Top Banner

of 16

Ashby Method 2.6

Jul 06, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 Ashby Method 2.6

    1/16

    2 - Ashby Method 

    2.6 - Multi-objective optimisation inselection

    Outline

    • Conflicting objectives

    • Multi-objective optimisation

    • Reaching a compromise

    • Value functions and exchange constants

    • Weighed-properties method

    • Case studies

    Resources:

    • M. F. Ashby, “Materials Selection in Mechanical Design” Butterworth Heinemann, 1999

    Chapter 9

    • M. F. Ashby, “Multi-objective optimisation in material design and selection”

    Acta Materialia, vol. 48, pp. 359-369, 2000

    • M. M. Farag, “Quantitative methods of materials selection”

    “Handbook of Materials Selection” (M. Kutz) Wiley & Sons, 2002, chap. 1

  • 8/17/2019 Ashby Method 2.6

    2/16

    Problem of conflicting objectives

    • Real life often requires a compromise betweenconflicting objectives:

    Price versus performance of a bike or car

    • Conflict arises because the choice that optimises onemetric of performance will not in general do the same for

    the others.

    • Best choice is a compromise, optimising none butpushing all as close to optimum as their interdependenceallows.

    Conflicting objectives in design

    • Common design objectives, influencing choice of material, are:

    Minimising mass (sprint bike; satellite components)

    Minimising volume (mobile phone; minidisk player)

    Maximising energy density (flywheels, springs)

    Minimising eco-impact (packaging)

    Minimising cost (everything)

    • Each objective defines a performance metric. Take, as example

    mass, m we wish to minimise bothcost, C (all other constraints being met)

    Solutions that minimise mass seldom minimise cost,

    and vice versa 

    Objectives

  • 8/17/2019 Ashby Method 2.6

    3/16

    Multi-objective optimisation: Terminology

    • Non-dominated solution (B):

    no one other solution is better byboth metrics

    •  Trade-off surface: the surface on which the non-dominated solutions lie(also called the Pareto Front)

    • Three strategies for finding best compromise

    • Solution: a viable choice,meeting constraints, but notnecessarily optimum by either

    criterion.

    • Dominated solution (A): some other solution is better by

    both metrics

    Cheap  Metric 2: cost C Expensive   L   i  g   h   t

       M  e   t  r   i  c   1  :  m  a  s  s  m 

       H  e  a

      v  y

    A Dominated

    solution

    B Non-dominatedsolution

    Trade-off

    surface

    Finding a compromise: Strategy 1

    • Make trade-off plot

    • Sketch trade-off surface

    • Use intuition to select asolution on the trade-off surface

    Mass and cost of bicycles:

    • Well defined trade-off surface

    • “Solutions” on or near the surface offer thebest compromise between mass and cost

    • Choose from among these; the choicedepends on how highly you value a light

    bicycle -- a question of relative values 

  • 8/17/2019 Ashby Method 2.6

    4/16

    Finding a compromise: Strategy 2

    • Make trade-off plot

    • Sketch trade-off surface

    • Reformulate one of the

    objectives as constraint,

    setting an upper limit for it

    Cheap  Metric 2: cost C Expensive   L   i  g   h   t

       M  e   t  r   i  c   1  :  m  a  s  s  m 

       H  e  a  v  y

    Trade-off

    surface

    Upper limit on C

    Optimum solution

    minimising mMass and cost of bicycles:

    • Good if you have budget limit

    • Trade-off surface leads you to

    the best choice within budget

    • But not a true optimisation --cost has been treated as a

    constraint, not an objective.

    Finding a compromise: Strategy 3

    Define locally linear

    Value Function V

    CmV   +α=

    Seek material with smallest V:

    • Evaluate V for eachsolution, and rank

    or

    • Make trade-off plot

    plot on it contours of V

    (lines of constant V have

    slope -1/ α)

    read off solution with lowest V

    Cheap  Metric 2: cost C Expensive

       L   i  g   h   t

       M  e   t  r   i  c   1  :  m  a  s  s  m 

       H  e  a  v  y

    V1

    V2V3

    V4 Contours ofconstant V

    Decreasingvalues of V

    Optimum solution,

    minimising V

    α

    −1

    • Value lines are straight only if the scales are linear

    • For logarithmic scales the value lines are curved

    log (αααα m + C) ≠ log αααα m + log C

  • 8/17/2019 Ashby Method 2.6

    5/16

    Finding a compromise: Strategy 3

    Log scales

    Cheap  cost, c Expensive 

    Decreasing

    values of V

    A linear relation, on log scales,

    plots as a curve  V1/ αC1/ αm

    CmαV

    ⋅+⋅−=

    +=

    Linear scales

       L   i  g   h   t  e  r

      m  a  s  s ,  m

       H  e  a  v   i  e  r

    Decreasing

    values of V

    -1/αααα

    Cheap  cost, c Expensive 

       L   i  g   h   t  e  r

      m  a  s  s ,  m

       H  e  a  v   i  e  r

    Exchange Constant

    The quantity αααα is called an “exchange constant” -- it measures thevalue of performance, here the value of saving 1 kg of mass.

    Transport System: mass saving   αααα (£ per kg)

    Family car (based on fuel saving)

    Truck (based on payload)Civil aircraft (based on payload)

    Military aircraft (performance payload)

    Space vehicle (based on payload)

    0.5 to 1.5

    5 to 20100 to 500

    500 to 2000

    1000 to 9000

    Cm

      

     

    ∂=αCmV   +α=

    Exchange constants for mass saving

  • 8/17/2019 Ashby Method 2.6

    6/16

    Case study: Casing for a minidisk player

    • Electronic equipment -- portablecomputers, players, mobile phones-- all miniaturised; many now lessthan 12 mm overall thick

    • An ABS or Polycarbonate casinghas to be > 1mm thick to be stiff

    enough for protection; casing

    occupies 20% of the volume

    • Find best material for a stiff casing of minimum thickness and weight

    minimise casing thickness

    minimise casing mass

    • The thinnest may not be the lightest … need to explore trade-off

    Objective 1

    Objective 2

    Performance metrics for the casing

    Function Stiff casing

    t

    w

    L

    F

    Metric 1 3 / 1

    3 / 13

    E

    1

    wE4

    LS

    t   ∝

     

     

     

     

    =

    Objective 2 Minimise mass m

    Metric 2(from Part 2.3) 3 / 13 / 1

    2

    3 / 12

    EEL

    C

    wS12m

      ρ∝

     

      

       ρ

     

     

     

     =

    m = massw = widthL = length

    ρ = densityt = thicknessS = required stiffnessI = second moment of areaE = Youngs Modulus

    Objective 1 Minimise thickness t

    3L

    IE48S =

    Constraints

    12

    twI

    3

    =

    • Adequate toughness,

    Klc > 15 MPa.m1/2

    • Stiffness, S

    with

  • 8/17/2019 Ashby Method 2.6

    7/16

    Relative performance metrics

    • We are interested here in substitution. Suppose the casing is

    currently made of a material Mo (ABS).

    • The thickness of a casing made from an alternative material M,

    differs (for the same stiffness) from one made of Mo by the factor

    • The mass differs by the factor

    • Explore the trade-off between and

    3 / 1o

    o E

    E

    t

      

     =

     

     

     

     

    ρ 

      

       ρ=

    o

    3 / 1o

    3 / 1o

    E.

    Em

    m

    ot

    t

    om

    mM0 = ABS:

    • ρ0 = 1,2 Mg/m3

    • E0 = 2,4 GPa

    Trade-off plot

    Thickness relative to ABS

    0.1 1 10

       M  a  s  s  r  e   l  a   t   i  v  e   t  o   A   B   S

    0.1

    1

    10

    PTFE

    PC

    ABS

    PMMA

    PP

    NylonPolyester

     PE

    Ionomer Ni-alloys

    Cu-alloys

    Steels

    Al-alloys

    Al-SiC Composite

    Ti-alloys

    Mg-alloys

    CFRP

    GFRP

    Lead

    Polymer foams.

    ElastomersTrade-off

    surface

    Thickness relative to ABS, t/to

       M  a  s  s  r  e   l  a   t   i  v  e   t  o   A   B   S ,  m   /  m

      o

    Additionalconstraints:

    • K1c > 15MPa.m1/2

    Woodsuppressed

  • 8/17/2019 Ashby Method 2.6

    8/16

    Thickness relative to ABS

    0 .1 1 1 0

       M  a  s  s  r  e   l  a   t   i  v  e   t  o   A   B   S

    0.1

    1

    10

    PTFE

    PC

    ABS

    PMMA

    PP

    NylonPolyester

     PE

    Ionomer Ni-alloys

    Cu-alloys

    Steels

    Al-alloys

    Al-SiC Comp osite

    Ti-alloys

    Mg-alloys

    CFRPGFRP

    Lead

    Polymer foams

    .

    ElastomersTrade-offsurface

    Thickness relative to ABS, t/to

       M  a  s  s  r  e   l  a   t   i  v  e   t  o   A   B   S ,  m   /  m

      o

    • The four sectors of a trade-off plot for substitution

    A. Better by

    both metrics

    C. Lighter

    but thicker

    D. Worse by

    both metrics

    B. Thinner

    but heavier

    Trade-off plot

    • Finding a compromise: CFRP, Al and Mg alloys all offer reduction in mass and thickness

    Trade-off plot

    Thickness relative to ABS

    0.1 1 10

       M  a  s  s  r  e   l  a   t   i  v  e   t  o   A   B   S

    0.1

    1

    10

    PTFE

    PC

    ABS

    PMMA

    PP

    NylonPolyester

     PE

    Ionomer Ni-alloys

    Cu-alloys

    Steels

    Al-alloys

    Al-SiC Composite

    Ti-alloys

    Mg-alloys

    CFRP

    GFRP

    Lead

    Polymer foams

    .

    ElastomersTrade-off

    surface

    Thickness relative to ABS, t/to

       M  a  s  s  r  e   l  a   t   i  v  e   t  o   A   B   S ,  m   /  m

      o

    M = CFRP:

    • ρ= 1,5 Mg/m3

    • E = 220 GPa

    • t/t0 = 0,22

    • m/m0 = 0,28

    M = Al alloys:

    • ρ= 2,6 Mg/m3

    • E = 75 GPa

    • t/t0 = 0,31

    • m/m0 = 0,68

    • Is material cost relevant? Probably not -- the case only weighs

    a few grams. Volume and weight are much more valuable.

  • 8/17/2019 Ashby Method 2.6

    9/16

    Case study: Air cylinders for trucks

    Design goal: lighter, cheap air cylinders for trucks

    Compressed air tank

    Design requirements for the air cylinder

    Pressure vessel

    • Minimise mass

    • Minimise cost

    • Dimensions L, R, pressure p, given• Must not corrode in water or oil

    • Working temperature -50 to +1000C

    • Safety: must not fail by yielding• Adequate toughness: K1c > 15 MPa.m1/2

    • Wall thickness, t;

    • Choice of material 

    Specification

    Function

    Objectives

    Constraints

    Free

    variables

    R = radius

    L = length

    ρ = densityp = pressuret = wall thickness

    L

    2RPressure p

    t

  • 8/17/2019 Ashby Method 2.6

    10/16

    Performance metrics for the air cylinder

    =

    ⋅=

    θσ

      −=+

    −=σ

     

      =⋅

    πσ

    • Thin-walled pressure vessels are treated as membranes. The

    approximation is reasonable when t < b/4 

    • The stresses in the wall do not vary significantly with radial distance, r 

      

       >⇒<  

     

    σσσσr

    σσσσθθθθσσσσz

    Performance metrics for the air cylinder

    Metric 1

    Eliminate t to give:

    L

    2RPressure p

    t

    Constraint

    Objective 2

    ( )

    += yf2

    σ

    ρ

    SpQ1LR2m   π

    mCC m=

    f

    y

    S

    σ

    t

    Rpσ  

  • 8/17/2019 Ashby Method 2.6

    11/16

    Finding a compromise: Value Function

    Define locally linearValue Function V

    CmV   +α=

    Seek material with smallest V:

    • Evaluate V for eachsolution, and rank

    or

    • Make trade-off plot

    plot on it contours of V(lines of constant V haveslope -1/ α)

    read off solution with lowest V

    Cheap  Metric 2: cost C Expensive

       L   i  g   h   t

       M  e   t  r   i  c   1  :  m  a  s  s  m 

       H  e  a

      v  y

    V1

    V2 V3 V4 Contours of

    constant V

    Decreasing

    values of V

    Optimum solution,minimising V

    α−

    1

    Cm

      

     

    ∂=α

    Exchange Constant

    α = £20/kg (trucks)

    Metric 2 ( Cost index)1e-5 1e-4 1e-3 0.01 0.1 1 10

       M  e   t  r   i  c   1   (   M  a  s  s   i  n   d  e  x   )

    1e-6

    1e-5

    1e-4

    1e-3

    0.01

    Decreasingvalues of V

    Finding a compromise: Value Function

    Additionalconstraints:

    K1c >15 MPa.m1/2

    Tmax > 373 K

    Tmin < 223 K

    Water: good +

    Organics: good +

  • 8/17/2019 Ashby Method 2.6

    12/16

    Relative performance metrics

    • This is a problem of substitution. The tank is currently made of a plain

    carbon steel.

    • The mass m and cost C of a tank made from an alternative material M,differs (for the same strength) from one made of Mo by the factors

    For plain carbon steel and

    • Explore the trade-off between and

     

      

     

    ρ

    σ

     

     

     

     

    σ

    ρ=

    o

    o,y

    yo

    .m

    m

     

     

     

     

    ρ

    σ

     

     

     

     

    σ

    ρ=

    oo,m

    o,y

    y

    m

    o C.

    C

    C

    C

    0.03 / σρ oy,o   = 0.02 / σρC oy,oom,   =

    omm

    oCC

    Trade-off plot

    Price * Density / Elastic limit0.1 1 10 100

       D  e  n  s   i   t  y   /   E   l  a  s   t   i  c   l   i  m   i   t

    0.1

    1

    10

    Mild steel

    High-C steel

    Al-alloys

    GFRP CFRP

    Mg-alloys

    Ti-alloys

    Ni-alloys

    Cu-alloys

    Low alloy steel

    Al-SiC Composite

    Lead alloys

    Zn-alloys

    Cost relative to plain carbon steel, C/Co

       M  a  s  s

      r  e   l  a   t   i  v  e   t  o  p   l  a   i  n  c  a  r   b  o  n  s   t  e  e   l ,  m   /  m

      o Trade-offsurface

    Additionalconstraints:

    K1c >15 MPa.m1/2

    Tmax > 373 K

    Tmin < 223 K

    Water: good +

    Organics: good +

  • 8/17/2019 Ashby Method 2.6

    13/16

    Finding a compromise: the value function

    • Aluminium alloy and low alloy steels offer modest reductions inmass at little or no increase in material cost (Region A - Better byboth metrics).

    • The lightest solutions are GFRP, CFRP and Titanium alloys, but ata cost penalty -- is it worth it? Define a relative value function:

    • The relative exchange constant, α*, is related to α by

    • With mo = 10 kg, Co = £50 and α = £20/kg (trucks), α* = 4 .

    (a) evaluate V* numerically and rank candidates, or

    (b) plot onto relative trade-off plot (lines of slope )

    ooo

    *

    C

    C

    m

    m*

    C

    VV   +α==

    α=αo

    o

    C

    m*

    4

    1−

     

        +=⇒+=   αα

    Value function on trade-off plot

    Value contour for α* = 4 (α = £20/kg)

    Price * Density/ Elastic limit0.1 1 10 100

       D  e  n  s   i   t  y   /   E   l  a  s   t   i  c   l   i  m   i   t

    0.1

    1

    10

    Mild steel

    High-C steel

    Al-alloys

    CFRP

    Mg-alloys

    Ti-alloys

    Ni-alloys

    Cu-alloysZn-alloys

    Lead alloys

    Low alloysteel

    Al-SiC CompositeGFRP

    V*

    Price * Density / Elastic limit0.1 1 10 100

       D  e  n  s   i   t  y   /   E   l  a  s   t   i  c   l   i  m   i   t

    0.1

    1

    10

    Mild steel

    High-C steel

    Al-alloys

    GFRP CFRP

    Mg-alloys

    Ti-alloys

    Ni-alloys

    Cu-alloysZn-alloys

    Lead alloys

    Lowalloysteel

    Al-SiC Composite

    V*

    Value contour for α* = 200 (α = £1000/kg)

    oo

    *

    C

    C

    m

    m*V   +α=

    Trade-off

    surfaceTrade-offsurface

    • Value lines are curved because of logarithmic scales.

       M  a  s  s  r  e   l  a   t   i  v  e   t  o  p   l  a   i  n  c  a  r   b  o  n  s   t  e  e   l ,  m   /  m

      o

       M  a  s  s  r  e   l  a

       t   i  v  e   t  o  p   l  a   i  n  c  a  r   b  o  n  s   t  e  e   l ,  m   /  m

      o

    Cost relative to plain carbon steel, C/Co Cost relative to plain carbon steel, C/Co

  • 8/17/2019 Ashby Method 2.6

    14/16

    Multi-objective analysis: Weighted-Properties Method

    • Previous selection problems involved two conflictingobjectives -- often technical performance vs.

    economic performance 

    • Real design problems involve more than twoconflicting objectives

    • Weighted-Properties Method -- Each objective isconsidered as a property to be optimised, and isassigned a certain weight depending on its importance

    to the production and performance of the part in service

    • A weighted-property value is obtained by multiplyingthe numerical value of the property (V) by the weightingfactor (ϕ).

    • The individual weighted-property values correspondingto each material choice are then summed to give acomparative performance index for each solution (γ ).

    • Solutions with the higher performance index (γ ) areconsidered more suitable for the application.

    Weighted-Properties Method: Compare alternative solutions

    ∑=⋅ϕ=

     γ where i is summed over all

    the n relevant properties

  • 8/17/2019 Ashby Method 2.6

    15/16

    • In its simple form, the weighted-properties method hasthe drawback of having to combine unlike units, whichcould yield irrational results.

    • The property with higher numerical value will have

    more influence than is warranted by its weighting factor.

    • This drawback is overcome by introducing scalingfactors. Each property is so scaled that its highestnumerical value does not exceed 100.

    Weighted-Properties Method: Compare alternative solutions

    • For a given property, the scaled value (B) for a

    given candidate solution is equal to:

    • Comparative performance index for each solution:

    Weighted-Properties Method: Compare alternative solutions

    ∑=

    ⋅ϕ=

     γ

    100xcomparedbetosolutionsoflisttheinvalueMaximum

    solutiontheforVpropertyofvalueNumerical B =

    Scaled property

    (property to

    be maximised)

    100xsolutiontheforVpropertyofvalueNumerical

    comparedbetosolutionsoflisttheinvalueMinimum B =

    Scaled property

    (property to

    be minimised)

  • 8/17/2019 Ashby Method 2.6

    16/16

    Weighted-Properties Method: Compare alternative solutions

    46,503,831,36

    21,306,000,82

    v [dm3] w [kg] C [ €]

    BS 350

    F3K20S

    V1 V2 V3

    γ γγ γ  = ϕϕϕϕ1B1 + ϕϕϕϕ2B2 + ϕϕϕϕ3B3

    B1 B2 B3

    100xsolutiontheforVpropertyofvalueNumerical

    comparedbetosolutionsoflisttheinvalueMinimum B =

    Scaled property(property to be minimised)

    (21,30/46,50) x 100(3,83/3,83) x 100(0,82/1,36) x 100

    (21,30/21,30) x 100(3,83/6,00) x 100(0,82/0,82) x 100

    B1 B2 B3

    BS 350

    F3K20S

    γ γγ γ BS 350γ γγ γ F3K20S

    • Performance index for each solution (γ ) can be analyzedvarying the weighting factor (ϕ) corresponding to eachscaled property (B).

    • Digital Logic Method for definition of weighting factors ϕ

    Weighted-Properties Method: Analysis

    ∑=

    ⋅ϕ=

     γ

    (Properties)

    Σ ϕ = 1.0

    ϕ 

    ( 3/10 = 0.3 )