Top Banner

of 7

art%3A10.1007%2FBF02481540

Jun 02, 2018

Download

Documents

Civil House
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 art%3A10.1007%2FBF02481540

    1/7

    M a t e r i a ls a n d S t r u c t u r e s / M a t ~ r ia u x e t C o n s t r u c t i o n s

    Vol. 31 . October 1998 pp 568-574

    w a t e r s o r p t iv it y t e st f o r m o r t a r a n d c o n c r e t e

    B . B . Sabi r , S . W i l d and M . O F a r re l l

    S c h o o l o f t h e B u i lt E n v i r o n m e n t , U n i v e r s it y o f G la m o rg , n , P o n t y p r i d d , M i d . G l a m o r g a n , U K , C F 3 7 1 D L

    P aper r ece i ved: Ju ly 8 , 1997; P aper accep ted : N ovem ber 21 , I 99 7

    A B S T R A C T

    Th is p ap er d esc r ib es a t e s t r ig to m easu r e th e u n i - d i r ec -

    t i o n a l w a t e r a b s o r p t i o n o f m o r t a r a n d c o n c r e t e . T h e t e s t

    d a ta acq u is i t io n i s co n t r o l led b y p u r p o s e w r i t t en so ftw are

    in s ta l led o n a PC an d th e r esu l t s a r e u t i l i s ed d i r ec t ly to

    o b t a i n t h e s o r p t i v i t y m e a s u r e d i n g / m m 2 / m i n l / 2 . A s a n

    ex am p le th e ap p ara tu s w as u sed to o b ta in th e so r p t iv ity o f

    m o r t a r i n w h i c h t h e o r d i n a r y P o r tl a n d c e m e n t w a s p a r-

    t ia l ly r ep laced b y g r o u n d w as te b r ick o b ta in e d f r o m d i f f e r-

    en t so u r ces . T h e r esu l ts p r esen te d d em o n s t r a te th e v a l id i ty

    o f th e t e s t , a n d t h e a p p a r a t u s a n d t h e m e t h o d o l o g y ar e

    sh o w n to b e o f su f f ic ien t s en si tiv ity in d e tec t in g th e d i f f e r -

    e n c e s b e t w e e n t h e s o r p t i v it i e s o f th e v a r i o u s m o r t a r s

    t e s te d . T h e v a r i a t io n i n t h e s o r p ti v i ty w i t h c u r i n g t i m e a n d

    m i x t u r e c o m p o s i t i o n w a s d e t e r m i n e d . T h e p a p e r a ls o g iv e s

    th e r esu lt s o f to ta l w a te r ab so r p t io n te st s co n d u c te d o n th e

    s o r p t i v it y t e s t s p e c i m e n s , a f te r b e i n g r e c o n d i t i o n e d , a n d

    th e r esu l ts o f co m p r ess iv e s t r en g th te s t s f o r al l th e m o r ta r s

    investigated.

    R ~ S U M ~

    C et ar t i c l e d r i t uu appar e i l d 'e s s a i po ur m es ur er l 'abs or p-

    t ion u n id iw c t ionne l l e de l ' eau par l e mor t i er e t l e bd ton . Les don-

    n s r u l t a n t d e s e s s a i s s o n t c o n tr 3 1 s a u m o y e n d ' u n l o g ic i e l

    s p ia l emen t con fu ins ta l ld s ur P C , e t ces r u l ta t s s on t d i r ec te -

    m e n t u t i l i s p o u r o b t e n i r la s o r p t i v it d m e s u r e n

    g / m m 2 / m i n J / 2 . A t it r e d ' e x e m p l e , o n a u t il is d l 'a p p a r e i l p o u r

    d d t e r m i n e r l a s o r p t i v i td d ' u n m o r t i e r d a n s l e q u e l le c i m e n t

    P or t land or d ina i r e ava i t d td par t ia l em en t r emplacd pa r l e s br iques

    de r up a t ion par t ia l em en t concas s s . Le s r u l ta t s pr e ' s en t i c i

    dd m ou tw nt l a va l id i td de l 'e s s a i , e t le f a i t que l ' appar e i l e t la

    mdthodo log ie on t u ne s ens ib i l it d s u f f i s an te pou r dd tec t er l e s d i f fd -

    f e n c e s e n t r e l e s s o r p t i v i t d e s d i f f e n t s m o r t ie r s d t u d i . L e s

    v a r i a ti o n s d e l a so r p t iv i td e n f o n c t i o n d u t e m p s d e c u w e t d e la

    com pos i t i on du m glange on t d td dd ter min s . L ' ar t ic l e pr ds en te

    @ le m en t l e s r u l ta t s d ' es s a i s d ' abs or p t ion to ta l e de l ' eau mene ' s

    s ur le s @ ou ve t t e s u t ih ' s s po ur l es es s a i s de s or p t i v i td , ap t l eur

    r econd i t i or mem ent , a ins i que l es r u l ta t s d ' es s a i s de r i s tance a

    la com pr es s ion po ur tous l e s mor t i er s d tud ie ' s.

    1 . IN T R O D U C T I O N

    Th e d u r ab i l i ty o f co n cr e te l ar g ely d ep en d s o n th e ease

    w i t h w h i c h f l u id s e n t e r a n d m o v e t h r o u g h t h e m a t r ix . F o r

    e x a m p l e , d e t e r i o ra t i o n d u e t o c h l o r i d e i o n s f r o m d e - i c i n g

    sa lt s o r s eaw ate r is cau sed b y th e t r an sp o r t o f a ch lo r id e

    s o l u t i o n i n t o t h e m a t e r i a l . A l t h o u g h , i n g e n e r a l , p e r m e -

    a b i l it y is t a k e n a s a n i n d i c a t o r o f a c o n c r e t e ' s a b i l i ty t o

    t r an sp o r t w a te r ( o r o x y g en an d ca r b o n d io x id e ) , mo r e p r e -

    c i se ly th e r e a r e tw o me ch an ism s co n t r o l l in g th e u p tak e an d

    t r an sp o r t o f w a te r . P er meab i l i t y , w h i c h i s a m e a s u r e o f t h e

    f l o w o f w a t e r u n d e r p r e s su r e i n a s a t u ra t e d p o r o u s

    m e d i u m , a nd sorpt ivi ty , w h ich ch ar ac te r i s es th e mate r ia l ' s

    ab i li ty to ab sor b a n d t r an smi t w a te r th r o u g h i t b y cap il la r y

    s u c t io n . W h i l s t p e r m e a b i l i ty i s a n i m p o r t a n t p a r a m e t e r f o r

    w a t e r r e t a i n i n g s tr u c tu r e s , a m o r e i m p o r t a n t p a r a m e t e r

    ( w h ich i s d i r ec t ly r e la ted to d u r ab i l i ty ) f o r ab o v e g r o u n d

    s t r u c tu r es is so rp t iv i ty . Th e p r in c ip a l fea tu r e o f th e m at r ix

    s t r u c tu r e o f co n cr e te th a t r e lates to th e t r an sp o r t o f w a te r i s

    t h e p o r e s y s t e m o f t h e c e m e n t p a s t e , p a r t ic u l a r ly i n t h e

    v i c i n i t y o f t h e a g g r e g a t e -p a s t e i n t e r f a c e . A g g r e g a t e s c a n

    a lso a f f ec t th e t r an sp o r t p r o p er t ie s b u t th ese , in g en er a l ,

    c o n t a i n p o r e s w h i c h a r e d i s c o n t i n u o u s a n d d o n o t a l l o w

    w a t e r m o v e m e n t b y c a pi ll ar it y, a n d h e n c e d o n o t c o n -

    t r ib u te to so rp t iv i ty . H o w e v er , d esp i te th e h ig h e r p o r o s i ty

    a t t h e i n t e r r a c i a l z o n e , i t i s g e n e r a l l y f o u n d t h a t w a t e r

    m o v e m e n t i n c o n c r e t e i s p r e d o m i n a n t l y c o n t r o l l e d b y t h e

    b u l k o f th e h a r d e n e d O P C p a st e, w h i c h i s t h e o n l y c o n t i n -

    u o u s p h a s e i n c o n c r e t e [ 1 1 . S o r p t i v i t y i s al so r e l a t e d t o

    a b s o r p t io n , w i t h t h e l a t te r b e i n g s o m e t i m e s u s e d a s a n

    in d ica to r o f th e v o lu m e o f th e cap i ll a ry p o r e sp ace o r o p en

    p o r o s it y , t h o u g h o p e n p o r o s i t y i s m o r e e f f e ct i v e ly m e a -

    s u r e d b y m e r c u r y i n t r u si o n .

    S o m e o f t h e e ar li er w o r k o n t h e m e a s u r e m e n t o f s o r p -

    t i v it y o f m o r t a r a n d c o n c r e t e w a s c a rr i e d o u t b y H o a n d

    Lew is [ 2 -4 ] an d H a l l [ 5 -6 ] . A m o r e r ecen t r ev iew b y H a l l

    [7] g ives the theore t ical backgro ur id and pract ical aspects of

    as ses sin g th e so r p t iv i ty o f mo r ta r s a n d co n cr e te in th e lab o -

    r a to r y. Th e se w o r k s an d o th e r s [ 8] h av e d em o n s t r a ted th a t

    u s e f u l i n f o r m a t i o n f o r m o r t a r a n d c o n c r e t e c a n be

    o b t a i n e d u s i n g s i m p l e t e s t in g a r r a n g e m e n t s . F u r t h e r m o r e ,

    i t i s f o u n d th a t th e te s t s y ie ld r ep r o d u c ib le r e su l t s w h ich

    1359-5997/98 9 RILEM 5 6 8

  • 8/10/2019 art%3A10.1007%2FBF02481540

    2/7

    Sabir,Wild,O Farrell

    describe the material s behaviour, w ith regard to variations

    in composition and curing conditions, in a rational and

    meaningful way.

    The work described in this paper originates from a

    major project funded by the European Commission under

    the Copernicus programme. T he research programme,

    which is now in its final stage, exam ined the potential of

    recycling waste brick as a partial pozzolan replacement of

    OP C in concrete and mortar [9, 10]. Th e paper introduces

    an autom ated testing system for the m easurem ent of sorp-

    tivity in mortar and concrete. The test is validated by car-

    rying out sorptivity measurements on mortar samples in

    which the OPC is par t ia l ly replaced by ground br ick

    obtained from Britain, Denmark, Lithuania and Poland.

    Th e sensitivity o f the testing system was verified by detec t-

    ing the difference in behaviours of mortars with different

    compositions and curin g times.

    2. CAPILLARY SUCTION AND SORPTIVITY

    It is frequently found that ira mortar or concrete sur-

    face is exposed to wetting by water then the cumulative

    water absorpt ion i is propor t ional , dur ing the in i t ia l

    absorption period, to the square root of elapsed wetting

    time t:

    i: S~ 7

    S is the sorptivity measured in g per m m 2 (of wetted

    area) per mini/2. It is easily determ ined f rom the slope of

    the linear part of the i versus ~t curve. Some materials

    with extremely coarse pore structure experience little cap-

    illary suction and ma y show significant deviation from lin-

    earity after prolo nged wetting. Capillary suction can only

    be m easured in partially dry m ortar or concrete. Sorption

    does no t take place in saturated materials, and in totally dry

    materials substantial ab sorption o f water by the gel will dis-

    tort the results. T he sorptivity will depen d on the initial

    water conte nt and its uniformity throu ghou t the specimen

    unde r test. It is important, therefore, to keep this in mi nd

    both when relat ing laboratory measurements to f ie ld

    behaviour and also in ensuring a consistent and standard-

    ised drying procedu re for all specimens. Furtherm ore, as

    water abso rption and capillary suction depe nd on porosity,

    any non-uniformities in the latter could lead to different

    sorptivities in samples obtained from what is supposed to

    be th e sam e material. It is, therefore , essential that materials

    unde r test be consistent and hom ogene ous. In practice the

    poi nt o f origin, and frequent ly the very early readings, are

    omit ted when determ ining the slope of the graph. This is

    because there is an increase in the mass of the specimen

    caused by the fill ing of the ope n surface pores on the

    inflow face and the sides of the specimen when it is sub-

    merged. In order to reduce these effects to a min imu m, it

    is essential that the spec imen be subme rged in water to no

    more than 2-5 mm [1l] .

    3. TEST APPARATUS

    Hall [7] described three possible test configurations to

    measure the rate of uni-directional water absorption in a

    porous medium: horizontal in-flow in which there are no

    gravitational effects bu t abs orpt ion is affected by hyd rosta -

    tic forces; infiltration where absorption is partly due to

    capillary su ction and partly to gravitational forces; and the

    capillary rise case wh ere the effects of capillarity an d gravity

    forces are op posed. F or m ost buil ding materials, the forces

    due to capillary action are domi nan t in all these config ura-

    tions, and due to simplicity and ease of operation, th e cap-

    illary rise met ho d is chosen in th e presen t study. The appa-

    ratus, which is shown in Fig. 1, consists of a suspension

    frame constructed of rigid copper wire, whic h is attached

    to the sensor of an electronic balance. Th e other e nd o f the

    frame is rigidly attached to a light alumini um tray contain-

    ing a central hole, 45 mm in diameter. The specimen is

    placed centrally on the alum inium tray with the hole facili-

    tating exposure to water of the test surface. Th e balance

    (Sartorius L C 3201D) is placed on a rigid table and is con-

    trolled by pu rpose wri tten software, whic h is installed on a

    PC . Th e balance has a sensitivity o f 0.001 g and a response

    time o f less than ls. Th e readings are shown o n a digital

    display. Th e test specimen on its suspension mec han ism is

    positi oned centrally over a reservoir containin g water. Th e

    weight gain by the test specimen is automatically recorded

    at specified intervals. The se readings are recor ded in th e

    computer system and can be retrieved, after the test is

    completed, in bo th numerical and graphical forms.

    Fig. 1 Test Apparatus .

    4. SPECIMEN PREPARATION AND TESTING

    PROCEDURE

    Th e specimen used in the present study consisted of 52

    mm diameter and 15 mm thick discs cut (wet) from the

    central portion of cylindrical cores obtained from 100 mm

    mortar cubes. Four specimens were retrieved from each

    core and the re maining outer portions were discarded. T he

    mortar discs were d ried to constant weights in a tempe ra-

    ture controlled drying cabinet containing silica gel. The

    temperature in the cabinet was kept constant at 40~ and

    the sihca gel was renewed every 2 days. The time required

    569

  • 8/10/2019 art%3A10.1007%2FBF02481540

    3/7

    M a t e r i a l s a n d S t r u c t u r e s / M a t 6 r ia u x e t

    C o n s t r u c t i o n s V o l. 3 1 , O c t o b e r 1 9 9 8

    t o a c h i e v e c o n s t a n t w e i g h t v a r i e d

    b e t w e e n 2 2 a n d 2 6 d a y s . I t w a s f o u n d

    tha t , i r r e spec t ive of the in it ia l m ois tur e

    c o n t e n t o f th e s p e c i m e n s , a p p r o x i -

    m a t e l y 8 0 o f t h e w e i g h t l o ss o c c u r r e d

    w i th in 5 days .

    T h e t o t a l d r y i n g t i m e s o f t h e v a r i -

    o u s s p e c im e n s v a r ie d w i t h t h e c o m p o -

    s i ti o n o f t h e m o r t a r a n d c u r i n g h i s to r y .

    T h e t e m p e r a t e r e g i m e o f d r y i n g

    a d o p t e d i n t h e p r e s e n t s t u d y w a s p r e -

    f e r re d t o t h e s t a n d a rd o v e n d r y i n g a t

    105~ used in to ta l absor p t ion te st s , in

    o r d e r t o a v o i d a n y m o d i f i c a t i o n t o t h e

    c a pi ll ar y p o r e s t r u c t u re t h a t w o u l d b e c a u s e d b y t h e h i g h e r

    d r y i n g t e m p e r a t u r e . A n i d ea l a rr a n g e m e n t w o u l d h a v e

    b e e n t o d r y t h e s am p l es a t a m b i e n t t e m p e r a t u r e , b u t t h is

    w o u l d h a v e ta k e n t o o l o n g a n d w o u l d h a v e e x t e n d e d t h e

    d r y i n g t i m e s i n a n u n c o n t r o l l a b l e m a n n e r . A n a lt er na ti ve

    w o u l d h a v e b e e n t o c h e m i c a l l y d r y t h e s p e c i m e n s , b u t t h i s

    w as r e jec ted as i t in t r oduc es ano the r f ac tor to th e sys tem.

    A f t e r d r y i n g , t h e s p e c i m e n u n d e r t e s t w a s p l a c e d c e n -

    t r a l l y o n t h e h o r i z o n t a l l y a l i g n e d a l u m i n i u m h o l d e r o v e r

    the water reservoir . The suspension system is self - levell ing

    a n d t h e t e st s p e c i m e n a l w a ys r es t e d i n a h o r i z o n t a l c o n f i g -

    u r a t i o n . W a t e r , a t r o o m t e m p e r a t u r e , w a s t h e n a d d e d t o

    the r ese r voi r un t i l th e f r ee sur face r eached a l eve l appr oxi -

    m a t e l y 5 m m b e l o w t h e t e s t s u r fa c e . A t t h i s p o i n t t h e

    w e i g h t d e t e c t i n g s y s t e m w a s a c ti v a t e d , a n d w a t e r w a s

    Tab l e 2 - C h e m i c a l c o m p o s i t io n s o f t h e g r o u n d b r i c k s

    Oxide (%) 810-B30 D10-D30 LIO - L30 P IO - P30

    SiO2

    TiO2

    AI203

    Fe203

    MnO

    M g O

    CaO

    Na20

    K20

    BaO

    P205

    Cr203

    SrO

    SO3

    L.O.I.

    54.83

    0.97

    19.05

    6.00

    0.06

    1.77

    9.39

    0 . 50

    3.15

    0.04

    0.20

    .03

    .05

    2.90

    1 . 4 8

    69.99

    0.55

    10.62

    4.02

    0 . 0 8

    1.39

    8.86

    1.02

    2.61

    0.05

    0.11

    0.01

    0.03

    0.04

    0.25

    68.79

    0.85

    9 15.23

    6.28

    0.07

    2.02

    1.79

    0.26

    3.71

    0 . 0 4

    0.07

    0.02

    0.01

    0.13

    0.19

    T a b l e 1 - G e n e r a l d a t a f o r t h e b r i c k m a t e r i a l s

    Mix Des ig n at io n s Co u n tr y f O r ig in Descr ip tio n Raw Mater ia ls F i r in g em p er a tur e

    B 10, B20 and B30 Britain Red, F l e t t o n L o w e rOxford clay 1025~

    facing br ick

    DIO, D20 and D30 Denmark Yel low, 60% yel low 1050~ for 6 h

    v a c u u m b u r n i n g l ay , 20%

    extruded red burn ing clay

    a n d 2 0 % s a n d

    LIO, L20 and L30 L i th u a n ia Red ex t r ud ed UK m er g e c lay 975 - 1025~ *

    m ester

    petr ing with

    perforations

    PIO, P20 and P30 Poland Red Clay, sand, 980 - 1045~

    basal t , bass PFA

    9 De te rmined on the basis o f Fe 20 3 and C aO conten ts and co~our.

    72.75

    0.84

    15.89

    4.97

    0.02

    1.20

    0.87

    0.27

    2.17

    0.05

    0.10

    0.02

    0.01

    0.07

    0 . 36

    Tab l e 3 - M i n e r a l c o m p o s i t i o n s o f t h e g r o u n d b r i c k s

    Mineral

    (%) B10

    -

    B30 D10

    -

    D30 L10

    -

    L30 P10

    -

    P30

    49

    5

    10

    12

    7

    6

    60

    23

    6

    12

    4-

    43

    24

    20

    13

    88

    3

    5

    4

    Quartz

    Feldspar

    Haem at i te

    Cr istobal i te

    Spinel

    Gypsum

    Anhydr i te

    + denotes a trace - denotes absence.

    a d d e d b y r u n n i n g i t d o w n t h e s id e o f t h e r e s e rv o i r at a

    s low r a te un t i l the w a te r sur face w as jus t in conta c t w i th

    t h e u n d e r s i d e o f t h e s p e c i m e n w h e n a n i n cr ea s e i n t h e b a l -

    ance r ead ing w as obse r ved . T his inc r ease i s due to surf ace

    t e n s i o n f o rc e s a n d t h e e v e n t w a s u s e d a s a r ef e re n c e p o i n t

    to ind ica te con tac t o f w a te r w i th the te s t sur face .

    T h e t e s t su r f ac e w a s v i s u a ll y e x a m i n e d t o e n s u r e t h a t

    n o a ir w a s t r a p p e d u n d e r t h e s p e c i m e n . I f t h is o c c u r r e d ,

    or ve r y occas iona l ly , i f the f r ee w a te r sur f ace w as s ign i f i -

    c a n t l y ab o v e t h e b o t t o m s u r fa c e o f t h e s p e c i m e n ( s ig -

    n a l l e d b y a d e c r e a s e i n t h e b a l a n c e r e a d i n g d u e t o b u o y -

    a n c y e f f e c t s ) , t h e n t h e t e s t w a s a b a n d o n e d a n d t h e

    s p e c i m e n r e c o n d i t i o n e d f o r a r e p e a t t es t .

    T h e w e i g h t m e a s u r e m e n t s y s t e m u s e d e n a b l e d t h e

    a c q u i s it i o n o f d a ta a t p r e d e t e r m i n e d t i m e i n t e rv a l s w i t h o u t

    caus ing any d i s tur bance to the te s t r ig . Th is e l imina ted any

    r a n d o m o p e r a t o r e r r o rs i n h e r e n t i n t i l e g e n e ra l ly a d o p t e d

    m a n u a l m e t h o d s o f w e i g h t m e a s u r e m e n t . I n t h e te st s c o n -

    d u c t e d i n t h e p r e s e n t s t ud y , w e i g h t m e a s u r e m e n t s w e r e

    t a k e n a t o n e m i n u t e i n t e r v a l s o v e r a t o t a l t e s t t i m e o f

    a p p r o x i m a t e l y o n e h o u r w i t h t o ta l m a ss c h a n g e s i n t h e

    r ange 5 - 8 g . T he w a te r r e se r voi r w as suf f ic ien t ly l a rge to

    e n s u r e t h a t a n y c h a n g es in b u o y a n c y o f t h e s p e c i m e n

    un der g oin g te s t w e r e negl ig ib le .

    5 MATERIALS AN D MIXTURE DETAILS

    I n to ta l , f our d i f f e r en t g r o un d br ick mate ria ls , o ne f r o m

    e a c h c o u n t r y p a r t i c i p a t i n g i n t h e r e s e a r c h p r o g r a m m e ,

    w er e the subjec t o f t e st ing . T able 1 g ives the desc r ip t ions

    a n d c o u n t r y o f o r i g i n o f t h e v a r i o u s b r i ck s u s e d . C h e m i c a l

    a n d X - r a y d i f f r a c t o m e t r y a n al y se s w e r e c a r r i e d o u t , s e e

    [ 1 0] , o n t h e g r o u n d b r ic k . T h e c h e m i c a l c o m p o s i t i o n s a n d

    m i n e r a l o g ic a l d if fe r e n c es b e t w e e n t h e f o u r g r o u n d b r i ck s

    a re s h o w n i n T a b le s 2 a n d 3 , r e sp e ct iv e ly . T h e O P C i n t h e

    con t r o l mor t a r w as pa rt ia l ly r ep laced w i th 10 , 20 an d 30

    g r o u n d b r i c k . I n a l l , t h i r t e e n m o r t a r m i x t u r e s w i t h p r o -

    p o r t i o n s 1 : 3 : 0 . 5 ( O P C : s a n d : w a t e r ) w e r e i n v e s t i g a t e d .

    S t a n d a r d s a n d ( D I N E N 1 9 6 - 1 ) w a s u s e d t h r o u g h o u t t h e

    invest iga t ion . T he m ix tu r e des igna t ions w e r e based on th e

    c o u n t r y o f o r ig i n ( B ri ta in B , D e n m a r k D , L i t h u a n i a L a n d

    P o l a n d P ) a n d t h e O P C r e p l a c e m e n t le v e l ( 10 , 2 0 a n d

    30 ) a s ind ica te d in Table 1.

    T h e g r o u n d b r i c k w a s o b t a i n e d b y p la t e g r i n d i n g 2 0 -

    5 0 m m p i e c es o f b r i c k a n d t h e n s u b j e c ti n g t h e r e s u lt i n g

    5 7

  • 8/10/2019 art%3A10.1007%2FBF02481540

    4/7

    Sabir, W ild, O'Farrell

    X

    5 .0

    4 . 5

    4 . 0

    3 .5

    3 .0

    2 .5

    2 .0

    1 .5

    1 .0

    0 .5

    0 . 0

    0 1

    f 7 da y s

    / / j 2 8 d a y s

    ~ ~ S O d a s

    ~ ~ _ . ~ e ~ ' Y

    a I r ~ i i i

    2 3 4 5 6 7 8 9

    t o . s , ( r a i n 0 . s )

    F i g . 2 - E f f e c t o f c u r i n g

    t i m e o n c u m u l a t iv e

    w a t e r

    a b s o r p t i o n f o r

    g r o u n d b r i c k m o r t a r

    ( B 3 0 ) .

    m a t e r i a l t o b a l l m i l l i n g t o t h e r e q u i r e d p a r -

    t i c le s ize . The f ina l ma te r ia l had a spec i f ic

    s u r fa c e i n th e r a n g e 3 2 0 - 3 5 0 m 2 / k g s e e

    [1 0 ] w h i c h i s a p p r o x i m a t e l y t h e s a m e as

    t h a t o f O P C .

    F r o m e a ch m i x t u r e f o u r 1 00 m m

    c u b e s w e r e p r e p a r e d f o r e ac h c u r i n g t i m e .

    T h e c u b e s w e r e c u r e d i n w a t e r a t 2 0 ~ a t

    e a c h o f t h e c u r i n g t i m e s o f 7 2 8 a n d 9 0

    d ay s. T h r e e c u b e s w e r e u s e d f o r c o m p r e s -

    s i o n s t r e n g t h t es ts a n d t h e f o u r t h w a s u s e d

    t o p r o d u c e a c y l i n d r i c a l c o r e f r o m w h i c h

    f o u r d i s c s w e r e c u t f o r t h e s o r p t i v it y a n d

    a b s o r p t i o n m e a s u r e m e n t s .

    6 . R E S U L T S A N D D I S C U S S I O N

    6 . 1 S o r p t i v i t y

    T y p i c a l p l o t s o f c u m u l a t i v e w a t e r

    a b s o r p t i o n a g a i n s t t h e s q u a r e r o o t o f t i m e

    a re s h o w n i n F i g . 2 . T h e s e p l o t s g iv e t h e

    w a t e r a b s o r p t i o n fo r t h e B 3 0 m i x t u r e s c u r e d

    a t 7 28 an d 90 days . Each se t o f th r ee p lo t s

    s h o w n r e f e r s t o t h e t h r e e s a m p l e s t e s t e d

    f r o m e a c h o f t h e m i x t u re s . T h e t es ts c o n -

    d u c t e d o n t h e t h r e e s a m p le s a t e ac h o f th e

    thr ee cur ing t imes g ive pr ac t ica l ly iden t ica l

    s lopes pa r t i cu la r ly du r ing the ea r ly pa r t o f

    t h e t e s t. T h i s d e m o n s t r a te s t h e r e p r o d u c i b i l -

    i t y o f t h e b e h a v i o u r a s o b t a i n e d f r o m d i f fe r -

    en t s amples of the same mo r ta r . T he r esu l ts

    a ls o c le a rl y s h o w t h e i n f l u e n c e o f c u r i n g

    t i m e o n t h e s o r p t i v i ty o f t h e m o r t a r .

    F o r t h e m a j o r i t y o f s a m p l e s t e s t e d t h e

    r e l a t i o n s h i p b e t w e e n c u m u l a t i v e w a t e r

    a b s o r p t i o n a n d t h e s q u a re r o o t o f t i m e o f

    e x p o s u r e b e g i n s t o d e v i a t e f r o m l i n e a r i t y

    a f t e r a b o u t 2 0 - 3 0 m i n u t e s . I n a d o p t i n g a

    s y s te m a t ic m e t h o d o l o g y fo r d e t e r m i n i n g

    t.8

    1.6

    2.0

    .. 1.4

    1.2

    1.0

    E o . ~

    ~ 0 .6

    9 -" 0 . 4

    0 . 2

    0.0

    ,o,

    w 9 ' ~ * X *

    , e * a : W

    t '

    i I I ) P I F

    2.0

    a )

    1 . 6 / r

    t . ,

    x t . 2 4 1 9 e 2 o : ' ~ . ,

    1.0 a 7 ~ '- = : *

    Q * ~ & . * ~ . d e *

    9 , o j [ ~

    ,E~ 0 . 8 o . o ~ . x *

    , ~ 0.6 9 _,~,/~ .=:.

    ; 0 ; : - : . : : : : -

    0.2 : *

    0 . 0 I I i I I I I I

    ( b )

    ..,.-

    , , X * ~ ~ , , ~ , , 4 . *

    x ~ . x

    i ' i : '

    c )

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

    t 0 . s ( m i n o . s )

    F i g . 3 - C u m u l a t i v e w a t e r a b s o r p t i o n f o r m o r t a r c o n t a i n i n g v ar i o u s g r o u n d b r i c k s

    a t d i f f e r e n t r e p l a c e m e n t l e v el s : ( a ) 1 0 % , ( b ) 2 0 % a n d ( c ) 3 0 % .

    5 7 1

  • 8/10/2019 art%3A10.1007%2FBF02481540

    5/7

    M a t e r i a l s a n d S t r u c t u r e s / M a t 6 r ia u x e t

    C o n s t r u c t i o n s V o l . 3 1 , O ct o ber 1998

    t he sorp t iv i t i e s for the va r ious mix tures t e s t ed , i t was

    dec ided to base the ca lcu la t ions on the f i r s t 16 minutes

    o f e lapsed tes t t ime. Fo r a ll the sam ples tes ted, this dura-

    t i o n o f t i m e p r o d u c e d l i n e a r r e la t io n s h i p s w h i c h g a v e

    cor re l a t ion coe f f i c i en t s grea te r than 0 .996 . Typica l p lo ts

    o f c u m u l a t i v e a b s o r p t i o n o v e r t h e f ir s t 1 6 m i n u t e s f o r

    m o r t a r s w i t h v a r y i n g O P C r e p l a c e m e n t l ev e ls b y g r o u n d

    b r i c k c u r e d a t 9 0 d a y s a r e s h o w n i n F i g . 3 . T h e m e a n

    s l o p e s o f s u c h p l o t s f o r a ll t h e m i x t u r e s i n v e s t i g a t e d

    ( three s amples each) a t d i f fe ren t cur ing t imes a re shown

    in Table 4.

    F ig. 4 shows the change in the m ean o f the measu red

    sorpt ivi ty with cur ing t ime . Analys is of variance was car-

    r i ed ou t o n the re su lt s for the sorp tiv ity ob ta ined f rom the

    indiv idua l te s ts . Th e ana lys is was pe r form ed o n se ri es of

    r es u lt s g r o u p e d a c c o r d i n g to b r i c k s o u r c e t o g e t h e r w i t h

    the con t ro l mor ta r a t each of the c ur ing t imes of 7, 28 and

    9 0 d a y s. I t w a s f o u n d t h a t , w i t h t h e e x c e p t i o n o f o n e

    result , the differences betw een th e m eans o f the sorpt ivi t ies

    f o r t h e m o r t a r s, w i t h v a r y i n g a m o u n t s o f g r o u n d b r i c k ,

    were s ignif icant a t the 0.01 level a t a l l curing t imes . The

    except ion was in the case of the P l0-P 30 se ri es for which

    the d i f ference b e twe en the mean s o f the sorp t iv i ti e s mea-

    sured at 90 days was o nly jus t s ignif icant a t the 0.09 level.

    O n exam ina t ion of F ig . 4 (d), one m ay a t tr ibu te th is to the

    u n e x p e c t e d s h a r p d r o p i n s o r p t i v i t y f o r t h e P 3 0 m o r t a r

    observ ed at 90 days . A closer exam inat ion o f the results for

    the P3 0 m or ta r a t a l l cur ing t imes , ho wever , revea led tha t

    the coe ff ic i en t s of va r ia t ion be twee n the ind iv idua l me a-

    surement s , i nc luding those obta ined a t 90 days , were a l l

    wi th in 3 , and th is behaviour could not be a t t ribu ted to

    poss ible expe rime ntal errors. As the level of s ignificance in

    th is case i s h igh (> 0 .05), w e m ay con c lude tha t the sorp-

    T a b le 4 - Sorpt iv i t ies in g / m m 2 / m i n l / 2 1 0 4 f o r co n t ro l

    an d g ro u n d b r i ck m o r ta rs

    Curing ime days)

    Mixture

    2 8

    9 0

    Control 3 .58 3 .58 3 .58

    B I O 4 . 51 4 . 29 4 . 22

    B 20 4 . 71 4 . 32 4 . 08

    B 30 6 . 21 4 . 58 3 . 48

    D I O 4 . 97 4 , 5 7 3 , 84

    D20 5 .67 5 .11 4 .10

    D30 5 .85 5 .32 4 .85

    L I O 3 . 81 3 . 42 3 . 21

    1.20 4 .56 3 ,96 3 ,80

    L 30 4 . 84 4 . 54 4 . 33

    P IO 4 .47 4 .22 3 .99

    P 20 4 . 73 3 . 91 3 . 69

    P 30 5 . 38 4 . 95 3 , 45

    t iv i ty a f te r 90 days of cur ing i s no t in f luen ced by P - typ e

    grou nd br i ck .

    I t can genera l ly be s een f ro m F ig . 4 tha t the con t ro l

    m or ta r exhib i ts g rea te r re si st ance to w a te r absorp t ion b y

    capil la ry suc tion than the mor ta rs c onta in ing grou nd br i ck ,

    the sorpt ivi t ies o f w hic h increase w ith increa s ing level of

    O P C r e p l a c e m e n t b y g r o u n d b r i c k . H o w e v e r , w i th

    increas ing cu r ing t ime the sorp t iv i ti e s of ground br i ck m or-

    t a rs dec rease , and a t 90 days and for ce r t a in rep lacem ent

    l eve l s some mo r ta rs exhib i t sorp t iv i ti es be low tha t o f the

    c o n t r o l m o r t a r . T h e a b o ve b e h a v i o u r c o n f i r m s p r e v i o u s

    r e p o r t s b y t h e a u t h o r s [ 1 2] o f th e p o z z o l a n i c e f f e c t o f

    g r o u n d b r i c k w h i c h p r o d u c e s p o r e r e f i n e m e n t a t e x t e n d e d

    curin g t imes , bu t is no t manifes t at the early ages w he n th e

    gro un d brick imparts increased poros ity to the m ortar .

    I t is general ly acce pted [13 , 14] that water absorpt ion of

    c o n c r e t e i s r e d u c e d a s t h e d u r a t i o n o f m o i s t c u r i n g

    7

    4 -

    ~ 3 - 3

    _

    i i .. ~_L lO i i

    [ - ~ L 0 i

    i a ) I i ~ r c ) I

    O r

    g 7 7

    i

    i ~ P 1 o I

    i

    P2

    i

    b ) ~ , d )

    , 1 ~ ) lO O , l O , o o

    Curing tim Curing time days)

    F i g. 4 - V a r i a t i o n o f s o r p t i v i t y w i t h c u r i n g t i m e f o r m o r t a r s w i t h g r o u n d b r i c k f r o m : a ) B r i t ai n , b ) D e n m a r k . , c ) L i t h u a n ia a n d d ) P o la n d .

    5 7 2

  • 8/10/2019 art%3A10.1007%2FBF02481540

    6/7

    S a b i r , Wild, O Farrel l

    T a b le 5 - T o t a l w a t e r a b s o r p t io n a f t e r 2 4 h i m m e r s i o n

    i n wa t e r e xp r e sse d a s a p e r ce n t a g e o f

    i n i ti a l m a s s

    C u r i n g

    ime (days)

    Mixture

    7 28 90

    C o n t r o l

    7.21 7.03 6.61

    BIO 7.93 7.57 7.25

    B20 8.36 8.09 8.09

    B30 8.91 8.65 8.28

    DIO 7.98 7.79 7.58

    D20 8.39 8.23 8.01

    D30 8.51 8.44 8.12

    LIO 7.68 7.39 7.06

    L20 8.23 7.96 7.69

    L30 8.61 8.45 8.05

    PIO 8.03 7.52 7.62

    P20 8.43 7.74 7.62

    P30 8 .68 8 .26 8 .34

    T a b le 6 -

    C o m p r e s s iv e s t r e n g t h f o r

    c o n t r o l

    a n d g r o u n d b r i c k m o r t a r s ( M P a )

    C u r i n g ime (days)

    Mixture

    7 28 90

    C o n t r o l

    52.2 65.3 67.0

    BIO 43.8 61.2 74.0

    B20 39.4 55.4 66.2

    B30 31.2 45.2 55.7

    DIO 40.3 55.0 65.2

    D20 30.1 45.0 55.0

    D30 28.9 35.6 49.1

    LIO 44.7 59.4 69.1

    L20 33.5 48.5 61.5

    L30 27.8 40.5 55.1

    PIO 39.8 55.6 65.5

    P20 34.5 50.1 62.7

    P30 28.3 39.8 57.5

    increases . Further mo re, Parrot [13] has observed that the

    influence o f mois t curing t im e on the rate of water absorp-

    t i o n o f O P C c o n c r e t e is v e r y s m a l l b e y o n d 3 d a y s .

    How ever, i f the O PC in the concrete is part ial ly replaced

    by pozzolans i . e . 30 PFA or 50 GGBS) absorp tion

    rates are initially m uc h grea ter and con tinue to fall signifi-

    cant ly with increased specimen curing t im e up to at least

    28 days. Th e cur ren t observations follow similar trends to

    those observed by Par ro t [13] . I t i s sugges ted tha t the

    observed reduct ions in so rp tiv i ty wi th increased cur ing

    t ime (up to 90 days) of the groun d brick mortars (which

    are condi t ioned in an identical m ann er to the control) i s

    indicat ive ofpo zzolanic act ivi ty which occurs muc h m ore

    s lowly than does cement hydra t ion and has therefo re a

    m uch greater effect at ex tended ages .

    6 . 2 T o ta l w a t e r a b s o r p t i o n

    The disc specimens used for the sorptivity tests were

    recondi t ioned, by oven drying for 24 h at 105~ for use in

    the wa ter absorpt ion tests. The specimens were imm ersed

    in water at 20 + 2~ for a period o f 24 h and the total mass

    of water absorbed was d etermined . Four samples were used

    for each mea sure m ent and the results are given in Table 5.

    Analysis of variance ca rried ou t o n th e absorption results

    on the same basis as that used for the sorptivity measure-

    ments , show ed that the differences betwe en the m eans of

    each set of four results wer e alw ays significant at the 0.01

    level . Fig . 5 shows the variat ion in the total absorpt ion

    wi th cu ring time. It is seen that, irrespective of curin g time

    and source o f brick, the m ortars sho wed increased absorp-

    1 0 -

    1

    - - C o n , r o ,

    9 I ~ L I O

    1~ 83~ j L L~O ~

    8 - : = 8

    s (a ) s (c )

    1

    1 - -

    I , - ~ -o n t r o l ~

    = ~

    . o to i 9 ~ i ~Plo

    g - ~ - D 2 0 [ | ~ a - P 2 0