Top Banner
Art DECO Advancing the Discovery of Earth- Crossing Objects Madlenne Bach ASTE 527: Thangavelu [email protected]
16

Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu [email protected].

Dec 23, 2015

Download

Documents

Maude Maxwell
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Art DECO Advancing the Discovery of Earth-Crossing Objects

Madlenne BachASTE 527: Thangavelu

[email protected]

Page 2: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Not If But When…

<Asteroid Belt Video by Scott Manley>

• 10,000+ Earth-Crossing

Page 3: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Detection 101

• Relative Magnitude• Relative Motion

Page 4: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Why Does When Matter?

• Improve Probability of Detection

• Accurate Risk Assessment

• Increase Responsiveness

• Impact Strategy

Bong Wie, Asteroid Deflection Research Center, Iowa State University

Page 5: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Mandated NASA Catalogues• Spaceguard Survey: 90% > 1km by 2008• NEO Survey 2005: 90% > 140 m by 2020

• 100% > 10 km• 93% > 1 km (2011)• 1% > 140 m (est. 2030)• ? > 45 m <killerasteroids.org animation>

Page 6: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

(Ex-)Discovery Teams• Lincoln Near-Earth Asteroid Research (LINEAR)

– cooperation with the Air Force, MIT's Lincoln Laboratory – 2 one-meter aperture GEODSS telescope 1997,1999– Ground-based Electro-Optical Deep Space Surveillance – 2 square degree field of view, 5x ea evening along the ecliptic plane

• Near-Earth Asteroid Tracking (NEAT) [2007 discontinued]– 1995 U.S. Air Force to use a GEODSS telescope located on Haleakala, Maui– 1997 AMOS 1.2-meter telescope– 2001 1.2 meter aperture Schmidt telescope at Palomar California

• Spacewatch [2008 refining orbits]– 1984, the 0.9-meter, Newtonian f/5 Steward Observatory Spacewatch telescope Kitt Peak, Arizona– 23 nights per month 200 square degrees of sky each month down to magnitude 21, scanned three times thirty minutes apart– ten-meter sized asteroid (1994 XM1)– optical system mod for wider field-of-view 2.9 square degrees

• Lowell Observatory Near-Earth-Object Search (LONEOS) [2008 ceased operations]– 1993 0.6-meter f/1.8 Schmidt telescope in Flagstaff Arizona– fov 2.9 degrees, 4x scans per region over the entire visible sky each month down to a limiting magnitude of about 19

• Catalina Sky Survey (CSS)– 0.7-meter f/1.8 Schmidt telescope, 2.9 degree field, Steward Observatory Catalina Station– Uppsala 0.5-m f/3.5 Schmidt telescope, 2.0 degree field, Spring Observatory, Australia – 1.5-meter f/2.0 prime focus telescope, 1.0 degree field, Steward Observatory Mt. Lemmon station

• Panoramic Survey Telescope And Rapid Response System (Pan-STARRS)– 2010 USAF, U. Hawaii Institute for Astronomy, MIT Lincoln Laboratory, Maui High Performance Computing Center, Science Applications International – use four 1.8 m optical telescopes that will be located either at Mauna Kea or Haleakala in Hawaii– fov approximately 6000 square degrees of sky per night, 75% sky 4x per month, est 1 complete sweep per month

• Japanese Spaceguard Association [track debris in Earth orbit]– 1-meter Cassegrain telescope, field of view 3 degrees, Bisei town, Japan– 2000 0.5-meter telescope with a field of view of 2 x 2 degrees

• Asiago DLR Asteroid Survey (ADAS)– 2001 0.6 m aperture Schmidt telescope Asiago-CimaEkar, Italy

Page 7: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Planned Missions• 20?? NASA [reactivation proposal Sep 2013]– NeoWise Wide-Field Infrared Survey Explorer– Space based infrared, polar orbit– January 2010 to February 2011 – 40 cm aperture telescope– 3.4 and 4.6 micron bands after cryogen ran out 2010

• 2013 DRDC [calibration phase] – Canada’s NEOSSat– Space based

• 2015 ATLAS– 8 20in telescopes– 1 wk > 45m, 3wk > 150m

• 2017? DOD [funds?]– Space Fence (1961)– Ground based– similar to LINEAR

• 2018 B612 Foundation– Sentinel– space-based infrared– claim decades notice

• 2021 NSF – LSST Large Synoptic Survey Telescope– 1-3 mo > 45m, 8yrs > 3km– Ground based 8.5 optical

• 2030 Planetary Resources – Arkyd 100– Space based

Page 8: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Challenges Addressed• Size/Composition

– Continue Multipurpose– IR, Radio

• Speed– Dedicated Ground: ATLAS, LSST– 1-3 mo > 45m, 8yrs > 3km

• Location: NeoWise, NeoSsat– Dedicated Space– Cover Blind Spot: B612

• Range– Kuiper Planet Hunting

• Cost– NeoCam

• Funding – Commercial– Private

• = Data!

Page 9: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Need Responsive Continuous Vigilance• Aggregate Data Organizations

– Minor Planet Center– Spaceguard– GTN– AMON– Climate– Debris– Surveillance

• JPL Sentry System– Calculates Risk

• Asteroid Collisions– Change size– Change orbit

• Comets– Long Period– Eccentric Orbit

Page 10: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

“Data Increases Exponentially, Number of Astronomers Does Not”

• Super Computing– Watson– Billion Dollar Brain

• Grid Computing– Amazon Cloud– Google Cloud

• Crowd Sourcing– SETI @ Home– Protein Folding

• Augmented Analysis– Event Related Potential– Mind Meld

Page 11: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

4,096 qubits by 2018• Quantum Computing

– QAIL Artificial Intelligence Lab– D-Wave 512 qubits– 50,000 x faster

• Planned Applications– Scheduling – Searching

• Proposed Applications– NEO Planning: Continuity– NEO Processing: Responsiveness

Page 12: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Observation Planning• Offer Data Collection Guidance • Model observatories FOV on celestial sphere• Formalize Global Space Observation Network• Similar to DSN - Ensure 100% Coverage 100% Time

Page 13: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Observation Processing• Google I/O– SDSS-WISE – co-added

• Data Fusion – Knit Images

• Further Studies – Hybrid – Quantum Cloud

Page 14: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

Final Thoughts

Page 15: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

References• Quantifying the Risk Posed by Potential Earth Impacts

Chesley S.et al. Icarus 159, 423–432 (2002)

• Radiometric Diameters and Albedos of 40 AsteroidsMorrisson, D. University of Hawaii The Astrophysical Journal, 194: 203-212, 1974 November 15

• NEO-chart.png http://neo.jpl.nasa.gov/stats/• http://www.killerasteroids.org/interactives/impact/impactCalc1024.html

• PREPARING FOR PLANETARY DEFENSE: Detection and Interception of Asteroids on Collision Course with Earth http://www.fas.org/spp/military/docops/usaf/2020/app-r.htm

• Detection of Near-Earth Asteroids http://www.givewell.org/shallow/asteroid-detection

• LSST gif http://m.teachastronomy.com/astropedia/article/Surveys-for-Earth-Crossing-Asteroids

• The Tunguska Event http://web.utk.edu/~comet/papers/nature/TUNGUSKA.html

• New Astronomy Project Seeks 'Buried Treasure' in Huge Databases"The amount of data increases exponentially," group leader Kai Polsterer said in a statement. "The number of astronomers does not.“ http://m.space.com/23415-astronomy-data-overload-astroinformatics-project.html

• IBM to Announce More Powerful Watson via the Internet http://mobile.nytimes.com/2013/11/14/technology/ibm-to-announce-more-powerful-watson-via-the-internet.html

• 10 Breakthrough Technologies: Deep Learning"Last June, Google demonstrated one of the largest neural networks yet, with more than a billion connections. The system correctly categorized objects and themes in YouTube images 16 percent of the time. That might not sound impressive, but it was 70 percent better than previous methods.“ http://www.technologyreview.com/featuredstory/513696/deep-learning/

• IBM Watson www.ibm.com/Watson• The Human Brain Project http://www.bbc.co.uk/news/health-24428162• Epidermal Electronics http://io9.com/5985558/temporary-tattoos-could-make-electronic-telepathy-and-telekinesis-possible• recent article about using magnets to extract rat neurons • http://www.newscientist.com/article/dn24315-neural-stem-cells-pulled-from-rats-brain-using-magnet.html#.UlX_vMvn_qA

Page 16: Art DECO Advancing the Discovery of Earth-Crossing Objects Madlenne Bach ASTE 527: Thangavelu madlenne.bach@usc.edu.

References• What will NASA be doing with its new quantum computer?• D-Wave processors run 512 qubits • schedule jobs on supercomputers• Kepler search for exoplanets• http://io9.com/what-will-nasa-be-doing-with-its-new-quantum-computer-1468333514

• NASA begins exploring quantum computing• D-Wave Two takes about one month to boot up • Classical algorithms and quantum algorithms are not interchangeable• engineers have to map a problem in quadratic unconstrained binary optimization (QUBO)• machine clearly demonstrates quantum tunneling and superposition• Less clear is whether D-Wave Two exhibits quantum entanglement across unit cells beyond those interconnected 8 qubits• NASA plans to upgrade the machine to 2,048 qubits in the next year or two and potentially to 4,096 by 2018• http://fcw.com/Articles/2013/11/22/NASA-quantum-computer.aspx?Page=2

• Google races quantum computer against its own web empire• http://www.wired.co.uk/news/archive/2013-11/15/quantum-nasa

• Google Buys a Quantum Computer• Quantum Artificial Intelligence Lab• at NASA’s Ames Research facility• management of very large and complex systems• D-Wave’s machine frames the problem in terms of energy states, and uses quantum physics to rapidly determine an outcome that satisfies the variables

with the least use of energy• In tests last September, an independent researcher found that for some types of problems the quantum computer was 3,600 times faster than

traditional supercomputers. According to a D-Wave official, the machine performed even better in Google’s tests, which involved 500 variables with different constraints.

• “The tougher, more complex ones had better performance,” said Colin Williams, D-Wave’s director of business development. “For most problems, it was 11,000 times faster, but in the more difficult 50 percent, it was 33,000 times faster. In the top 25 percent, it was 50,000 times faster.”

• http://bits.blogs.nytimes.com/2013/05/16/google-buys-a-quantum-computer/?_r=0