Top Banner
1 A Direct Monte Carlo Approach for Bayesian Analysis of the Seemingly Unrelated Regression Model Arnold Zellner Tomohiro Ando (Chicago GSB) Theodore W. Anderson’s 90 th Birthday Conference, Stanford U.
70

Arnold Zellner Tomohiro Ando (Chicago GSB)

Nov 23, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Arnold Zellner Tomohiro Ando (Chicago GSB)

1

A Direct Monte Carlo Approach for Bayesian Analysis of the Seemingly

Unrelated Regression Model

Arnold Zellner Tomohiro Ando (Chicago GSB)

Theodore W. Anderson’s 90th Birthday Conference, Stanford U.

Page 2: Arnold Zellner Tomohiro Ando (Chicago GSB)

2

Outline

Background, Motivation

Bayesian Inference for the Seemingly Unrelated Regression Model Using a Direct Monte Carlo Procedure

Numerical results

Conclusion and future work

Page 3: Arnold Zellner Tomohiro Ando (Chicago GSB)

3

Outline

Background, Motivation

Bayesian Inference for the Seemingly Unrelated Regression Model Using a Direct Monte Carlo Procedure

Numerical results

Conclusion and future works

Page 4: Arnold Zellner Tomohiro Ando (Chicago GSB)

4

Background and motivation

Page 5: Arnold Zellner Tomohiro Ando (Chicago GSB)

5

SUR model: Overview

Introduced by Zellner (1962)

Many studies have contributed to the analysis of SUR models.

Many textbooks and journal papersZellner (1963),Gallant (1975), Rocke (1989), Neudecker and Windmeijer (1991), Mandy and Martins (1993), Kurata (1999), Liu (2002), Ng (2002) and references therein. Zellner (1971), Judge et al. (1988), Greene (2002), Geweke (2005), Lancaster (2004), Rossi, McCulloch and Allenby (2005) and so on.

Page 6: Arnold Zellner Tomohiro Ando (Chicago GSB)

6

SUR model: Overview Cont. Generalized least squares

Zellner (1962, 1963), GLS, Iterative GLS, finite sample Madansky (1964), Iterative GLS and ML

Bayesian Methods Zellner (1971), et al. , approx. finite sample

posteriors, Stein shrinkage, etc. van der Merwve and Viljoen, (1998), Bayesian MOM

Bayesian Markov Chain Monte Carlo estimation Percy (1992, 1996), Chib and Greenberg (1995), Smith and Kohn (2000) and Rossi et al. (2005))

Page 7: Arnold Zellner Tomohiro Ando (Chicago GSB)

7

SUR model : Motivation

MCMC methods are rather complicated and involve many decisions

Initial parameter valueChoice of an appropriate proposal densityThe length of the burn in periodCheck for convergence

Page 8: Arnold Zellner Tomohiro Ando (Chicago GSB)

8

SUR model : Motivation

Several drawbacks of MCMC

Can we estimate the Bayesian SUR model by using a direct Monte Carlo (DMC) procedure?

Page 9: Arnold Zellner Tomohiro Ando (Chicago GSB)

9

Comparison of DMC and MCMC

Items DMC MCMC (Gibbs)

Need to fix the number of samples drawn Yes Yes

100% acceptance of draws Yes No (Yes)

Require initial parameters value No Yes

Burn-in period setting No Yes

Check for convergence No Yes

Select convergence check criteria No Yes

Selection of a proposal density No Yes (No)

Use of a proposal density No Yes (No)

User friendly

Page 10: Arnold Zellner Tomohiro Ando (Chicago GSB)

10

Outline

Background, Motivation

Bayesian Inference for the Seemingly Unrelated Regression Model Using a Direct Monte Carlo Procedure

Numerical results

Conclusion and future works

Page 11: Arnold Zellner Tomohiro Ando (Chicago GSB)

11

The standard SUR models

Page 12: Arnold Zellner Tomohiro Ando (Chicago GSB)

12

The standard SUR models (1/2)A set of m equations (E.g.,Zellner (1971))

1j j j jX j m= + , = ,..., ,y β u( 1) ( ) ( 1) ( 1)j jn n p p n× × × ×

2

( )' .

( )ij

i ji

I i jE

I i j

ω

ω

≠⎧⎪⎡ ⎤ = ⎨⎣ ⎦ =⎪⎩u u

Page 13: Arnold Zellner Tomohiro Ando (Chicago GSB)

13

The standard SUR models (1/2)

The likelihood function

1diag{ }mX X X= ,...,1( )m′ ′ ′= ,...,y y y

( ) ( )12 2

12 2

1 1( ) exp '( )(2 ) 2

1 1exp tr(2 ) 2

nm n

nm n

L D X I X

R

π

π

−/ /

⎡ ⎤−⎧ ⎫⎢ ⎥

⎨ ⎬⎢ ⎥/ / ⎩ ⎭⎢ ⎥⎣ ⎦

⎡ ⎤| ,Ω = − − Ω ⊗ −⎢ ⎥| Ω | ⎣ ⎦

= − Ω .| Ω |

β y β y β

( ); ( ) ( )ij ij i i i j j jR r r X X′= = − −y β y β

1( ' ')m′ = ,...,β β β

Page 14: Arnold Zellner Tomohiro Ando (Chicago GSB)

14

Bayesian estimation

Page 15: Arnold Zellner Tomohiro Ando (Chicago GSB)

15

Bayesian approach (1/3)

Diffuse prior

Joint posterior distribution

12

1 1 1( ) ( ) ( )m

π π π+−,Ω = Ω ∝|Ω |β β

( 1) 2 11

1( ) exp tr2

n mg D R⎡ ⎤

− + + / −⎧ ⎫⎢ ⎥⎨ ⎬⎢ ⎥⎩ ⎭⎢ ⎥⎣ ⎦

,Ω | ∝| Ω | − Ωβ

Page 16: Arnold Zellner Tomohiro Ando (Chicago GSB)

16

Bayesian approach (2/3)

Conditional posteriors

with

( )1

1

ˆ ˆ( )

( ) ( )

g D N

g D IW R nβ

⎧ | Ω, = ,⎪ Ω⎨

Ω | , = ,⎪⎩

β β

β

1 1 1

1 1

ˆ { ( ) } ( )ˆ ( ( ) )

X I X X IX I Xβ

− − −

− −

′ ′= Ω ⊗ Ω ⊗

′= Ω ⊗Ω

β y

Page 17: Arnold Zellner Tomohiro Ando (Chicago GSB)

17

Bayesian approach (3/3)Normal/inverse Wishart priors

Conditional posteriors

2 2 21

2 0 2 0 0

( ) ( ) ( )

( ) ( ), ( ) ( )N A IWβ

π π π

π π ν−

,Ω = Ω

= , Ω = Λ ,

β β

β β

2

2 0 0

( ) ( )( ) ( )

g D Ng D IW R n

β

ν| Ω, = ,Ω

Ω | , = Λ + , + ,

β ββ

Page 18: Arnold Zellner Tomohiro Ando (Chicago GSB)

18

The DMC procedure for the transformed SUR model

Page 19: Arnold Zellner Tomohiro Ando (Chicago GSB)

19

Transformation(1/2)

The original SUR model

Transformation1 1

2 1 221

1

1

m

m j mmjj

ρ

ρ−

=

=⎧⎪ = +⎪⎪⎨⎪⎪ = +⎪⎩

u eu u e

u u e

M

1,...,jjj jX j m= + =y β u

2

( )'

( )i ji

O i jE

I i jσ

≠⎧⎡ ⎤ = ⎨⎣ ⎦ =⎩e e

Page 20: Arnold Zellner Tomohiro Ando (Chicago GSB)

20

Transformation(2/2)

The transformed model

The likelihood function

1 1 11 11 11

1( ) 2

j

j j jj jl l jj j l ll

X Z

X X Z j mρ−

=

= + ≡ +⎧⎪⎨

= + − + ≡ + , = ,..., ,⎪⎩

y β e b e

y β y β e b e

2 2 21

( ) ( )1( ) exp(2 ) 2

mj j j j j j

nj j j

Z ZL D

πσ σ/=

⎡ ⎤′− −| ,Σ = − .⎢ ⎥

⎢ ⎥⎣ ⎦∏

y b y bb

Page 21: Arnold Zellner Tomohiro Ando (Chicago GSB)

21

Bayesian estimation

Page 22: Arnold Zellner Tomohiro Ando (Chicago GSB)

22

Bayesian analysis of the transformed model (1/3)

Diffuse prior

Joint posteriors

13 3 3

1

( ) ( ) ( ) ( )m

jj

π π π σ −

=

,Σ = Σ ∝ .∏b b

( 1)2

1

( ) ( )( ) ( ) exp

2

mj j j j j jn

jj j

Z Zg D σ

σ− +

=

⎡ ⎤′− −,Σ | ∝ − .⎢ ⎥

⎢ ⎥⎣ ⎦∏

y b y bb

Page 23: Arnold Zellner Tomohiro Ando (Chicago GSB)

23

Bayesian analysis of the transformed model (2/3)

The conditional posteriors

with

( )( )12 21 1

ˆ( ,..., , , ) , ' ,j j j j j j jg D N Z Zσ σ−

−| =b b b b

( ) ( ) ( )21 1

1 1ˆ ˆ( ,..., , ) ' , 1 ,2 2j j j j j j j j jg D IG Z Z n p jσ −

⎛ ⎞| = − − − − +⎜ ⎟⎝ ⎠

b b y b y b

( ) 1ˆ ' ' .j j j j jZ Z Z−

=b y

Normal

Inverse gamma

Page 24: Arnold Zellner Tomohiro Ando (Chicago GSB)

24

Bayesian analysis of the transformed model (3/3)

21 1 1~ ( , )g Dσ|b b

21 1~ ( ,..., , , )m m m jg Dσ−|b b b b

2 22 2 1~ ( , )g Dσ σ |b

2 21 1~ ( )g Dσ σ | 2 2

1 1~ ( ,..., , )m m mg Dσ σ −|b b

22 2 1 2~ ( , , )g Dσ|b b b

Graphical presentation of the conditional posteriors

Page 25: Arnold Zellner Tomohiro Ando (Chicago GSB)

25

A direct Monte Carlo (DMC) sampling procedure:

1: Fix the order of a set of m equations. Set the number of samples N to be generated. Set

2 Generate , , and insert the drawn valuesin . Then make a draw , from , for .

3 Increase the index . Draw from the conditional inverse gamma density , andthen generate from for

4 Repeat Step 3 sequentially until j=m.

1j =

( )21

kσ 1k N= ,...,2

1 1( )Dπ σ| ,b ( )1kb ( )2

1 1( )k Dπ σ| ,b1k N= ,...,

1j j+ ← ( )kjσ

2 ( ) ( )1 1( )k k

j jg Dσ −| ,..., ,b b( )kjb

( )( ) ( )1 1( )kk k

jj jg Dσ−| , ..., , ,b b b 1k N= ,...,

Page 26: Arnold Zellner Tomohiro Ando (Chicago GSB)

26

Some remarks (1/3)

Only set the number of sampling

Improper prior… Bayes factor? BPIC (Ando, 2007)

Informative prior?

Inference on the original SUR model?{ } { },Ω ,Σβ b

?

Page 27: Arnold Zellner Tomohiro Ando (Chicago GSB)

27

One to one relationship

Transform a set of posterior samples

Generate from the conditional posterior

Some remarks (2/3)

( )ˆ{ 1 }k k Nβ ; = ,...,Ω( ) ( )2 2

1 2{ 1 }k k k Nσ σ, , ; = ,...,L

β

2 21 1

1 12 2 2 2

1 1

12

1

( 1)

( 1)

j j

j jk k jk jl lk jk k l k l

j

ji jk ki ji ik k i

j

j

ω σ

ω ρ ω ρ ρ ω σ

ω ρ ω ρ ω

− −

= , = , <

= , ≠

= ,

= + + , ≠ ,

= + , ≠ .

∑ ∑

( )( )( )ˆ ˆ~ kkN β,Ωβ β

Page 28: Arnold Zellner Tomohiro Ando (Chicago GSB)

28

Some remarks (3/3)

The original model

jjj jX= +y β u

2

( )' .

( )ij

i ji

I i jE

I i j

ω

ω

≠⎧⎪⎡ ⎤ = ⎨⎣ ⎦ =⎪⎩u u

12

1( )m

π+−,Ω ∝|Ω |β

Transformed model

j jjj Z= +y b e

2

( )'

( )i ji

O i jE

I i jσ

≠⎧⎡ ⎤ = ⎨⎣ ⎦ =⎩e e

13 3 3

1

( ) ( ) ( ) ( )m

jj

π π π σ −

=

,Σ = Σ ∝ .∏b b

12( 1) 2 2

11

( ) ( ) ( )m

mjm

m jj

Jπ σ− −+ /

=

,Σ ∝| Ω ,Σ | × | | = .∏b b

Page 29: Arnold Zellner Tomohiro Ando (Chicago GSB)

29

Inference on the original modelThe conditional posteriors

( ) ( ) ( )21 1

1 1ˆ ˆ( ,..., , ) ' , 1 ,2 2j j j j j j j j jg D IG Z Z n m p jσ −

⎛ ⎞| = − − − − − +⎜ ⎟⎝ ⎠

b b y b y b

( )( )12 21 1

ˆ( ,..., , , ) , ' ,j j j j j j jg D N Z Zσ σ−

−| =b b b b

( ) ( ) ( )21 1

1 1ˆ ˆ( ,..., , ) ' , 1 ,2 2j j j j j j j j jg D IG Z Z n p jσ −

⎛ ⎞| = − − − − +⎜ ⎟⎝ ⎠

b b y b y b

( )( )12 21 1

ˆ( ,..., , , ) , ' ,j j j j j j jg D N Z Zσ σ−

−| =b b b b

Page 30: Arnold Zellner Tomohiro Ando (Chicago GSB)

30

A direct Monte Carlo (DMC) sampling procedure:1: Fix the order of a set of m equations. Set the number of

samples N to be generated. Set

2 Generate , , and insert the drawn valuesin . Then make a draw , from , for .

3 Increase the index . Draw from the conditional inverse gamma density , andthen generate from for

4 Repeat Step 3 sequentially until completion .

1j =

( )21

kσ 1k N= ,...,2

1 1( )Dπ σ| ,b ( )1kb ( )2

1 1( )k Dπ σ| ,b1k N= ,...,

1j j+ ← ( )kjσ

2 ( ) ( )1 1( )k k

j jg Dσ −| ,..., ,b b( )kjb

( )( ) ( )1 1( )kk k

jj jg Dσ−| , ..., , ,b b b 1k N= ,...,

Page 31: Arnold Zellner Tomohiro Ando (Chicago GSB)

31

Outline

Overview of SUR model

Bayesian Inference for the SUR Model Using a Direct Monte Carlo Procedure

Numerical results

Conclusion and future works

Page 32: Arnold Zellner Tomohiro Ando (Chicago GSB)

32

Numerical results

Page 33: Arnold Zellner Tomohiro Ando (Chicago GSB)

33

Simulation study

Page 34: Arnold Zellner Tomohiro Ando (Chicago GSB)

34

Simulation studyMCMC approach

Two DMC methods

DMC algorithm 1

DMC algorithm 2

13 3 3

1

( ) ( ) ( ) ( )m

jj

π π π σ −

=

,Σ = Σ ∝ .∏b b

12( 1) 2 2

11

( ) ( ) ( )m

mjm

m jj

Jπ σ− −+ /

=

,Σ ∝| Ω ,Σ | | | =∏b b

Page 35: Arnold Zellner Tomohiro Ando (Chicago GSB)

35

Simulation study

The true model

Dimension of X=2n=100 # of DMC sampling 10,000# of MCMC sampling 11,000 (1,000 burn in)

1 1 11

22 2 2

X OO X

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= +y β uy β u

21 12

221 2

0 1 0 050 05 0 2

ω ωω ω

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

. − .⎛ ⎞Ω = = .⎜ ⎟− . .⎝ ⎠1 (3 2)′= ,−β 2 (2 1) '= ,β

Page 36: Arnold Zellner Tomohiro Ando (Chicago GSB)

36

Predictive density

Y10.5

1.01.5

2.0Y2

−0.5

0.0

0.5

1.0

2

4

6

0.5 1.0 1.5 2.0

−0.

50.

00.

51.

0

Y1

Y2

Y10.5

1.01.5

2.0Y2

−0.5

0.0

0.5

1.0

2

4

6

0.5 1.0 1.5 2.0

−0.

50.

00.

51.

0

Y1

Y2

(a)True sampling density.

(b) Estimated predictive density based on the DMC 1.

Page 37: Arnold Zellner Tomohiro Ando (Chicago GSB)

37

Summary of the parameter estimates for DMC1

3.002.002.001.000.100.050.20

Note: Result from 1 dataset

True values

Page 38: Arnold Zellner Tomohiro Ando (Chicago GSB)

38

Summary of the computational time of each methods

The variation of the computational time for each method.

For MCMC, the computational times are measured from the initialization of parameters to the end of posterior sampling.

The computational times for our method are measured from the first posterior sampling to the end of posterior sampling.

Page 39: Arnold Zellner Tomohiro Ando (Chicago GSB)

39

Real data analysis 1

Page 40: Arnold Zellner Tomohiro Ando (Chicago GSB)

40

Incense product sales forecastIn 2006, the size of the market for incense products in Japan was estimated to be about 30 billion yen.

In Japan, traditional incense is used differently from lifestyle incense.

Data consist of the daily sales figures for incense products from April, 2006 to June, 2006.

The data were collected from two department stores, both located in Tokyo.

Page 41: Arnold Zellner Tomohiro Ando (Chicago GSB)

41

Incense product sales forecastingModel

0 1 2 3 4

( 1 100 1 2)jt j j jt j jt j jt j jt jty x x x x u

t j

β β β β β= + + + + + ,

= ,..., , = ,

1

1 ( , , )0 ( )j t

Sunday Saturday National holidayx

Otherwise⎧

= ⎨⎩

2

1 ( )0 ( )j t

Executionx

Nonexecution⎧

= ⎨⎩

3

1 (Fine)0 (Cloudy)-1(Rain)

j tx⎧⎪= ⎨⎪⎩

4

1( )0( )j t

Holdingx

Nonholding⎧

= ⎨⎩

Holiday effect Promotion

Weather effect Event

Page 42: Arnold Zellner Tomohiro Ando (Chicago GSB)

42

Estimation results

DMC1 algorithm is used.

Holiday PromotionWeather Event

Holiday PromotionWeather Event

Page 43: Arnold Zellner Tomohiro Ando (Chicago GSB)

43

Real data analysis 2

Page 44: Arnold Zellner Tomohiro Ando (Chicago GSB)

44

Forecasting economic growthWe forecast the growth rates of real sales of several sectors of the Japanese economy

Agriculture, Automobile and Service

1977~2004, Quarterly data.

1 1 2 3 4 1 5 2j t j t j t j t j t j t jty SR M GDP GDP GDP eβ β β β β, + − −= + + + + + ,

growth rate of TOPIX the logarithm of quarterly real GDP

growth rate of the real monetary base (M2)

Page 45: Arnold Zellner Tomohiro Ando (Chicago GSB)

45

Forecasting economic growthForecasting:

1999, 2nd quarter ~2004 the 4th quarter.

The mean of the predictive densities are used to forecast one quarter ahead growth rates

These sector growth rate forecasts are then transformed into sales forecasts for each sector

1 1ˆ ˆ j tj t j t YyY ,, + , += ×

Actual outcome at time tForecast of one quarter ahead growth

Page 46: Arnold Zellner Tomohiro Ando (Chicago GSB)
ckirby
Text Box
ckirby
Text Box
Page 47: Arnold Zellner Tomohiro Ando (Chicago GSB)

47

Comparison to AR model

2ˆ( )RMSE

ˆMAE

max

min

max

min

t

j j t j tt t

t

j j t j tt t

Y Y

Y Y

, ,=

, ,=

= − ,

= | − |,

The SUR model with DMC1 algorithm is used.An AIC score is used to select the AR model

Page 48: Arnold Zellner Tomohiro Ando (Chicago GSB)

48

Outline

Overview of SUR model

Bayesian Inference for the SUR Model Using a Direct Monte Carlo Procedure

Numerical results

Conclusion and future works

Page 49: Arnold Zellner Tomohiro Ando (Chicago GSB)

49

Conclusion

Page 50: Arnold Zellner Tomohiro Ando (Chicago GSB)

50

ConclusionA direct Monte Carlo (DMC) approach for Bayesian analysis of SUR models.

Some advantages of DMC

The method performed well in Monte Carlo experiments and applications using actual data.

We can recommend our DMC approach for the analysis and use of the SUR model.

Page 51: Arnold Zellner Tomohiro Ando (Chicago GSB)

51

Conclusion

Items DMC MCMC

Need to fix the number of samples drawn Yes Yes

100% acceptance of draws Yes No

Doesn't require initial parameters value Yes No

Doesn't need a burn-in period setting Yes No

Doesn't need to check for convergence Yes No

Doesn't need to select convergence check criteria

Yes No

Doesn't require selection of a proposal density

Yes Yes / No

Doesn't require use of a proposal density Yes Yes / No

User friendly

Page 52: Arnold Zellner Tomohiro Ando (Chicago GSB)

52

Future workThe DMC approach can be applied to more complex variants of the SUR model, for example those involving use of regression splines, wavelet bases, and so on.

Fat-tailed error.

Numb. of sampling

Our method can be applied to the widely used simultaneous equation model.

Forecasting Japanese economy by MMM model

Page 53: Arnold Zellner Tomohiro Ando (Chicago GSB)

53

References (1/5)Ando, T. (2007), "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models,'' Biometrika, 94, 443-458.Box, G. E. P. and Tiao, G. C. (1973), Bayesian Inference in Statistical Analysis, Reading, MA: Addison-Wesley. Brooks, SP. and Gelman, A. (1997), "General methods for monitoring convergence of iterative simulations,'' Journal of Computational and Graphical Statistics, 7, 434-455. Carlin, B. and Louis, T. (1996), Bayes and empirical Bayes methods for data analysis, New York: Chapman and Hall. Carroll, R. J., Doug M., Larry F. and Victor K. (2006), "Seemingly unrelated measurement error models, with application to nutritional epidemiology,'' Biometrics, 62, 75-84. Chib, S. and E. Greenberg (1995), "Hierarchical Analysis of SUR Models with Extensions to Correlated Serial Errors and Time-Varying Parameter Models,'' Journal of Econometrics, 68, 339-360. Frasera, D.A.S., Rekkasb, M. and Wong, A. (2005), "Highly accurate likelihood analysis for the seemingly unrelated regression problem,'' Journal of Econometrics, 127, 17-33. Gallant, R. (1975), "Seemingly unrelated nonlinear regressions,'' Journal of Econometrics, 3, 35-50. Gelman, A and Rubin, D.B. (1992), "Inference from iterative simulation using multiple sequences,'' Statistical Science, 7, 457-511.

Page 54: Arnold Zellner Tomohiro Ando (Chicago GSB)

54

References (2/5)Geweke, J. (1992), "Evaluating the accuracy of sampling-based approaches to calculating posterior moments,'' In Bayesian Statistics 4, eds. J.M. Bernado, J.O. Berger, A.P. Dawid, and A.F.M. Smith, Oxford: Clarendon Press, pp. 169-193. Geweke, J. (2005), Contemporary Bayesian Econometrics and Statistics, New York: Wiley. Greene, W.H. (2002), Econometric Analysis (5th ed.), New Jersey: Prentice-Hall.Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice, New York: Chapman and Hall. Heidelberger P and Welch PD. (1983), "Simulation run length control in the presence of an initial transient,'' Operations Research, 31, 1109-1144. Judge, G., Hill, R., Griffiths, W., Lutkepohl, H., Lee, T. (1988), Introduction to the Theory and Practice of Econometrics. New York: Wiley. Kim, J. K S., Shephard, N. and Chib, S. (1998), "Stochastic volatility likelihood inference and comparison with ARCH models,'' Review of Economic Studies, 65, 361-393. Kowalski, J. R. Mendoza-Blanco, X. M. Tu, and L. J. Gleser (1999), "On the difference ininference and prediction between the joint and independent t-error models for seemingly unrelated regressions,'' Communications in Statistics, Part A - Theory and Methods, 28, 2119-2140. Kurata, H. (1999), "On the efficiencies of several generalized least squares estimators in a seemingly unrelated regression model and a heteroscedastic model,'' Journal of Multivariate Analysis, 70, 86-94.

Page 55: Arnold Zellner Tomohiro Ando (Chicago GSB)

55

References (3/5)Jeffreys, H. (1946), "An Invariant Form for the Prior Probability in Estimation Problems,'' Proceedings of the Royal Society of London, Series A, 196, 453-461. Jeffreys, H. (1961), Theory of Probability (3rd ed.), Oxford: Oxford University Press. Lancaster T. (2004), Introduction to Modern Bayesian Econometrics, New Jersey: Cambridge University Press.Liu, A. (2002), "Efficient estimation of two seemingly unrelated regression equations,'' Journal of Multivariate Analysis, 82, 445-456. Mandy, D. M. and Martins-Filho, C. (1993), "Seemingly unrelated regressions under additive heteroscedasticity: theory and share equation applications,'' Journal of Econometrics, 58, 315-346. Meyer et al. (2003), "Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter,'' Econometrics Journal, 6, 408-420.Neudecker, H. and Windmeijer, F. A. G. (1991), " in seemingly unrelated regression equations,'' Statistica Neerlandica, 45, 405-411. Ng, V. M. (2002), "Robust Bayesian Inference for Seemingly Unrelated Regressions with Elliptical Errors,'' Journal of Multivariate Analysis, 83, 409-414. Percy, D. (1992), "Predictions for Seemingly Unrelated Regressions,'' Journal of the Royal Statistical Society B, 54, 243-252. Percy, D.F. (1996), "Zellner's Influence on Multivariate Linear Models,'' in Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner, eds. D.A. Berry, K.M Chaloner and J.K. Geweke, New York: John Wiley and Sons, pp. 203-214.

Page 56: Arnold Zellner Tomohiro Ando (Chicago GSB)

56

References (4/5)Press, S. J. (1972), Applied Multivariate Analysis, New York: Holt, Rinehart and Winston, Inc. Raftery, A.E. and Lewis, S.M. (1992), "One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo,'' Statistical Science, 7, 493-497. Rocke, D. M. (1989), "Bootstrap Bartlett adjustment in seemingly unrelated regression,'' Journal of the American Statistical Association, 84, 598-601. Rossi, P.E, Allenby, G. and McCulloch, R. (2005), Bayesian Statistics and Marketing, NJ: John Wiley and Sons. Schruben L.W. (1982), "Detecting initialization bias in simulation experiments,'' Operations Research, 30, 569-590. Smith, M. and R. Kohn, (2000), "Nonparametric Seemingly Unrelated Regression,'' Journal of Econometrics, 98, 257-282. Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and van der Linde, A. (2002), "Bayesian measures of model complexity and fit (with discussion),'' Journal of the Royal Statistical Society, Series B, 64, 583-639.Srivastava, V. K. and Giles, D. E. A. (1987), Seemingly Unrelated Regression Equations Models, New York: Dekker. Tierney, L. (1994), "Markov chains for exploring posterior distributions (with discussion),'' Annals of Statistics, 22, 1701-1762. van der Merwe, A., Viljoen, C. (1988), "Bayesian analysis of the seemingly unrelated regression model,'' Manuscript, University of the Free State, Department of Mathematical Statistics.

Page 57: Arnold Zellner Tomohiro Ando (Chicago GSB)

57

References (5/5)Zellner, A. (1962), "An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias,'' Journal of the American Statistical Association, 57, 348-368. Zellner, A. (1963), "Estimators for seemingly unrelated regression equations: some exact finite sample results,'' Journal of the American Statistical Association, 58, 977-992. Zellner, A. (1971), An introduction to Bayesian inference in econometrics, New York : Wiley. Zellner, A. Bauwens, L. and Van Dijk, H. K. (1988), "Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo Methods,'' Journal of Econometrics, 38, 39-72. Zellner, A. and Chen, B, (2002), "Bayesian Modeling of Economies and Data Requirements,'' Macroeconomic Dynamics, 5, 673-700.Zellner, A. and Min, C.K. (1995), "Gibbs Sampler Convergence Criteria,'' Journal of the American Statistical Association, 90, 921-927.

Page 58: Arnold Zellner Tomohiro Ando (Chicago GSB)

58

Appendix

Page 59: Arnold Zellner Tomohiro Ando (Chicago GSB)

59

Appendix1: MCMC sampling algorithm (1/3)

Page 60: Arnold Zellner Tomohiro Ando (Chicago GSB)

60

Appendix1: MCMC sampling algorithm (2/3)

Page 61: Arnold Zellner Tomohiro Ando (Chicago GSB)

61

Appendix1: MCMC sampling algorithm (3/3)

Page 62: Arnold Zellner Tomohiro Ando (Chicago GSB)

62

Summary of the parameter estimates for DMC2

3.002.002.001.000.100.050.20

True values

Note: Result from 1 dataset

Page 63: Arnold Zellner Tomohiro Ando (Chicago GSB)

63

Summary of the parameter estimates for MCMC

3.002.002.001.000.100.050.20

True values

Note: Result from 1 datasetIn Appendix, the MCMC details are described

Page 64: Arnold Zellner Tomohiro Ando (Chicago GSB)

64

Summary of the results (100 Monte Carlo trials, n=50)

3.002.002.001.000.100.050.20

True values

Page 65: Arnold Zellner Tomohiro Ando (Chicago GSB)

65

Summary of the results (100 Monte Carlo trials, n=100)

3.002.002.001.000.100.050.20

True values

Page 66: Arnold Zellner Tomohiro Ando (Chicago GSB)

66

Summary of the results (100 trials; the same data)

Page 67: Arnold Zellner Tomohiro Ando (Chicago GSB)

67

Variable selection

IC 2 log ( ) ( ) 2L D g D d d s= − | ,Σ ,Σ | Σ + × ,∫ b b b

Improper prior Bayes factor

Information criteria

BPIC (Ando, 2007)

DIC (Spiegelhalter et al. 2002)log ( ) log ( ) ( )s L D L D g D d d= | ,Σ − | ,Σ ,Σ | Σ∫b b b b

dim{ } dim{ }s = + Σb

Page 68: Arnold Zellner Tomohiro Ando (Chicago GSB)

68

Variable selection results (100 Monte Carlo trials)

Page 69: Arnold Zellner Tomohiro Ando (Chicago GSB)

69

Summary of the parameter estimates from other MCMC setting

Following the suggestion for the MCMC method of Meyer et al. (2003), we set the proposal density for beta as normal with mean equal to the posterior mode and the variance equal to 1/10 of the previous one

Meyer et al. (2003) Previous table

Page 70: Arnold Zellner Tomohiro Ando (Chicago GSB)

70