Top Banner

of 10

ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

Jun 03, 2018

Download

Documents

castille1956
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    1/10

    RockMechamcs s a Multtd/sc/phnarycience,Roegiers ed ) 1991 Balkema, Rotterdam. ISBN906191 194XComparisonf directshear ndhollowcylinder ests nrockjointsTimothyB.Reardon, ricC.Drumm& DanLange-KombakInstituteor Geotechnology,epartmentf CivilEngineering,heUniversity f Tennessee,Knoxville, Tenn.

    ABSTRACT: For the fundamentalstudy of the behavior of rock joints, and thedevelopmentf constitutive odelsor oint response, hollow ylinder pparatusHCA)hasbeen developed o overcomehe deficiencies ssociated ith the direct sheardevice.A seriesof baseline estshavebeenperformed o compare he resultsobtainedwith theHCA to thoseof the directsheardevice.The resultsndicate hat the HCA yieldsslightlylower friction angles han the direct sheardevice. However, he initial stiffness btainedin the HCA is greater, probably a result of the increased igidity of the torsionalconfiguration.1 INTRODUCTIONThe convenience f the direct sheardeviceexplains ts widespread se to determine hebehavior f rock oint strength nddeformationalesponseBrown1981;Franklin1985;Sun,et al. 1985;HutsonandDowding1990). Alongwith this convenienceomeseveralsignificantimitations.These imitationsnclude he inability o determine he principalstressesxcept t failure,nonuniform tressest the oint, andhighstress oncentrationsat the edges. n addition, he response nder argedisplacementsanonlybe assessedyreversing he directionof shear, and joint water pressure s difficult to control andmeasure.Although he directsheardevices appropriateor design nd analysis,t is notadequate or a fundamental tudyof the behaviorof rock oints or for the developmentof constitutivemodels or joint response.

    Hollowcylinder pecimensavebeenutili7.edo overcomehe deficienciesssociatedwith the directsheardevice Kutter 1974;Olsson 986;Olsson1988;Power,et al. 1988;Yoshioka ndScholz1989). With the discontinuityrientedperpendicularo the axisofthe cylinder, force s appliedalong he axis. A torque s then appliedabout hat axis,thusallowing or the determination f the shearing tressesequired o deform rotate)the oint (Figure1). The historical seof thin-walled nnular pecimensf softsubjectedto an applied orque s well documentednd s gaining opularityHvorslev 939;Bishop,et al. 1971;Lade 1981;Hight, et al. 1983;Saada1988). Due to the favorable tress tatein thesedevices, imilargeometries avebeenused n the studies f othermaterialsikeintact rock (Handin, et al. 1967;Christensen, t al. 1974;Cox and Scholz1988) and thehigh emperature estingof concrete nd rock (Bazant,et al. 1981;Bazant,et al. 1986).The geometry f the hollow ylinder pparatusHCA) lends tself o an investigationfthe effectsof various tress athsand anisotropy ssociated ith manymaterials Saada1988). An additionaladvantages the continuous ontactof the discontinuityurface,which alleviates he stress oncentrationshat occur n direct shearat the leadingandtrailingedgesof the joint.

    1115

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    2/10

    NORMAL 8TRESS

    OI$CO#TI NUITY

    SHEAR STRESS

    CONFININGPRESSURE

    Figure 1. Schematic f the hollowcylindergeometry nd stressorientationsThe University f Tennessee-Hollowylinder pparatusUT-HCA) hasbeendevelopedto perform fundamentalnvestigationseeded or studying nd modeling ock jointbehavior Drumm 1988) Figure2). Unlike earlierHCA's used or joint testing,he UT-HCA will allow he application ndcontrolof the confining ressure pplied o both he

    inner and outer cylinderwalls,and the joint waterpressure t the joint interface. Thesampleused n the UT-HCA has an insideand outsidediameterof 100mmand 150mm,respectively. n MTS biaxial oad ramewith an electro-hydraulicosed-loopystemsused o control he normalstressaxial orce)and shearstress torque). A functiongenerator ontrolshe rate of displacementndcyclicotationof the UT-HCA specimen.The normalstressand shearing tress an be calculated y the following quations(Hight et al. 1983):

    P(1) o---A3T(2) - 2r(b-a )

    whereP is the normal orce,A is the joint surface rea,T is the torque,a is the innerradius, and b is the outer radius.2. BASELINE TESTING PROGRAMPrior to beginning fundamentalnvestigationf joint response, series f baselineestsare needed o compare esultsobtainedwith the UT-HCA to those rom the standarddirect shear test. Since the state of stress in the UT-HCA is different from that in thedirectshear evice, ifferencesn the strength nddeformationalesponseanbe1116

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    3/10

    OAD CELL

    CELL AIR RELIEFUPPER SAMPLEHOLDER

    RING

    SPECIMENTIE ROD(8)ACRYLICTUBE

    LOWERSAMP1HOLDER

    PORE PRESSURE

    CELLDRAIN

    PORE BUSHINGPRESSURE(2) 3' DIAM.HAFT& NST,___] FLUIDONTAINMENTLOCKS l U-lIll Ill. . _MTSINEAR/ROTARCTUATOR

    Figure2. Sectionhroughhe Unersi of Tennessee-HollowylinderApparatusUT-HCA)expected. The testsdescribed ere have been conductedo compare he responseobtained from the two devices.

    Baselineesting asbeenperformed n smooth, ry, artificialsaw-cutoints. The rockused s a crystallineimestone ith algal aminations. wo differentgeometries avebeenused n the directsheardevice: he standard quare 00mm 100mm ampleFigure3a)anda rectangular5mmx 100mm ampleFigure3b). The attergeometry imulateshe25mmwall thickness f the UT-HCA (Figure3c) and evaluateshe effectsof samplewidth.All jointsweresawcut andmachinedn a surface rinderprior to testing.Specimensused n the directshear estswere hen"run-in" yhand o assureull contact etween hetwo specimenalves:The hollow ylinder pecimensere nstalledn the UT-HCA andcyclically hearedunder low normal stress less than 700 kPa). In both cases, heaccumulated ougewasremovedperiodically uring"run-in" o assure clean oint.

    1117

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    4/10

    P P P

    T T

    (a) (b) (c)Figure 3. Geometriesused n benchmark esting: direct shearsamples a) 100mmx100mm, b) 25mmx 100mm, nd UT-HCA sample c) I.D. = 100mm,O.D. = 150ram

    After the testswithoutgougewere completed, dditional run-in"was performeduntilthe interfacewascoveredwith gouge. This results n an additionalsurfacecondition orcomparison f directshearand UT-HCA response.The condition f the joint interfaceis found o have he greatestnfluence n the overallshear trength.Substantialncreasein the shearstrengthwas oundwhengouge s accumulated. or thisreason, esultsbothwith and withoutgougeare shown.Testswith both deviceswere performedover a rangeof normal stress onsistentwiththat required or a typical nalysis f rockslopes.The UT-HCA testswereconducted itha sinusoidal isplacement f approximately .06 radians, esulting n a rate of 0.08rad/min.The directshear estswereconductedt a displacementate of 1.0cm/min, n a singledirection.Characteristichearstress s.displacementurves, bservedor both the directsheardeviceand the UT-HCA, are shown n Figure4. To permit the directcomparisonof results rom the two devices,he horizontal cale or the directshear esults orrespondsto that shownor the UT-HCA resultsi.e., 0.10 adians= 0.75cm).Thiscomparisonsbasedon the relativedisplacementt the outside ircumferencef the UT-HCA specimen.For the tests un withoutgougen the UT-HCA, a rapid ncreasen shearstress ccursovera smalldeformation ntila peakshearstresss reached,Figure4b). As deformationcontinues, he shear stressdecreases o a relatively constant esidual shear stress. Adecreasen the residual hearstrengths observed versubsequentycles, imilar o thatreported by Hudson and Dowding 1990). A similar peak and residualshear stressresponse re observedn the directsheardevice, Figure4a).For those testsrun with gouge n the UT-HCA, a peak shear stress s no longerobserved. The shear ncreases apidly with little deformationuntil slip begins,and asdeformation ontinues,he shearstress lowlyncreases,Figure4b). With reversalof thetorque,a similar,parallelcurve s observed.On continuation f the test,the hysteresiscurvereproducestself. A similarmonotonicncreasen shearstresss observed or the

    direct shear ests, Figure 4a).

    1118

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    5/10

    I,O

    -1.0-0 IoDIRECTHEAR/oIougeDIRECTHEAR/g,uge75 0.0 0.75DEFLECTIONcm)

    1,0

    b.J

    o UT-HCAw/o gouge[] UT-HCAw/ gouge

    -1 .O-O.1 O,0 0,1DEFLECTIONradians)Figure4. ShearStress s.DeflectionCurve or the (a) Direct ShearDevice normalstress= 801 kPa w/o gouge& 604 kPa w/gouge) and (b) Universityof Tennessee-HollowCylinderApparatusnormalstress 352 kPaw/o gouge& 1057kPaw/gouge)

    1119

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    6/10

    200

    10OO

    wn 0

    2O0

    100mm x 100mmw/o gougeo 100mmx 100mmw/gouge 100mm x 25mm w/o gouge_ 100mmx5ram/gouge

    200 400 600 00 1000 200NORMALTRESSkPo)

    1800

    1600

    1400

    '' 200U"} 1 000

    u o

    400

    200

    i . ii '',"'' I'''l'''l''' l'''l oUT-HCAw/ogouge', UT-HCAw/gouge

    200 400 600 800 1000 1200 400 1600 800NORMALTRESSkPa)

    Figure . Mohr-Coulombnvelopeorthe a) DirectShearDevice nd b) UniversityfTennessee-HollowylinderApparatus

    1120

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    7/10

    From the results btained, seriesof Mohr-Coulomb nvelopesre developedor eachof the three geometries square, ectangular, nd circular) and for the two surfaceconditionswith and withoutgouge), Figure5). From the Mohr-Coulomb nvelopes,frictionanglesweredetermined y inear egressionndare summarizedn Table 1.The results rom the two sample izesused n the directsheardevice ndicate hat the

    frictionangles re similar, uggestinghata changen samplewidthhas ittle effecton theoverallstrength. The resultsalso ndicate hat if the displacements assumed onstantacross he radius of the UT-HCA, wall thicknesshas little effect on the strength.Differencesn the observedtrength re thereforedue o the stress tate,variationof slipacross he radius,and the conditionof the joint surface. Theseresultssuggesthat thefrictionangles btained ith heUT-HCA are slightlyess han hoseobtained ith directshear.The results for both the direct shear and HCA indicate that an increase in the shearstrengths observed fter a substantialoatingof gouge s developed.This increasenstrengthwith accumulatedouges counter o previous bserved ata (Jaeger nd Cook,1976). Traditionally,he peakstrength ccursn a dean oint anddecayso the residual

    valueasgouge evelops. ittle hasbeen eportedon he effects f substantialouge uild-up under a large numberof loadingcycles. Therefore, esting s required o furtherinvestigatehis effect.A comparison f the shearstress-displacementurves rom Figure4 indicates hat theUT-HCA resultsn a stiffer nitial response, othwith andwithoutgouge.This couldbea resultof the stress oncentrationsssociated ith the directsheardevice, eading o aprogressiveype of failurestartingat the edges nd progressingoward he center. Thisdifferencen initial stiffness analsobe attributed o the greatercompliance f the directshear device.

    3 CONCLUSIONSWith the increased oncern ver he complex ehaviorof geo-materialsomes need ormore sophisticatedonstitutivemodels.Suchconstitutive odelscan onlybe developedwith a completeunderstandingf the fundamentalmechanics f the behavior. A welldefinedstress tateand he controlof stress athare essentialor thisunderstanding. heUT-HCA hasbeendevelopedust or suchnvestigations.owever,with the developmentof sucha research ool, t is essentialhat the resultsobtainedbe validatedwith respectto standardestmethods. he baselineest esults resentedn thispaperare an attemptto offer such a confirmation.

    Table 1. Summary f frictionangles.FrictionAngle(de, ees)I Specimenithoutithize gouge gouge

    Direct 100mm x 100mm 10.2 36.0ShearDevice 100ram 25ram 8.5 37.0UT-Ho low 150ram O.D.Cylinder x 8.3 33.5Apparatus 100mm.D.

    1121

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    8/10

    These initial results indicate that the shear strength obtained with the UT-HCAcomparesavorably ith that of the widelyuseddirectsheardevice.Thiscomparison asmade for two different oint conditions. Preliminary esults ndicate hat the initialstiffness btainedwith the UT-HCA is greater han that obtained n direct shear. Thedifferences probably resultof stress oncentrationsndcompliance ithin the directshear device.Although hese ests ndicate hat the UT-HCA canbe an important esearchool forthe investigationf rock oint behavior, urther estingwith different ockmaterialss stillrequired.

    4 ACKNOWLEDGEMENTSThis researchhas been supportedby the National ScienceFoundationunder contractsMSM-8604873andMSS-8915675.We would ike to thankW. J. Long or hiscontributionsto the developmentf the UT-HCA, C. S. Allin for his assistance ith the directsheartests, and W. F. Kane and D. W. Sherwood for their review and comments on themanuscript.REFERENCESBazant,Z.P., J.D. Hess& S. Meiri (1981). "HighTemperature riaxial-Torsional achinefor Concrete nd Rock,"Geophysicalesearchetters, (7), 707-708.Bazant,Z.P., S. Prasannan, . Hagen,S. Meiri, R. Vaitys,R. Klima & J.D. Hess 1986)."LargeTriaxial-Torsional estingMachinewith HydrothermalControl,"Materiaux tConstructions,9(112),285-294.Bishop,A.W., G.E. Green,V.K. Garga,A. Andresen& J.D. Brown 1971). "A New RingShear Apparatusand its Application o the Measurementof Residual Strength,"Geotechnique,1(4), 273-328.Brown,E.T., ed. (1981). Rock Characterization,esting, nd Monitoring: nternationalSocietyor RockMechanics, uggestedethods, ermagon ress,Elmsford,NY, 129-137.Christensen, .J.,S.R. Swanson W.S. Brown 1974). "Torsional hearMeasurementsof the Frictionalpropertiesof WesterlyGranite,"Proc.Third Congressnt'l SocietyorRock Mech., Denver, Vol. IIA, 221-225.Cox, S.J.D.& C.H. Scholz 1988). "Rupturenitiation n ShearFractureof Rocks:AnExperimental tudy," ournalof Geophysicalesearch,3(B4), 3307-3320.Drumm,E.C. (1988). "A HollowCylinderShearDevice or UndrainedTesting f RockDiscontinuities,"inal Project Report to the National ScienceFoundation,Award #MSM-8604873.Franklin,J.A. (1985). "A Direct ShearMachine or TestingRock Joints,"GeotechnicalTesting ournal,GTJODJ, 8(1), 25-29.Handin,J., H.C. Heard & J.N. Magouirk 1967). "Effects f the IntermediatePrincipalStress n the Failureof Limestone, olomite,andGlass t Different Temperatures ndStrainRates," . Geophysicalesearch,2(2), 611-640.

    1122

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    9/10

    Hight,D.W., A. Gens& M.J. Symes 1983). "Thedevelopment f a New Hollow CylinderApparatus for Investigating he Effects of Principal Stress Rotation in Soils,"Geotechnique,3(4), 355-383.Hvorslev,M.J. (1939). "Torsion hearTestsandTheir Place n the Determination f theShear Resistanceof Soils,"Proc.,Amer. Soc. Test.Marls., Vol. 39, 999-1022.Hutson,R.W. & C.H. Dowding 1990). "Joint sperityDegradation uringCyclicShear,"lnt. J. RockMech. Min. Sci.& Geornech. bstr.,27(2), 109-119.Jaeger,J.C. & N.G.W. Cook (1979). Fundamentals f Rock Mechanics. ChapmanandHall, London.Kutter,H.K. (1974). "Rotary hearTesting f RockJoints," roc., rd CongressntL SocietyRock Mech., Denver, 254-262.Lade,P.V. (1981). "Torsion hearApparatusor SoilTesting," aboratory hearStrengthof Soil,ASTM STP 740, R. N. Young and F. C. Townsend,Eds., 145-169.Olsson,W.A. (1986). "Rock ointCompliance tudies,"andiaReportSAND86-0177-UC-70, 101.Olsson,W.A. (1988). "TheEffectsof NormalStressHistoryon RockFriction," roc.,29thU.S.Syrnp. ockMech.,Minneapolis, 11-117.Power,W.L., T.E. Tullis & J.D. Weeks 1988). "Roughnessnd Wear During BrittleFaulting," ournalof Geophysicalesearch,3(B12), 15,268-15,278.Saada,A.S. (1988). "Hollow Cylinder TorsionalDevices: Their Advantages ndLimitations," dvancedTriaxial Testing f Soil and Rock, ASTM STP 977, Robert T.

    Donaghe,RonaldC. Chaney, ndMarshalL. Silver,Eds.,AmericanSocietyor TestingMaterials,Philadelphia, 66-795.Sun, Z., C. Gerrard & O. Stephansson1985). "Rock Joint ComplianceTests forCompressionnd ShearLoads,"nt. J. RockMech.Min. Sc Geornech.bstr., 2(4),197-213.Yoshioka,N. & C.H. Scholz 1989). "ElasticProperties f Contacting urfacesUnderNormal and Shear Loads 2. Comparison f TheoryWith Experiment,"ournalofGeophysicalesearch, 4 B 12), 17,691-17,700.

    1123

  • 8/12/2019 ARMA-91-1115_Comparison of Direct Shear and Hollow Cylinder Tests on Rock Joints

    10/10