Top Banner
Differentiation Pt. 3: General Differentiation 1. Find 2 2 for y = 4x 3 + e x (2) 2. Find for y = 3 + 3 ln (2) 3. Find any values of x for which = 0 when y = 5ln x โ€“ 8x (2) 4. Find the co-ordinates and the nature of any stationary points on the curve y = 7 + 2x โ€“ 4 lnx (5) 5. Find an equation for the normal to the cube y = 10 + ln x at the x-cordinate 3. (4) 6. Find the differential of 4sin x + 2 cos x (2) 7. Differentiate cot(2x โ€“ 3) (1) 8. Find an equation for the tangent for the curve y = cosec x โ€“ 2sin x at the point x = 6 in the interval 0 โ‰ค x โ‰ค 2 (5) 9. Find the differential of y = sec 5x (1) 10. Differentiate with respect to x, 3 x 11. Differentiate with respect to x, 5 1-x 12. Differentiate with respect to x, 2 3 A-Level Pt. 3: General Differentiation Pt. 4: The Chain Rule Pt. 5: The Product Rule Pt. 6: The Quotient Rule Pt. 7: Parametric Differentiation Pt. 8: Implicit Differentiation Pt. 9: Rates of Change AS Level Pt. 1: First Principles Pt. 2: Differentiation
29

AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mar 31, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Differentiation

Pt. 3: General Differentiation

1. Find ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 for y = 4x3 + ex (2)

2. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ for y =

3

๐‘ฅ+ 3 ln ๐‘ฅ (2)

3. Find any values of x for which ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0 when y = 5ln x โ€“ 8x (2)

4. Find the co-ordinates and the nature of any stationary points on the curve y = 7 + 2x โ€“ 4 lnx (5)

5. Find an equation for the normal to the cube y = 10 + ln x at the x-cordinate 3. (4)

6. Find the differential of 4sin x + 2 cos x (2)

7. Differentiate cot(2x โ€“ 3) (1)

8. Find an equation for the tangent for the curve y = cosec x โ€“ 2sin x at the point x = ๐œ‹

6 in the interval 0 โ‰ค x โ‰ค 2๐œ‹ (5)

9. Find the differential of y = sec 5x (1)

10. Differentiate with respect to x, 3x

11. Differentiate with respect to x, 51-x

12. Differentiate with respect to x, 2๐‘ฅ3

A-Level

Pt. 3: General Differentiation

Pt. 4: The Chain Rule

Pt. 5: The Product Rule

Pt. 6: The Quotient Rule

Pt. 7: Parametric Differentiation

Pt. 8: Implicit Differentiation

Pt. 9: Rates of Change

AS Level

Pt. 1: First Principles

Pt. 2: Differentiation

Pt. 9: Rates of Change

Pt. 1: First Principles

Pt. 2: Differentiation

Page 2: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mark Scheme

1.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 12x2 + ex M1

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = 24x + ex M1

2.

y = 3

๐‘ฅ+ 3 ln ๐‘ฅ = 3x-1 + 3 ln x M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = -3x-2 +

3

๐‘ฅ M1

3.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

5

๐‘ฅ - 8 M1

5

๐‘ฅ โ€“ 8 = 0

5

๐‘ฅ = 8

x = 5

8

M1

3.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 2 -

4

๐‘ฅ M1

Stationary point: 2 - 4

๐‘ฅ = 0

x = 2 M1

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = 4x-2 M1

x = 2, ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = 1

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 > 0, therefore minimum point M1

x = 2, y = 11 โ€“ 4ln 2 M1

Therefore (2, 11 โ€“ 4ln 2) is a minimum point

5.

x = 3, y = 10 + ln 3 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

1

๐‘ฅ M1

When x = 3, ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

1

3

Gradient of normal = -3 M1

Therefore equation of line is:

y โ€“ (10 + ln 3) = -3(x โ€“ 3)

y = 19 + ln 3 โ€“ 3x

M1

Page 3: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

6.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 4cos x โ€“ 2 sin x M1

7.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= -2coscec2(2x โ€“ 3) M1

8.

๐‘Šโ„Ž๐‘’๐‘› ๐‘ฅ =๐œ‹

6, ๐‘ฆ = 1 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = - cosec x cot x โ€“ 2 cos x M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ (

๐œ‹

6) = โˆ’ cosec (

๐œ‹

6) cot (

๐œ‹

6) โ€“ 2 cos (

๐œ‹

6)

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 3โˆš3

M1

y โ€“ 1 = 3โˆš3 (x - ๐œ‹

6) M1

6โˆš3๐‘ฅ + 2y โ€“ 2 - โˆš3๐œ‹ = 0 M1

9.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 5 sec 5x tan 5x M1

10.

๐‘‘

๐‘‘๐‘ฅ(3x) = 3x ln 3 M1

11.

๐‘‘

๐‘‘๐‘ฅ(51 โ€“ x) = 51 โ€“ x ln 5 ร— -1 M1

๐‘‘

๐‘‘๐‘ฅ(51 โ€“ x) = -(51 โ€“ x)ln 5

12.

๐‘‘

๐‘‘๐‘ฅ(2๐‘ฅ3

) = 2๐‘ฅ3ln 2 ร— 3x2 M1

๐‘‘

๐‘‘๐‘ฅ(2๐‘ฅ3

) = 3x2(2๐‘ฅ3) ln 2

Page 4: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x
Page 5: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Differentiation

Pt. 4: Chain Rule

1. Differentiate with respect to x, (x + 3)5 (1)

2. Find ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 when y = 4 ln (1 + 2x) (2)

3. Find the value of fโ€™(x) when f(x) = 4โˆš3๐‘ฅ + 15 (2)

4. Find the coordinates of any stationary points for the curve y = 8x โ€“ e2x (4)

5. Find an equation for the tangent to the curve y = 2 + ln (1 + 4x) given the x-coorinate is 0. (4)

6. Find an equation for the normal to the curve y = 1

2โˆ’ln ๐‘ฅ when x = 1. (5)

7. Find the coordinates of any stationary points on the curve y = 2 ln(x โ€“ x2). (5)

8. A curve has the equation y = โˆš8 โˆ’ ๐‘’2๐‘ฅ

The point P on the curve has y-coordinate 2.

a. Find the x-coordinate of P. (2)

b. Show that the tangent to the curve at P has equation 2x + y = 2 + ln 4. (2)

9. A quantity N is increasing such that at time t seconds, N = aekt.

Given that at time t = 0, N = 20 and that at time t = 8, N = 60, find

a. The values of the constants a and k (3)

b. The value of N when t = 12 (2)

c. The rate at which N is increasing when t = 12. (3)

10. f(x) = (5 โ€“ 2x2)3

a. Find fโ€™(x) (2)

b. Find the coordinates of the stationary points of the curve y = f(x). (4)

c. Find the equation for the tangent to the curve y = f(x) at the point with x-coordinate 3

2 giving your answer in the

form ax + by + c = 0, where a, b and c are integers. (3)

11. The diagram shows the curve y = f(x) where f(x) = 3 ln 5x โˆ’ 2x, x > 0.

a. Find f โ€ฒ(x). (1)

b. Find the x-coordinate of the point on the curve at which the gradient of the normal to the curve is -1

4 . (2)

c. Find the coordinates of the maximum turning point of the curve. (3)

d. Write down the set of values of x for which f(x) is a decreasing function. (1)

12. f(x) โ‰ก x2 โˆ’ 7x + 4 ln (๐‘ฅ

2), x > 0.

a. Solve the equation f โ€ฒ(x) = 0, giving your answers correct to 2 decimal places. (3)

b. Find an equation for the tangent to the curve y = f(x) at the point on the curve where x = 2. (2)

A-Level

Pt. 3: General Differentiation

Pt. 4: The Chain Rule

Pt. 5: The Product Rule

Pt. 6: The Quotient Rule

Pt. 7: Parametric Differentiation

Pt. 8: Implicit Differentiation

Pt. 9: Rates of Change

AS Level

Pt. 1: First Principles

Pt. 2: Differentiation

Pt. 9: Rates of Change

Pt. 1: First Principles

Pt. 2: Differentiation

Page 6: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mark Scheme

1.

5(x + 3)4 M1

2. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

4

1+2๐‘ฅ ร— 2 =

8

1+2๐‘ฅ = 8(1 + 2x)-1 M1

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = -8(1 + 2x)-2 x 2

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = โˆ’16

(1+2๐‘ฅ)2 M1

3.

f(x) = 4(3x + 15)0.5 M1

fโ€™(x) = 2(3x + 15)-0.5 x 3

fโ€™(x) = 6(3x + 15)-0.5 M1

4. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 8 โ€“ 2e2x M1

8 โ€“ 2e2x = 0

2e2x = 8

e2x = 4

M1

2x = ln 4

x = 1

2ln 4 = ln 2

M1

When x = ln 2

y = 8ln 2 โ€“ 4 M1

5.

When x = 0

y = 2 + ln (1 + 0) = 2 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

1

1+4๐‘ฅ ร— 4 =

4

1+4๐‘ฅ M1

When x = 0, ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 4 M1

y = 4x + 2 M1

6.

When x = 1,

y = 1

2โˆ’ln 1 =

1

2

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = -(2 โ€“ ln x)-2 ร— -(

1

๐‘ฅ) =

1

๐‘ฅ(2โˆ’๐‘™๐‘›๐‘ฅ)2 M1

When x = 1, ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

1

1(2โˆ’ln 1)2 = -4 M1

y โ€“ 1

2= โˆ’4(๐‘ฅ โˆ’ 1) M1

y = 9

2โˆ’ 4๐‘ฅ M1

7. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

2

๐‘ฅโˆ’ ๐‘ฅ2 ร— (1 โˆ’ 2๐‘ฅ) = 2(1โˆ’2๐‘ฅ)

๐‘ฅโˆ’ ๐‘ฅ2 M1

At stationary point ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0

2(1โˆ’2๐‘ฅ)

๐‘ฅโˆ’ ๐‘ฅ2 = 0

2(1 โ€“ 2x) = 0

M1

x = 1

2 M1

Page 7: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

When x = 1

2

y = 2 ln(1

2 โ€“

1

22).

y = -4 ln 2

M1

Stationary point: (1

2, -4 ln 2) M1

8a.

โˆš8 โˆ’ ๐‘’2๐‘ฅ = 2

8 โ€“ e2x = 4 M1

x = 1

2ln 4 = ln 2 M1

8b. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

1

2(8 โˆ’ e2x)-0.5 x (-2e2x) M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

โˆ’๐‘’2๐‘ฅ

โˆš8โˆ’ ๐‘’2๐‘ฅ M1

When x = ln 2 ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

โˆ’๐‘’2ln 2

โˆš8โˆ’ ๐‘’2ln 2 = -2

M1

y โ€“ 2 = -2(x โ€“ ln 2)

2x + y = 2 + 2 ln 2 M1

2x + y = 2 + ln 22

2x + y = 2 + ln 4 M1

9a.

t = 0, N = 20

Therefore a = 20 M1

t = 8, N = 60

60 = 20e8k M1

k = 1

8ln 3 = 0.137 M1

9b.

N = 20e0.1373t M1

t = 12, N = 104 M1

9c. ๐‘‘๐‘

๐‘‘๐‘ก= 20 ร— 0.1373e0.1373t = 2.747e0.1373t M1

t = 12, ๐‘‘๐‘

๐‘‘๐‘ก = 14.3 M1

N is increasing at 14.3 per second (3 s.f) M1

10a. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 3(5 โ€“ 2x2)2 ร— (โˆ’4๐‘ฅ) M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = -12x(5 โ€“ 2x2)2 M1

10b.

At stationary point ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0

-12x(5 โ€“ 2x2)2 = 0 M1

x = 0

f(0) = (5 โ€“ 2(0)2)3 = (125) M1

x = ยฑ1

2โˆš10

f(+1

2โˆš10) = 0

M1

Page 8: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

f(-1

2โˆš10) = 0 M1

(-1

2โˆš10, 0)

(0, 125)

(1

2โˆš10, 0)

10c.

x = 3

2

f(3

2) = (5 โ€“ 2(

3

2)2)3 =

1

8

M1

Gradient = -18 x 1

4 = -

9

2 M1

8y โ€“ 1 = -36x + 54

36x + 8y โ€“ 55 = 0 M1

11a.

fโ€™(x) = 3

๐‘ฅ - 2 M1

11b.

Gradient of curve = 4 M1 3

๐‘ฅ โ€“ 2 = 4

3

๐‘ฅ = 6

x = 1

2

M1

11c.

Stationary point, fโ€™(x) = 0 M1 3

๐‘ฅ โ€“ 2 = 0

x = 3

2

M1

f(3

2) = 3 ln 5(

3

2) โ€“ 2(

3

2)

f(3

2) = 3 ln

15

2โˆ’ 3

M1

(3

2, 3 ln

15

2โˆ’ 3)

11d.

x โ‰ฅ 3

2 M1

12a.

fโ€™(x) = 2x โ€“ 7 + 4

๐‘ฅ = 0 M1

2x2 โ€“ 7x + 4 = 0

x = 7ยฑ โˆš17

4

M1

x = 0.72

x = 2.78 M1

12b.

x = 2

Therefore, y = -10

gradient = -1

M1

y + 10 = -(x-2)

y = -x - 8 M1

Page 9: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Differentiation

Pt. 5: Product Rule

1. Differentiate xex with respect to x. (3)

2. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ when y = x2 ln (x + 6) (3)

3. Find the coordinates of any stationary points of the curve y = xโˆš๐‘ฅ + 12 (4)

4. Find an equation for the tangent to the curve y = (4x โ€“ 1)ln2x (5)

5. Find an equation for the normal to the curve y = (x2 โ€“ 1)e3x (5)

6. The diagrams shows part of the curve with equation y = x๐‘’๐‘ฅ2 and the tangent to the curve at the point P with x-

coordinate 1.

a. Find an equation for the tangent to the curve at P. (5)

b. Show that the area of the triangle bounded by this tangent and the coordinate axes is 2

3๐‘’. (3)

7. A curve has the equation y = eโˆ’x sin x.

a. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ and

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 (4)

b. Find the exact coordinates of the stationary points of the curve in the interval -๐œ‹ โ‰ค ๐‘ฅ โ‰ค ๐œ‹ and determine their

nature. (8)

8. The diagram shows the curve y = f(x) in the interval 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹, where f(x) = cos x sin 2x

a. Show that fโ€™(x) = 2 cos x(1 โ€“ 3sin2x) (2)

b. Find the x-coordinates of the stationary points of the curve in the interval 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹ (4)

c. Show that the maximum value of f(x) in the interval 0 โ‰ค ๐‘ฅ โ‰ค 2๐œ‹ is 4

9โˆš3 (4)

d. Explain why this is the maximum value of f(x) for all real values of x. (2)

A-Level

Pt. 3: General Differentiation

Pt. 4: The Chain Rule

Pt. 5: The Product Rule

Pt. 6: The Quotient Rule

Pt. 7: Parametric Differentiation

Pt. 8: Implicit Differentiation

Pt. 9: Rates of Change

AS Level

Pt. 1: First Principles

Pt. 2: Differentiation

Pt. 9: Rates of Change

Pt. 1: First Principles

Pt. 2: Differentiation

Page 10: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mark Scheme

1.

u = x ๐‘‘๐‘ข

๐‘‘๐‘ฅ = 1

v = ex ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = ex

M1

๐‘‘

๐‘‘๐‘ฅ(๐‘ฅ๐‘’x) = 1 ร— ex + x ร— ex M1

๐‘‘

๐‘‘๐‘ฅ(๐‘ฅ๐‘’x) = ex(1 + x) M1

2.

u = x2 ๐‘‘๐‘ข

๐‘‘๐‘ฅ = 2x

v = ln (x + 6) ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ =

1

๐‘ฅ+6

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 2x x ln(x + 6) + x2 x

1

๐‘ฅ+6 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 2x ln (x + 6) +

๐‘ฅ2

๐‘ฅ+6 M1

3.

u = x ๐‘‘๐‘ข

๐‘‘๐‘ฅ = 1

v = โˆš๐‘ฅ + 12 = (x + 12)0.5 ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = 0.5(x + 12)-0.5

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 1 ร— โˆš๐‘ฅ + 12 + x ร— 0.5(x + 12)-0.5

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0.5(x + 12)-0.5 [2(x + 12) + x]

M1

At stationary point ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0,

3(๐‘ฅ + 8)

2โˆš๐‘ฅ + 12= 0

x = -8

M1

When x = -8,

y(-8) = (-8)โˆš(โˆ’8) + 12 = 16 M1

(-8, -16)

4.

x = 1

2

y(1

2) = 0

M1

u = 4x - 1 ๐‘‘๐‘ข

๐‘‘๐‘ฅ = 4

v = ln 2๐‘ฅ ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ =

1

๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 4 ร— ๐‘™๐‘›2๐‘ฅ + (4๐‘ฅ โˆ’ 1) ร—

1

๐‘ฅ

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 4 ln 2x + 4 -

1

๐‘ฅ M1

Page 11: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ (

1

2) = 4 ln 2(

1

2) + 4 -

11

2

= 2 M1

y โ€“ 0 = 2(x - 1

2)

y = 2x - 1 M1

5.

When x = 0, y = -1 M1

u = (x2 โ€“ 1) ๐‘‘๐‘ข

๐‘‘๐‘ฅ = 2x

v = e3x ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = 3e3x

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 2๐‘ฅ ร— ๐‘’3๐‘ฅ + (๐‘ฅ2 โˆ’ 1) ร— 3๐‘’3๐‘ฅ

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = ๐‘’3๐‘ฅ[2x + 3(๐‘ฅ2 โˆ’ 1)]

= ๐‘’3๐‘ฅ(3x2 + 2x โ€“ 3) M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ (0) = -3

Therefore gradient of normal = 1

3

M1

y + 1 = 1

3 (x โ€“ 0)

x โ€“ 3y โ€“ 3 = 0 M1

6a.

When x = 1

y (1) = x๐‘’๐‘ฅ2= (1)๐‘’(1)2

= e M1

u = x ๐‘‘๐‘ข

๐‘‘๐‘ฅ = 1

v = ๐‘’๐‘ฅ2

๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = 2x๐‘’๐‘ฅ2

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 1 ร— ๐‘’๐‘ฅ2

+ ๐‘ฅ ร— ๐‘’๐‘ฅ2 ร— 2๐‘ฅ

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = ๐‘’๐‘ฅ2

(1 + 2๐‘ฅ2) M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ (1) = ๐‘’(1)2

(1 + 2(1)2) = 3e M1

y โ€“ e = 3e(x โ€“ 1)

y = e(3x โ€“ 2) M1

6b.

When x = 0

y = -2e M1

When y = 0,

x = 2

3 M1

Therefore area = 1

2 ร— 2๐‘’ ร—

2

3=

2

3๐‘’ M1

7a.

Page 12: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

u = e-x

๐‘‘๐‘ข

๐‘‘๐‘ฅ = -e-x

v = sin x ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = cos x

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= -e-x ร— sin ๐‘ฅ + ๐‘’-x ร— cos x

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = e-x(cos x โ€“ sin x) M1

๐‘‘

๐‘‘๐‘ฅ e-x(cos x โ€“ sin x)

u = e-x

๐‘‘๐‘ข

๐‘‘๐‘ฅ = -e-x

v = cos x โ€“ sin x ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = - sin x โ€“ cos x

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = -e-x ร— (cos x โ€“ sin x) + e-x ร— (- sin x โ€“ cos x)

M1

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = โˆ’2e-x cos x M1

7b.

At stationary point, ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0

e-x(cos x โ€“ sin x) = 0 M1

cos x โ€“ sin x = 0

tan x = 1 M1

x = ๐œ‹

4

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = โˆ’โˆš2 ๐‘’โˆ’๐œ‹

4

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 < 0 , therefore maximum point

M1

M1

x = โˆ’3๐œ‹

4

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = โˆš2 ๐‘’3๐œ‹

4

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 > 0 , therefore minimum point

M1

M1

When x = ๐œ‹

4, y =

1

โˆš2๐‘’โˆ’

๐œ‹

4 , maximum point M1

When x = โˆ’3๐œ‹

4, y = โˆ’

1

โˆš2๐‘’

3๐œ‹

4 , minimum point M1

8a.

fโ€™(x) = - sin x ร— sin 2x + cos x ร— 2cos 2x M1

fโ€™(x) = 2cos x(1 โ€“ 2sin2x) โ€“ 2sin2x cos x

= 2 cos x(1 โ€“ 3 sin2x) M1

8b.

At stationary point fโ€™(x) = 0

2 cos x(1 โ€“ 3 sin2x) = 0 M1

Cos x = 0

sin x = = ยฑ1

โˆš3

M1

Page 13: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

x = 0.615, ๐œ‹

2, 2.53, 3.76,

3๐œ‹

2, 5.76 M1 M1

8c.

f(x) at max when sin x = 1

โˆš3 M1

cos2x = 1 โ€“ sin2x = 1 โ€“ 1

3 =

2

3 M1

f(x) = cos x ร— 2 sin ๐‘ฅ cos ๐‘ฅ = 2 sin x cos2x

M1

Therefore maximum = 2 ร—1

โˆš3 ร—

2

3 =

4

9โˆš3 M1

8d.

Period of cos x = 2๐œ‹

Period of sin x = ๐œ‹ M1

Therefore period of f(x) = 2๐œ‹

Values of f(x) in this interval are repeated. M1

Page 14: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Differentiation

Pt. 6: Quotient Rule

1. Differentiate ๐‘’๐‘ฅ

๐‘ฅโˆ’4 with respect to xand simplify your answer (2)

2. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ of y =

ln(3๐‘ฅโˆ’1)

๐‘ฅ+2 (2)

3. Find the co-ordinates of any stationary point on the curve y = ๐‘ฅ+5

โˆš2๐‘ฅ +1 (4)

4. Find the equation of the tangent to the curve y = 3๐‘ฅ+4

๐‘ฅ2+1 at the point when x = -1 (5)

5. The curve C has the equation y = 3+sin 2๐‘ฅ

2+cos 2๐‘ฅ

a. Show that ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

6 sin 2๐‘ฅ+4 cos 2๐‘ฅ+2

(2+cos 2๐‘ฅ)2 (4)

b. Find an equaton of the tangent to C at the point where x = ๐œ‹

2. Write your answer in the form y = ax+ b, where a

and b are exact constants. (4)

6. f(x) = ๐‘ฅโˆ’5

2๐‘ฅ+3+

2๐‘ฅ+4

2๐‘ฅ2+7๐‘ฅ+6

a. Express f(x) as a fraction in its simplest form (2)

b. Hence find fโ€™(x) in its simplest form (3)

7. Differentiate cos 2๐‘ฅ

โˆš๐‘ฅ with respect to x (3)

8. Given that y = 3 sin ๐‘ฅ

2 sin ๐‘ฅ+2 cos ๐‘ฅ, show that

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐ด

1+sin 2๐‘ฅ where A is a rational constant to be found. The value of xlies

in the domain โˆ’๐œ‹

4 < ๐‘ฅ <

3๐œ‹

4 (5)

9. Find equation of the normal to the curve y = โˆ’โˆš๐‘ฅ

5 cos 5๐‘ฅ at the x-cordiante 16. (7)

A-Level

Pt. 3: General Differentiation

Pt. 4: The Chain Rule

Pt. 5: The Product Rule

Pt. 6: The Quotient Rule

Pt. 7: Parametric Differentiation

Pt. 8: Implicit Differentiation

Pt. 9: Rates of Change

AS Level

Pt. 1: First Principles

Pt. 2: Differentiation

Pt. 9: Rates of Change

Pt. 1: First Principles

Pt. 2: Differentiation

Page 15: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mark Scheme

1. ๐‘‘

๐‘‘๐‘ฅ(

๐‘’๐‘ฅ

๐‘ฅโˆ’4 )

= ๐‘’๐‘ฅ ร—(๐‘ฅโˆ’4)โˆ’ ๐‘’๐‘ฅ ร—1

(๐‘ฅโˆ’4)2 M1

= ๐‘’๐‘ฅ (๐‘ฅโˆ’5)

(๐‘ฅโˆ’4)2 M1

2. ๐‘‘

๐‘‘๐‘ฅ(

ln(3๐‘ฅโˆ’1)

๐‘ฅ+2) )

=

3

3๐‘ฅโˆ’1ร—(๐‘ฅ+2)โˆ’ln (3๐‘ฅโˆ’1)ร—1

(๐‘ฅ+2)2 M1

= 3

(3๐‘ฅโˆ’1)(๐‘ฅ+2)โˆ’

ln (3๐‘ฅโˆ’1)

(๐‘ฅ+2)2 M1

3.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

1ร—โˆš2๐‘ฅ+1โˆ’(๐‘ฅ+5)ร—1

2(2๐‘ฅ+1)

12ร—2

2๐‘ฅ+1 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

(2๐‘ฅ+1)โˆ’(๐‘ฅ+5)

(2๐‘ฅ+1)32

=๐‘ฅโˆ’4

(2๐‘ฅ+1)32

M1

At stationary points, ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0

๐‘ฅโˆ’4

(2๐‘ฅ+1)32

= 0

xโ€“ 4 = 0

x= 4

M1

When x= 4

y(4) = 4+5

โˆš2(4) +1 = 3 M1

Stationary point = (4, 3)

4. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

3 ร—(๐‘ฅ2+1)โˆ’(3๐‘ฅ+4)ร—2๐‘ฅ

(๐‘ฅ2+1)2 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

3โˆ’8๐‘ฅโˆ’3๐‘ฅ2

(๐‘ฅ2+1)2 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ(โˆ’1) = 2 M1

When x= -1

y(-1) = 1

2

M1

y โ€“ 1

2= 2(๐‘ฅ + 1) =

y = 2x+ 5

2

M1

5a. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

(2+cos 2๐‘ฅ)(2 cos 2๐‘ฅ)โˆ’(3+sin 2๐‘ฅ)(โˆ’2๐‘ ๐‘–๐‘›2๐‘ฅ)

(2+๐‘๐‘œ๐‘ 2๐‘ฅ)2 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

4 cos 2๐‘ฅ + 2๐‘๐‘œ๐‘ 22๐‘ฅ + 6๐‘ ๐‘–๐‘›2๐‘ฅ + 2๐‘ ๐‘–๐‘›22๐‘ฅ

(2+๐‘๐‘œ๐‘ 2๐‘ฅ)2 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

6 sin 2๐‘ฅ + 4 cos 2๐‘ฅ + 2(๐‘๐‘œ๐‘ 22๐‘ฅ + ๐‘ ๐‘–๐‘›22๐‘ฅ)

(2+๐‘๐‘œ๐‘ 2๐‘ฅ)2 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

6 sin 2๐‘ฅ + 4 cos 2๐‘ฅ + 2

(2+๐‘๐‘œ๐‘ 2๐‘ฅ)2 M1

Page 16: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

5b.

When x= ๐œ‹

2

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

6 sin 2(๐œ‹

2) + 4 cos 2(

๐œ‹

2) + 2

(2+๐‘๐‘œ๐‘ 2(๐œ‹

2))2

= -2 M1

When x= ๐œ‹

2

y(๐œ‹

2) =

3+sin 2(๐œ‹

2)

2+cos 2(๐œ‹

2) = 3

M1

y โ€“ 3 = -2(x- ๐œ‹

2) M1

y = -2x+ ๐œ‹ + 3 M1

6a.

f(x) = ๐‘ฅโˆ’5

2๐‘ฅ+3+

2(๐‘ฅ+2)

(2๐‘ฅ+3)(๐‘ฅ+2) M1

= ๐‘ฅโˆ’5

2๐‘ฅ+3+

2

2๐‘ฅ+3

= ๐‘ฅโˆ’3

2๐‘ฅ+3

M1

6b.

fโ€™(x) = 2๐‘ฅ+3โˆ’2(๐‘ฅโˆ’3)

(2๐‘ฅ+3)2 M1

M1

fโ€™(x) = 2๐‘ฅ+3โˆ’2๐‘ฅ+6

(2๐‘ฅ+3)2

fโ€™(x) = 9

(2๐‘ฅ+3)2 M1

7.

u = cos 2x ๐‘‘๐‘ข

๐‘‘๐‘ฅ= โˆ’2 sin 2๐‘ฅ

v = ๐‘ฅ1

2 ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ =

1

2๐‘ฅโˆ’

1

2

M1

๐‘‘

๐‘‘๐‘ฅ(

๐‘ข

๐‘ฃ) =

๐‘ฅ12(โˆ’2 sin 2๐‘ฅ)โˆ’๐‘๐‘œ๐‘ 2๐‘ฅ(

1

2๐‘ฅ

โˆ’12)

(๐‘ฅ12)2

M1

๐‘‘

๐‘‘๐‘ฅ(

๐‘ข

๐‘ฃ) =

โˆ’2๐‘ฅ12 sin 2๐‘ฅ โˆ’

1

2๐‘ฅ

โˆ’12 cos 2๐‘ฅ

๐‘ฅ M1

8.

u = 3 sin x ๐‘‘๐‘ข

๐‘‘๐‘ฅ= 3 cos ๐‘ฅ

v = 2 sin x+ 2 cos x ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = 2 cos xโ€“ 2 sin x

M1

๐‘‘

๐‘‘๐‘ฅ(

๐‘ข

๐‘ฃ) =

3 cos ๐‘ฅ(2 sin ๐‘ฅ+2 cos ๐‘ฅ)โˆ’(2 cos ๐‘ฅโˆ’2 sin ๐‘ฅ)(3 sin ๐‘ฅ)

(2 sin ๐‘ฅ+2 cos ๐‘ฅ)2 M1

= 6

4 ร—

cos ๐‘ฅ sin ๐‘ฅ + ๐‘๐‘œ๐‘ 2๐‘ฅโˆ’cos ๐‘ฅ sin ๐‘ฅ+ ๐‘ ๐‘–๐‘›2๐‘ฅ

๐‘ ๐‘–๐‘›2๐‘ฅ+2 sin ๐‘ฅ cos ๐‘ฅ+ ๐‘๐‘œ๐‘ 2๐‘ฅ

USING:

(๐‘ ๐‘–๐‘›2๐‘ฅ + ๐‘๐‘œ๐‘ 2๐‘ฅ = 1)

(sin 2x= 2 sin xcos x)

M1

M1

๐‘‘

๐‘‘๐‘ฅ(

๐‘ข

๐‘ฃ) =

3

2

1+sin 2๐‘ฅ M1

Page 17: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

9.

u = -โˆš๐‘ฅ = -x0.5

๐‘‘๐‘ข

๐‘‘๐‘ฅ= โˆ’0.5 ๐‘ฅ-0.5

v = 5cos 5x ๐‘‘๐‘ฃ

๐‘‘๐‘ฅ = -5 sin 5xร— 5 = -25 sin 5x

M1

๐‘‘

๐‘‘๐‘ฅ(

๐‘ข

๐‘ฃ) =

(5 cos 5๐‘ฅ) (โˆ’0.5๐‘ฅโˆ’0.5)โˆ’(โˆ’๐‘ฅ0.5)(โˆ’25 sin 5๐‘ฅ)

(5 cos 5๐‘ฅ)2 M1

At the point x= 1 , ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

(5 cos 5) (โˆ’0.5โˆ’0.5)โˆ’(โˆ’10.5)(โˆ’25 sin 5)

(5 cos 5)2

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 10.9โ€ฆ

M1

M1

Gradient of normal = -0.1 M1

When x= 1, y = โˆ’โˆš1

5 cos 5 = -0.71 M1

y = mx+ c

-0.71 = (-0.1)(1) + c

c = -0.61

M1

y = -0.1xโ€“ 0.61

Page 18: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Differentiation

Pt. 7: Parametric Differentiation

1. A curve is given by the parametric equations x = t2 + 1 and y = 4

๐‘ก

a. Write down the coorindates of the point on the curve when t = 2 (2)

b. Find the value of t at the point on the curve with coordinates (5

4, โˆ’8) (1)

2. Find the cartesian equation for the curve, given its parametric equations are x = 3t and y = t2 (2)

3. Find the cartesian equations for the curve, given its parametric equations are x = 2t โ€“ 1 and y = 2

๐‘ก2 (2)

4. Write down the parametic equation for a circle with centre (6, -1) and radius 2. (2)

5. A curve is given by the parametric equations x = 2 + t and y = t2 โ€“ 1

a. Write down expression for ๐‘‘๐‘ฅ

๐‘‘๐‘ก and

๐‘‘๐‘ฆ

๐‘‘๐‘ก (1)

b. Hence, show that ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 2๐‘ก (1)

6. Find and simplify an expression for ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of the parameter t when x = 3t โ€“ 1 and y = 2 -

1

๐‘ก (3)

7. Find and simplify an expression for ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of the parameter t when x = sin2t and y = cos3t (3)

8. A curve has the parametric equations x = t3 and y = 3t2. Find, in the form y = mx + c, an equation for the tangent

to the curve at the point with the given value of the parameter t. (4)

9. Show that the normal to the curve with parametric equations, x = sec ๐œƒ, y = tan ๐œƒ, 0 โ‰ค ๐œƒ < ๐œ‹

2 at the point where

๐œƒ = ๐œ‹

3, has the equation โˆš3๐‘ฅ + 4๐‘ฆ = 10โˆš3 (6)

10. A curve has parametric equations x = sin 2t and y = sin2t, 0 < t < ๐œ‹

a. Show that ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

1

2tan 2๐‘ก (2)

b. Find an equation for the tangent to the curve at the point where t = ๐œ‹

6 (3)

11. A curve is given by the parametric equations

x = t 2, y = t(t โˆ’ 2), t โ‰ฅ 0.

a. Find the coordinates of any points where the curve meets the coordinate axes. (3)

b. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of x by first finding

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of t. (3)

c. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of x by first finding a cartesian equation for the curve. (2)

12. A curve has parametric equations x = sin2t and y = tan t, โˆ’๐œ‹

2 < t <

๐œ‹

2

a. Show that the tangent to the curve at the point where t = ๐œ‹

4 passes through the origin. (6)

b. Find a cartesian equation for the curve in the form y2 = f(x). (2)

A-Level

Pt. 3: General Differentiation

Pt. 4: The Chain Rule

Pt. 5: The Product Rule

Pt. 6: The Quotient Rule

Pt. 7: Parametric Differentiation

Pt. 8: Implicit Differentiation

Pt. 9: Rates of Change

AS Level

Pt. 1: First Principles

Pt. 2: Differentiation

Pt. 9: Rates of Change

Pt. 1: First Principles

Pt. 2: Differentiation

Page 19: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mark Scheme

1a.

x(2) = 22 + 1 = 5 M1

y(2) = 4

2 = 2 M1

1b. 4

๐‘ก= โˆ’8

t = -1

2

M1

2.

x = 3t โ†’ t = ๐‘ฅ

3 M1

y = (๐‘ฅ

3)2 =

๐‘ฅ2

9 M1

3.

t = 1

2(x + 1) M1

y = 2

1

4(๐‘ฅ+1)2

=8

(๐‘ฅ+1)2 M1

4.

x = 6 + 2 cos x M1

y = -1 + 2 sin x M1

0 โ‰ค x < 2๐œ‹

5a. ๐‘‘๐‘ฅ

๐‘‘๐‘ก= 1

๐‘‘๐‘ฆ

๐‘‘๐‘ก= 2๐‘ก

M1

5b. ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘‘๐‘ฆ

๐‘‘๐‘ก รท

๐‘‘๐‘ฅ

๐‘‘๐‘ก

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 2t รท 1 = 2t

M1

6.

๐‘‘๐‘ฅ

๐‘‘๐‘ก= 3

๐‘‘๐‘ฆ

๐‘‘๐‘ก= ๐‘กโˆ’2

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘‘๐‘ฆ

๐‘‘๐‘ก รท

๐‘‘๐‘ฅ

๐‘‘๐‘ก

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = t-2 รท 3 =

๐‘กโˆ’2

3

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

1

3๐‘ก2 M1

Page 20: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

7.

๐‘‘๐‘ฅ

๐‘‘๐‘ก= 2 sin ๐‘ก ร— cos ๐‘ก

๐‘‘๐‘ฆ

๐‘‘๐‘ก= 3cos2t ร— (- sin t)

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘‘๐‘ฆ

๐‘‘๐‘ก รท

๐‘‘๐‘ฅ

๐‘‘๐‘ก

= โˆ’3๐‘๐‘œ๐‘ 2๐‘ก sin ๐‘ก

2 sin ๐‘ก cos ๐‘ก

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = -

3

2cos ๐‘ก M1

8.

when t = 1

x(1) = 1

y(1) = 3

M1

๐‘‘๐‘ฅ

๐‘‘๐‘ก= 3t2

๐‘‘๐‘ฆ

๐‘‘๐‘ก= 6t

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

6๐‘ก

3๐‘ก2 ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ (1) = 2

M1

y โ€“ 3 = 2(x โ€“ 1)

y = 2x + 1 M1

9.

๐œƒ = ๐œ‹

3

x(๐œ‹

3) = 2

y(๐œ‹

3) = 2โˆš3

M1

๐‘‘๐‘ฅ

๐‘‘๐œƒ = sec ๐œƒ tan ๐œƒ

๐‘‘๐‘ฆ

๐‘‘๐œƒ= 2sec2 ๐œƒ

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

2๐‘ ๐‘’๐‘2๐œƒ

sec ๐œƒ tan ๐œƒ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

2 sec ๐œƒ

tan ๐œƒ= 2 ๐‘๐‘œ๐‘ ๐‘’๐‘ ๐œƒ

M1

Gradient = 4

โˆš3

Therefore gradient of normal = -โˆš3

4

M1

y - 2โˆš3 = -โˆš3

4(x โ€“ 2)

4y - 8โˆš3 = -โˆš3x + 2โˆš3 M1

โˆš3x + 4y = 10โˆš3 M1

Page 21: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

10a. ๐‘‘๐‘ฅ

๐‘‘๐‘ก= 2 cos 2๐‘ก

๐‘‘๐‘ฆ

๐‘‘๐‘ก= 2 sin ๐‘ก ร— cos ๐‘ก = sin 2๐‘ก

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

sin 2๐‘ก

2 cos 2๐‘ก=

1

2tan 2๐‘ก M1

10b.

t = ๐œ‹

6

x(๐œ‹

6) =

โˆš3

2

y(๐œ‹

6) =

1

4

M1

Gradient = โˆš3

2

y - 1

4 =

โˆš3

2(x -

โˆš3

2)

M1

โˆš3 x โ€“ 2y โ€“ 1 = 0 M1

11a.

x = 0

t2 = 0

t = 0

M1

y = 0

t(t โ€“ 2) = 0

t = 0 or t = 2

M1

Co-ordinates: (0, 0) and (4, 0) M1

11b.

๐‘‘๐‘ฅ

๐‘‘๐‘ก = 2t

๐‘‘๐‘ฆ

๐‘‘๐‘ก= 2๐‘ก โˆ’ 2

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

2๐‘กโˆ’2

2๐‘ก= 1 โˆ’ t -1 M1

t = x0.5 ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 1 โ€“ x-0.5 M1

11c.

y = ๐‘ฅ1

2(๐‘ฅ1

2 โ€“ 2) = x - 2๐‘ฅ1

2 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 1 โˆ’ ๐‘ฅโˆ’

1

2 M1

Page 22: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

12a.

t = ๐œ‹

4

x(๐œ‹

4) =

1

2

y(๐œ‹

4) = 1

M1

๐‘‘๐‘ฅ

๐‘‘๐‘ก = 2 sin t cos t

๐‘‘๐‘ฆ

๐‘‘๐‘ก= sec2 t

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ ๐‘’๐‘2๐‘ก

2 sin ๐‘ก cos ๐‘ก=

1

2 ๐‘ ๐‘’๐‘3๐‘ก ๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ก M1

Gradient = 1

2ร— (โˆš2)3 ร— โˆš2 = 2 M1

y โ€“ 1 = 2(x โ€“ 1

2)

y = 2x M1

When x = 0, y = 0 therefore passes through origin M1

12b.

y2 = tan2t = ๐‘ ๐‘–๐‘›2๐‘ก

๐‘๐‘œ๐‘ 2๐‘ก =

๐‘ ๐‘–๐‘›2๐‘ก

1โˆ’ ๐‘ ๐‘–๐‘›2๐‘ก M1

y2 = ๐‘ฅ

1โˆ’๐‘ฅ M1

Page 23: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Differentiation

Pt. 8: Implicit Differentiation

1. Differentiate with respect to x, y3 (1)

2. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of x and y for the curve x2 + y2 + 3x โ€“ 4y = 9 (2)

3. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of x and y for the curve 2e3x + e-2y + 7 = 0 (3)

4. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of x and y for the curve 2xy2 โ€“ x3y = 0 (4)

5. Find ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ in terms of x and y for the curve cos 2x sec 3y + 1 = 0 (3)

6. A curve has the equation x2 + 4xy โˆ’ 3y2 = 36.

a. Find an equation for the tangent to the curve at the point P (4, 2). (5)

Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P,

b. Find the coordinates of Q. (4)

7. A curve has the equation x2 โ€“ 4xy + y2 = 24.

a. Show that ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ฅโˆ’2๐‘ฆ

2๐‘ฅโˆ’๐‘ฆ (3)

b. Find an equation for the tangent to the curve at the point P(2, 10) (2)

The The tangent to the curve at Q is prallallel to the tangent at P

c. Find the coordinates of Q. (5)

A-Level

Pt. 3: General Differentiation

Pt. 4: The Chain Rule

Pt. 5: The Product Rule

Pt. 6: The Quotient Rule

Pt. 7: Parametric Differentiation

Pt. 8: Implicit Differentiation

Pt. 9: Rates of Change

AS Level

Pt. 1: First Principles

Pt. 2: Differentiation

Pt. 9: Rates of Change

Pt. 1: First Principles

Pt. 2: Differentiation

Page 24: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mark Scheme

1. ๐‘‘

๐‘‘๐‘ฅ(๐‘ฆ3) = 3y2 ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ M1

2. ๐‘‘

๐‘‘๐‘ฅ(x2 + y2 + 3x โ€“ 4y = 9) โ†’ 2x + 2y

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ + 3 - 4

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0 M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ (4 โ€“ 2y) = 2x + 3

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

2๐‘ฅ+3

4โˆ’2๐‘ฆ

M1

3. ๐‘‘

๐‘‘๐‘ฅ(2e3x + e-2y + 7 = 0) โ†’ 6e3x โ€“ 2e-2y

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0 M1

6e3x = 2e-2y ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

3๐‘’3๐‘ฅ

๐‘’โˆ’2๐‘ฆ = 3e3x + 2y M1

4. ๐‘‘

๐‘‘๐‘ฅ(2xy2) โ†’ product rule

u = 2x

uโ€™ = 2

v = y2

vโ€™ = 2y ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

๐‘‘

๐‘‘๐‘ฅ(2xy2) โ†’ (2 ร— y2) + (2x ร— 2y

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ)

M1

๐‘‘

๐‘‘๐‘ฅ(๐‘ฅ3y) โ†’ product rule

u = x3

uโ€™ = 3x2

v = y

vโ€™ = ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

๐‘‘

๐‘‘๐‘ฅ(๐‘ฅ3y) โ†’ (3x2 ร— y) + (x3 ร—

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ)

M1

๐‘‘

๐‘‘๐‘ฅ(2xy2 โ€“ x3y) = (2 ร— y2) + (2x ร— 2y

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ) โ€“ ((3x2 ร— y) + (x3 ร—

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ))

2y2 โ€“ 3x2y = ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ(x3 โ€“ 4xy)

M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

2๐‘ฆ2โˆ’3๐‘ฅ2๐‘ฆ

๐‘ฅ3โˆ’4๐‘ฅ๐‘ฆ M1

Page 25: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

5. ๐‘‘

๐‘‘๐‘ฅ(cos 2x sec 3y + 1) โ†’

๐‘‘

๐‘‘๐‘ฅ(cos 2x sec 3y) + 0 โ†’ Product Rule

u = cos 2x

uโ€™ = -2sin 2x

v = sec 3y

vโ€™ = 3๐‘‘๐‘ฆ

๐‘‘๐‘ฅ sec 3y tan 3y

๐‘‘

๐‘‘๐‘ฅ(cos 2x sec 3y) โ†’ (-2 sin 2x ร— sec 3y + cos 2x ร— 3

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ sec 3y tan 3y)

M1

3๐‘‘๐‘ฆ

๐‘‘๐‘ฅ cos 2x sec 3y tan 3y = 2sin 2x sec 3y M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

2 sin 2๐‘ฅ

3 cos 2๐‘ฅ tan 3๐‘ฆ=

2

3tan 2๐‘ฅ cot 3๐‘ฆ M1

6a. ๐‘‘

๐‘‘๐‘ฅ (x2 + 4xy โˆ’ 3y2 = 36)

2x + 4 ร— y + 4x ร— ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ โ€“ 6y

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0

M1

2x + 4y = ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ(6๐‘ฆ โˆ’ 4๐‘ฅ) M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ฅ+2๐‘ฆ

3๐‘ฆโˆ’2๐‘ฅ M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ(4, 2) = โˆ’4 M1

y โ€“ 2 = -4(x โ€“ 4)

y = 18 โ€“ 4x M1

6b.

At Q, ๐‘ฅ+2๐‘ฆ

3๐‘ฆโˆ’2๐‘ฅ = -4

x + 2y = -4(3y โ€“ 2x)

x = 2y

M1

Sub into equation of the curve:

(2y)2 + 4y(2y) โ€“ 3y2 = 36 M1

y2 = 4

y = 2 or -2 M1

Therefore Q: (-4, -2) M1

7a. ๐‘‘

๐‘‘๐‘ฅ (x2 โ€“ 4xy + y2 = 24) โ†’ 2x โ€“ 4 ร— y โ€“ 4x ร—

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ + 2y

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = 0 M1

2x โ€“ 4y = ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ(4x โ€“ 2y) M1

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

2๐‘ฅโˆ’4๐‘ฆ

4๐‘ฅโˆ’2๐‘ฆ=

๐‘ฅ โˆ’ 2๐‘ฆ

2๐‘ฅ โˆ’ ๐‘ฆ M1

7b.

Gradient = 3 M1

y โ€“ 10 = 3(x โ€“ 2)

y = 3x + 4 M1

Page 26: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

7c. ๐‘ฅ โˆ’ 2๐‘ฆ

2๐‘ฅ โˆ’ ๐‘ฆ= 3 M1

x โ€“ 2y = 3(2x โ€“ y)

y = 5x M1

x2 โ€“ (4x)(5x) + (5x)2 = 24 M1

x2 = 4

x = or x = -2 M1

Therefore, (-2, -10) M1

Page 27: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Differentiation

Pt. 9: Rates of Change

1. A biological culture is growing exponentally such that the number of bacteria present, N, at the time t minutes is

given by N = 8000(1.04)t. Find the rate at which the number of bacteria is increasing when there are 4000 bacteria

present. (3)

2. The radius of a circle is increasing at a constant rate of 0.2 cm sโˆ’1.

a. Show that the perimeter of the circle is increasing at the rate of 0.4ฯ€ cm sโˆ’1. (3)

b. Find the rate at which the area of the circle is increasing when the radius is 10 cm. (3)

c. Find the radius of the circle when its area is increasing at the rate of 20 cm2 sโˆ’1. (2)

3. The volume of a cube is increasing at a constant rate of 3.5 cm3 s-1. Find,

a. The rate at which the length of one side of the cube is increasing when the volume is 200 cm3 (5)

b. The volume of the cube when the length of one side is increasing at the rate of 2 mmsโˆ’1 (4)

4. The diagram shows the cross-section of a right-circular paper cone being used as a filter funnel. The volume of

liquid in the funnel is V cm3 when the depth of the liquid is h cm. Given that the angle between the sides of the

funnel in the cross-section is 60ยฐ as shown.

a. Show that V = 1

9๐œ‹h3 (2)

Given also that at time t seconds after liquid is put in the funnel, V = 600eโˆ’0.0005t

b. Show that after two minutes, the depth of liquid in the funnel is approximately 11.7 cm (2)

c. Find the rate at which the depth of liquid is decreasing after two minutes. (6)

5. The volume, V m3, of liquid in a container is given by: V = (3h2 + 4)3

2 โ€“ 8 where h m is the depth of the liquid.

a. Find the value of ๐‘‘๐‘‰

๐‘‘โ„Ž when h = 0.6, giving your answer correct to 2 decimal places. (4)

b. Liquid is leaking from the container. It is oberseved that, when the depth of the liquid is 0.6m, the depth is

decreasing at a rate of 0.015m per hour. Find the rate at which the volume in the containiner is decreasing at the

instant when the depth is 0.6m (3)

A-Level

Pt. 3: General Differentiation

Pt. 4: The Chain Rule

Pt. 5: The Product Rule

Pt. 6: The Quotient Rule

Pt. 7: Parametric Differentiation

Pt. 8: Implicit Differentiation

Pt. 9: Rates of Change

AS Level

Pt. 1: First Principles

Pt. 2: Differentiation

Pt. 9: Rates of Change

Pt. 1: First Principles

Pt. 2: Differentiation

Page 28: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

Mark Scheme

1. ๐‘‘๐‘

๐‘‘๐‘ก= 800(1.04)t x ln 1.04 M1

N = 4000

4000 = 800(1.04)t

(1.04)t = 5

M1

๐‘‘๐‘

๐‘‘๐‘ก= 800 ร— 5 ร— ln 1.04 = 157

Therefore, growing at a rate of 157 per minute. M1

2a. ๐‘‘๐‘ƒ

๐‘‘๐‘ก=

๐‘‘๐‘ƒ

๐‘‘๐‘Ÿร—

๐‘‘๐‘Ÿ

๐‘‘๐‘ก

๐‘‘๐‘Ÿ

๐‘‘๐‘ก= 0.2

M1

P = 2๐œ‹๐‘Ÿ ๐‘‘๐‘ƒ

๐‘‘๐‘Ÿ= 2๐œ‹

M1

๐‘‘๐‘ƒ

๐‘‘๐‘ก= 2๐œ‹ ร— 0.2 = 0.4๐œ‹

Therefore perimeter is increasing at 0.4๐œ‹ cm s-1 M1

2b. ๐‘‘๐ด

๐‘‘๐‘ก=

๐‘‘๐ด

๐‘‘๐‘Ÿร—

๐‘‘๐‘Ÿ

๐‘‘๐‘ก

A = ๐œ‹r2 ๐‘‘๐ด

๐‘‘๐‘Ÿ= 2๐œ‹๐‘Ÿ

M1

When r = 10, ๐‘‘๐ด

๐‘‘๐‘Ÿ= 20๐œ‹ M1

๐‘‘๐ด

๐‘‘๐‘ก= 20๐œ‹ ร— 0.2 = 4๐œ‹ cm2 s-1 M1

2b.

20 = 2๐œ‹๐‘Ÿ ร— 0.2 M1

r = 50

๐œ‹ = 15.9 cm M1

3a. ๐‘‘๐‘‰

๐‘‘๐‘ก=

๐‘‘๐‘‰

๐‘‘๐‘™ ร—

๐‘‘๐‘™

๐‘‘๐‘ก

๐‘‘๐‘‰

๐‘‘๐‘ก= 3.5, V = l3

๐‘‘๐‘‰

๐‘‘๐‘™= 3l2

M1

200 = l3

l = 5.848 M1

๐‘‘๐‘‰

๐‘‘๐‘™= 3 ร— 5.8482 = 102.6 M1

3.5 = 102.6 x ๐‘‘๐‘™

๐‘‘๐‘ก M1

๐‘‘๐‘™

๐‘‘๐‘ก= 3.5 รท 102.6 = 0.0341 ๐‘๐‘šs-1 M1

3b.

2 mm s-1 = 0.2 cm s-1 M1

3.5 = ๐‘‘๐‘‰

๐‘‘๐‘™ ร— 0.2

๐‘‘๐‘‰

๐‘‘๐‘™ = 17.5

M1

17.5 = 3l2

l = 2.415 M1

V = l3 = 14.1 cm3 M1

Page 29: AS Level -Level Differentiation Pt. 3: General Differentiation...Differentiation Pt. 5: Product Rule 1. Differentiate xex with respect to x. (3) 2. Find ๐‘‘ ๐‘‘ when y = x2 ln (x

4a.

tan 30 = 1

โˆš3 =

๐‘Ÿ

โ„Ž

r = โ„Ž

โˆš3

M1

V = 1

3๐œ‹r2h =

1

3๐œ‹ ร—

1

3โ„Ž2 ร— โ„Ž =

1

9๐œ‹โ„Ž3 M1

4b.

t = 120, V = 565.06

h = โˆš9 ร—565.06

๐œ‹

3

M1

h = 11.7cm M1

4c. h = 11.74 ๐‘‘๐‘‰

๐‘‘โ„Ž= 144.4

M1

๐‘‘๐‘‰

๐‘‘๐‘ก=

๐‘‘๐‘‰

๐‘‘โ„Žร—

๐‘‘โ„Ž

๐‘‘๐‘ก

๐‘‘๐‘‰

๐‘‘โ„Ž=

1

3๐œ‹h2

M1

๐‘‘๐‘‰

๐‘‘๐‘ก= 600 ร— (โˆ’0.0005)e-0.0005t

= -0.3e-0.0005t M1

t = 120 ๐‘‘๐‘‰

๐‘‘๐‘ก= โˆ’0.2825

M1

0.2825 = 144.4 x ๐‘‘โ„Ž

๐‘‘๐‘ก

๐‘‘โ„Ž

๐‘‘๐‘ก= โˆ’0.00196

M1

The depth is decreasing at 0.00196 cm s-1 M1

5a. ๐‘‘๐‘‰

๐‘‘โ„Ž=

3

2(3โ„Ž2 + 4)

1

2(6โ„Ž) = 3(3โ„Ž2 + 4)1

2(3โ„Ž) M1

= 9h(3h2 + 4)1

2 M1

When h = 0.6, ๐‘‘๐‘‰

๐‘‘โ„Ž= 9(0.6)(3(0.62) + 4)

12 M1

๐‘‘๐‘‰

๐‘‘โ„Ž= 12.17 M1

5b. ๐‘‘๐‘‰

๐‘‘๐‘ก=

๐‘‘๐‘‰

๐‘‘โ„Žร—

๐‘‘โ„Ž

๐‘‘๐‘ก M1

When h = 0.6, ๐‘‘๐‘‰

๐‘‘๐‘ก = (12.170) x (-0.015) M1

๐‘‘๐‘‰

๐‘‘๐‘ก = -0.1825

The volume is decreasing at a rate of 0.18m3 per hour. M1