Top Banner
Copyrig ht © SEL 2004 Local and Wide-Area Network Protection Systems Improve Power System Reliability  A. Guzman D. Tziouvaras E. O. Schweitzer Schweitzer Engineering Laboratories, Inc. K. E. Martin Bonneville Power  Administration
33

Armando Guzman

Jun 01, 2018

Download

Documents

pvenky_kkd
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 1/33

Copyright © SEL 2004

Local and Wide-Area

Network Protection SystemsImprove Power System Reliability

 A. Guzman

D. Tziouvaras

E. O. Schweitzer Schweitzer Engineering

Laboratories, Inc.

K. E. Martin

Bonneville Power

 Administration

Page 2: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 2/33

Power System Challenges

l Load-generation separation

l Environmental restrictions (NIMBY)

l Limited network growth

l Network resource optimization

l Separate companies for G,T,D

Page 3: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 3/33

Main Causes of 

Wide-Area System Disruptions

l Voltage collapse

l Rotor angle instability

Page 4: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 4/33

Voltage Collapse Per Carson Taylor 

“A power system at a given

operating state and subject to a

given disturbance undergoes voltage

collapse if post-disturbance equilibriumvoltages are below acceptable limits”

Power System Voltage Stability , EPRI,

ISBN 0-07-063184-0

Page 5: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 5/33

Generation ≠ Load DuringTransient Angle Instability

Generators cannot deliver their totaloutput power to the system

Page 6: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 6/33

Voltage Collapse Evolves

Into Angle Instability

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

   V

  o   l   t  a  g  e   (  p  u

   )

-0.8

-0.4

0

0.4

0.8

Page 7: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 7/33

Slow Fault Clearing Time

Initiates Voltage Collapse

Zone

2

Zone

2

Zone

2

51

51

Restof Power 

System

Page 8: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 8/33

Page 9: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 9/33

Out-of-Step Detection Logic

Avoids Zone 1 Tripping

Page 10: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 10/33

Transmission Line Tripping

During System Oscillation in Idaho

Page 11: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 11/33

Wide-Area Protection Systems

Protection systems to minimize risk

of wide-area disruptions and increasesystem power transfer capability

Page 12: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 12/33

Wide-Area Network Undervoltage

Load-Shedding Scheme (BC Hydro)

Rest of Power 

System

Load Load

Load

 Area

1

U/V

 Area

2U/V

U/V

 Area 3

Page 13: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 13/33

U/V Load Shedding Is Enabled

Only if Synchronous Condenser

Output Is Close to Rated Output

t1

MVAR Output Close to Rated

U/V

Shed

Block 1

 Area 1

 Area 2

 Area 3

 Area 3

Synch

Cond

 AND

1

 AND

2

OR

 1  AND

3

t2

t3

Shed

Block 2

Shed

Block 3

U/V

U/V

Page 14: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 14/33

Area 2 Generation Depends on System

Real-Time Transmission Capability (CFE)

 Area 1

Heavy

Load

Real Power andOpen Line Monitor 

 Area 3

Light

Load

 Area2

Line 1

Line 2Line 3

Page 15: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 15/33

Scheme Sheds Generation When

Two Lines Open and P > 1100 MW

Line 1

Line 2

Line 3

Two

Lines

Open

1100 MW

 And

Trip ExcessGeneration

in Area 2

Line Open

Σ

 –

+

Line Open

Line Open

MW

MW

MW

Page 16: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 16/33

Wide Area Protection Schemes

in the Western United StatesKemano

Colstrip

Malin

John Day

Peace River 

Midpoint

Jim Bridger 

IPP

Captain

Jack

Grand

CouleeChief 

Joseph

Four Corners

Tesla

San

Onofre

Palo Verde

Page 17: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 17/33

Enhance Power Transfer Through

Wide-Area Network Protection (US)

   L   i  n  e

   3

   L   i  n  e

   2

   L   i  n  e

   1North Intertie

South Intertie

East Intertie

 Area 4 Area 1

Real Power and

Open Line Monitor 

 Area 2  Area 3

Real Power 

Monitor Line 4

Line 6Line 5

   L   i  n  e   7

   L   i  n  e   8

Pacific NW

PG&E SCE

Page 18: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 18/33

Inter-Area Power Flow Determines

Set of Actions to Avoid Disruption

0-1500

 A2 to A3

(MW)

 A2 to A1

(MW)

I,II

IV

II

I

V

IV III

I,II V

No Actions

in Area 2900

0

3675

Page 19: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 19/33

Set IV Actions for Three-Line-Open

Condition Between Area 1 and Area 2l  Area 2 informs Area 1 of line-open

conditions in the intertie

l Pacific NW WAPS trips generation

l System separates into north and south

networks

l System sheds pump load in Area 2

l Resistor dynamic brake inserted at Area 1

Page 20: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 20/33

Model to Study Voltage Stability

(Kundur, Power System Stability and Control)

11

1

10

Open

Open

5

2

376

8

9

Z=Constant

P=1692 MWQ=485 MVAR

P=207 MWQ=58 MVAR

Z=Constant

I=Constant

P=3844 MWQ=1194 MVAR

Page 21: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 21/33

Voltages for Buses 8 and 9 Drop

Below the 95 Percent Threshold for

Two-Line Loss Between Buses 6 and 7

0 5 10 15 20 25 30

   V

  o   l   t  a  g  e

   (  p  u   )

Seconds

0.8

0.9

1

0.95 Bus 8

Bus 9

Threshold

Page 22: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 22/33

Inverse-Time Undervoltage Elements

Shed Low-Voltage Loads First

0.2 0.4 0.6 0.8

Voltage (pu)

   S  e  c  o  n   d

  s

0

5

10

15

Page 23: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 23/33

Bus 8 Voltage Recovers After 

the ITUV Element Drops the Bus 9 Load

0 5 10 15 20 25 30

   V  o   l   t  a  g  e   (

  p  u   )

Seconds

0.8

0.9

1

1.1

Bus 8

Bus 9

Page 24: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 24/33

Synchronized Phasor Measurements

in the Western United States

Page 25: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 25/33

Synchronized Phasor 

Measurement System at BPA

PMU

PDC

StreamReader 

display and recording

Direct data

exchange withother utilities

Phasor DataConcentrator 

(PDC)

SCADA

Data storage

 Analog datameasurement

 –substations

Data inputand management

 –control center 

Other displays

Operation monitors

 –display and alarms Real-time

system controls

PMU

PMU

PDC

Voltage and

reactivestability

Inter-area

angle limits

Page 26: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 26/33

StreamReader   Application

Page 27: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 27/33

Wide-Area Protection / Control Using

Synchronized Phasor Measurements

PDC(data concentrator 

that inputs

and correlates

phasor data)

SVC

WACS Controller 

(calculations,

outputs)

Wideband data output by Ethernet

Digital outputs to

WAPS controller 

WAPS Controller 

(access to

trip circuits)

Dynamic Brake

Generator Trip

PMU

PMU

PMU

Page 28: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 28/33

Voltage Swing for a Double

Palo Verde Outage (2700 MW)

   V

  o   l   t  a  g  e   (  p

  u   )

CouleePearl

JohnDay

Olinda

Malin

Seconds

Tuesday, June 03 13:56:56 2003

200 2 4 6 8 10 12 14 16 18

1.2

1.10

1.00

0.90

0.80

Page 29: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 29/33

Response to 750 MW Loss

in Northeast Washington

   F  r  e  q  u  e  n  c  y   D  e

  v   i  a   t   i  o  n   F  r  o  m    N

  o  m   i  n  a   l   -  m   H  z

51 52 53 54 55 56 57

Seconds - starting at 15:41:44 on 7/7/99

Malin

Grand

Coulee

Vincent

 –.020 Hz

0.9 s

0

 –20

 –40

 –60

Page 30: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 30/33

Grand Coulee Frequency,

Coulee-Vincent Phase Angle,

Los Angeles Generator Output

54

Generator Output

in Los Angeles Area

Phase Angle FromCoulee to Vincent

Initial

Fault

Grand Coulee

Frequency

  m

   H  z

   /   D  e  g  r  e  e  s

Seconds - starting at 15:41:44 on 7/7/99

51 51.5 52 52.5 53 53.5

90

80

70

60

50

40

30

20

Page 31: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 31/33

1400 MW Dynamic Brake

at Chief Joseph Substation

Page 32: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 32/33

Conclusions (1)

l Use breaker failure together with direct

transfer trip instead of Zones 2 and 3 for

backup protection

l Timely, appropriate actions are required

to avoid system disruptions

l

Wide-area protection systems minimizerisk of system disruptions and increase

power transfer capacity

Page 33: Armando Guzman

8/9/2019 Armando Guzman

http://slidepdf.com/reader/full/armando-guzman 33/33

Conclusions (2)

l Time-synchronized measurementsimprove power system dynamics

assessment

t They can be used for analysis and controls

l Inverse-time undervoltage elements

optimize load shedding to prevent system

voltage collapse without communications!