Top Banner
© 2005 ECNU SEI Principles of Embedded Computing System Design 1 ARM instruction set ARM versions. ARM assembly language. ARM programming model. ARM memory organization. ARM data operations. ARM flow of control.
34

ARM instruction set

Jan 15, 2016

Download

Documents

kinsey

ARM instruction set. ARM versions. ARM assembly language. ARM programming model. ARM memory organization. ARM data operations. ARM flow of control. ARM versions (P.40). ARM architecture has been extended over several versions. We will concentrate on ARM7. ARM assembly language. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 1

ARM instruction set

ARM versions.ARM assembly language.ARM programming model.ARM memory organization.ARM data operations.ARM flow of control.

Page 2: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 2

ARM versions (P.40)

ARM architecture has been extended over several versions.

We will concentrate on ARM7.

Page 3: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 3

ARM assembly language

Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

……

BNE label

……

Page 4: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 4

ARM data types (P.41)

Word is 32 bits long.Word can be divided into four 8-bit

bytes.ARM addresses can be 32 bits long (4G).Address refers to byte.

Address 4 starts at byte 4.Can be configured at power-up as either

little- or bit-endian mode.

Page 5: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 5

Endianness

Relationship between bit and byte/word ordering defines endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 31 bit 0

little-endian big-endian

Page 6: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 6

ARM programming model (P.41)

r0r1r2r3r4r5r6r7

r8r9r10r11r12r13r14

r15 (PC)

CPSR

31 0

N Z C V

SPSR

Page 7: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 7

ARM status bits

Every arithmetic, logical, or shifting operation sets CPSR bits: N (negative), Z (zero), C (carry), V

(overflow).Examples:

-1 + 1 = 0: NZCV = 0110. 231-1+1 = -231: NZCV = 0101.

Page 8: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 8

ARM data instructions

Basic format:ADD r0,r1,r2 Computes r1+r2, stores in r0.

Immediate operand:ADD r0,r1,#2 Computes r1+2, stores in r0.

Page 9: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 9

ARM data instructions,cont’d.

ADD, ADC : add (w. carry)

SUB, SBC : subtract (w. carry)

RSB, RSC : reverse subtract (w. carry)

MUL, MLA : multiply (and accumulate)

AND, ORR, EORBIC : bit clearLSL, LSR : logical

shift left/rightASL, ASR : arithmetic

shift left/rightROR : rotate rightRRX : rotate right

extended with C

Page 10: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 10

LSL : Logical Left Shift ASR: Arithmetic Right Shift

DestinationCF 0 Destination CF

LSR : Logical Shift Right ROR: Rotate Right

Destination CF...0 Destination CF

RRX: Rotate Right Extended

Destination CF

Page 11: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 11

Data operation varieties

Logical shift: fills with zeroes.

Arithmetic shift: fills with ones.

RRX performs 33-bit rotate, including C bit from CPSR above sign bit.

Page 12: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 12

ARM comparison instructions

CMP : compareCMN : negated compareTST : bit-wise testTEQ : bit-wise negated testThese instructions set only the NZCV

bits of CPSR.

Page 13: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 13

ARM move instructions

MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

Page 14: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 14

ARM load/store instructions

LDR, LDRH, LDRB : load (half-word, byte)

STR, STRH, STRB : store (half-word, byte)

Addressing modes: register indirect : LDR r0,[r1] with second register : LDR r0,[r1,-r2] with constant : LDR r0,[r1,#4]

Page 15: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 15

ARM ADR pseudo-op (p.45)

Cannot refer to an address directly in an instruction.

Generate value by performing arithmetic on PC.

ADR pseudo-op generates instruction required to calculate address:ADR r1,FOO ; ref. Fig.2.15, P.45

Page 16: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 16

Example: C assignments (P.46)

C: x = (a + b) - c;

Assembler:ADR r4,a ; get address for aLDR r0,[r4] ; get value of aADR r4,b ; get address for b, reusing r4LDR r1,[r4] ; get value of bADD r3,r0,r1 ; compute a+bADR r4,c ; get address for cLDR r2,[r4] ; get value of cSUB r3,r3,r2 ; complete computation of xADR r4,x ; get address for xSTR r3,[r4] ; store value of x

Page 17: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 17

Example: C assignment

C:y = a*(b+c);

Assembler:ADR r4,b ; get address for bLDR r0,[r4] ; get value of bADR r4,c ; get address for cLDR r1,[r4] ; get value of cADD r2,r0,r1 ; compute partial resultADR r4,a ; get address for aLDR r0,[r4] ; get value of aMUL r2,r2,r0 ; compute final value for yADR r4,y ; get address for ySTR r2,[r4] ; store y

Page 18: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 18

Example: C assignment

C:z = (a << 2) | (b & 15);

Assembler:ADR r4,a ; get address for aLDR r0,[r4] ; get value of aMOV r0,r0,LSL 2 ; perform shiftADR r4,b ; get address for bLDR r1,[r4] ; get value of bAND r1,r1,#15 ; perform ANDORR r1,r0,r1 ; perform ORADR r4,z ; get address for zSTR r1,[r4] ; store value for z

Page 19: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 19

Additional addressing modes (P.47)

Base-plus-offset addressing:LDR r0,[r1,#16] Loads from location r1+16

Auto-indexing increments base register:LDR r0,[r1,#16]!

Post-indexing fetches, then does offset:LDR r0,[r1],#16 Loads r0 from r1, then adds 16 to r1.

Page 20: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 20

ARM flow of control (P.47)

All operations can be performed conditionally, testing CPSR: EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS,

GE, LT, GT, LEBranch operation:

B #100 Can be performed conditionally.

Page 21: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 21

ARM conditional code

EQ Z=1 VC V=0

NE Z=0 HI C=1 and Z=0

CS C=1 LS C=0 or Z=1

CC C=0 GE N=V

MI N=1 LT N!=V

PL N=0 GT Z=0 and N=V

VS V=1 LE Z=1 or N!=V

Page 22: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 22

Example: if statement (P.48)

C: if (a < b) { x = 5; y = c + d; } else x = c - d;

Assembler:; compute and test condition

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value for b

CMP r0,r1 ; compare a < b

BGE fblock ; if a >= b, branch to false block

Page 23: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 23

If statement, cont’d.

; true block

MOV r0,#5 ; generate value for x

ADR r4,x ; get address for x

STR r0,[r4] ; store x

ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value of d

ADD r0,r0,r1 ; compute y

ADR r4,y ; get address for y

STR r0,[r4] ; store y

B after ; branch around false block

Page 24: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 24

If statement, cont’d.

; false block

fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value for d

SUB r0,r0,r1 ; compute a-b

ADR r4,x ; get address for x

STR r0,[r4] ; store value of x

after ... ; code after the if statement

Page 25: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 25

Example: Conditional instruction implementation (P.49)

; compute and test conditionADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value for b

CMP r0,r1 ; compare a < b

Page 26: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 26

Conditional instruction implementation, cont’d.

; true block

MOVLT r0,#5 ; generate value for x

ADRLT r4,x ; get address for x

STRLT r0,[r4] ; store x

ADRLT r4,c ; get address for c

LDRLT r0,[r4] ; get value of c

ADRLT r4,d ; get address for d

LDRLT r1,[r4] ; get value of d

ADDLT r0,r0,r1 ; compute y

ADRLT r4,y ; get address for y

STRLT r0,[r4] ; store y

Page 27: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 27

Conditional instruction implementation, cont’d.

; false block

ADRGE r4,c ; get address for c

LDRGE r0,[r4] ; get value of c

ADRGE r4,d ; get address for d

LDRGE r1,[r4] ; get value for d

SUBGE r0,r0,r1 ; compute a-b

ADRGE r4,x ; get address for x

STRGE r0,[r4] ; store value of x

Page 28: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 28

Example: switch statement

C: switch (test) { case 0: … break;

case 1: … }

Assembler:ADR r2,test ; get address for testLDR r0,[r2] ; load value for testADR r1,switchtab ; load address for switch tableLDR r15,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0DCD case1...

case0 …; code for case0case1 …; code for case1

Page 29: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 29

Example: FIR filter (P.50)

C:for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

Assembler; loop initiation code

MOV r0,#0 ; use r0 for i

MOV r8,#0 ; use separate index for arrays

ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N

MOV r2,#0 ; use r2 for f

Page 30: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 30

FIR filter, cont’.d

ADR r3,c ; load r3 with base of c

ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

LDR r6,[r5,r8] ; get x[i]

MUL r4,r4,r6 ; compute c[i]*x[i]

ADD r2,r2,r4 ; add into running sum

ADD r8,r8,#4 ; add one word offset to array index

ADD r0,r0,#1 ; add 1 to i

CMP r0,r1 ; exit?

BLT loop ; if i < N, continue

Page 31: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 31

ARM subroutine linkage (P.52)

Branch and link instruction:BL foo Copies current PC to r14.

To return from subroutine:MOV r15,r14

Example:void f1(int a) {

f2(a);}

Page 32: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 32

Nested subroutine calls

Nesting/recursion requires coding convention:

f1 ADR r5,a ; load arg address into r5; call f2()STR r13!,[r14] ; store f1’s return adrsLDR r0,[r5] ; store arg to r0, (ATPCS)BL f2 ; branch and link to f2…

f2 …; return from f2()LDR r13!,r15 ; restore register and return

f1

f2sp LR

stack

Page 33: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 33

Summary

Load/store architectureMost instructions are RISC, operate

in single cycle. Some multi-register operations take

longer.All instructions can be executed

conditionally.

Page 34: ARM instruction set

© 2005 ECNU SEI Principles of Embedded Computing System Design 34

homework

P.35 Q1-1P.65 Q2-5