryan Radio Array. 2 T. Gaisser 2005 Atmospheric neutrinos: AMANDA, IceCube Galactic neutrino flux model: e.g., Ingelman & Thunman Cosmogenic neutrino.

Walter C. Pettus 15

DM-Ice Collaboration

UCLA Dark Matter: February 2014

Yale UniversityReina Maruyama, Karsten Heeger, Brooke Russell

University of Wisconsin – MadisonFrancis Halzen, Michael DuVernois, Antonia Hubbard, Albrecht Karle, Matt Kauer, Walter Pettus, Zachary Pierpoint, Bethany Reilly

University of SheffieldNeil Spooner, Vitaly Kudryavtsev, Calum Macdonald, Matt Robinson, Sam Telfer, Lee Thompson, Dan Walker

Boulby Underground Science FacilitySean Paling

FermilabLauren Hsu

University of Illinois at Urbana-ChampaignLiang Yang

University of AlbertaDarren Grant

Pennsylvania State UniversityDoug Cowen, Ken Clark

NIST-GaithersburgPieter Mumm

University of StockholmChad Finley, Per Olof Hulth, Klas Hultqvist, Chistian Walach

DigiPenCharles Duba, Eric Mohrmann

SNOLABBruce Cleveland