Top Banner
Rat h er th an sim p le switch es, n eu ron s are comp lex informa tion processing system s
30

Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Mar 26, 2015

Download

Documents

Benjamin Baird
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Rather than simple switches, neurons are complex information processing systems

Page 2: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 3: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056

Page 4: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

QuickTime™ e undecompressore TIFF (Non compresso)

sono necessari per visualizzare quest'immagine.

Page 5: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

QuickTime™ e undecompressore MPEG-4 Video

sono necessari per visualizzare quest'immagine.

Page 6: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 7: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 8: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Rho GTPase effectors implicated in actin and microtubule dynamics

Govek E et al. Genes Dev. 2005;19:1-49

Page 9: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 10: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 11: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

La crescita di un neurite è determinata dall’apposizione di nuovi elementi citoscheletrici e di membranaLa direzione di crescita dalla polimerizzazione/depolimerizzazione della actina del GC

Page 12: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

QuickTime™ e undecompressore H.264

sono necessari per visualizzare quest'immagine.

Quali fattori inducono la direzione della crescita dei neuriti e quali determinano il loro fato

Page 13: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056

Page 14: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056

Page 15: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 16: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 17: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 18: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 19: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Rho GTPase signaling downstream of four axon guidance cue families, the semaphorins, ephrins, netrins, and slit proteins

Govek E et al. Genes Dev. 2005;19:1-49

©2005 by Cold Spring Harbor Laboratory Press

Page 20: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056

Page 21: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Once neural cell fate is specified and neuron precursors have migrated to the appropriate regions, they extend polarized projections that become their axons and dendrites. The axonal processes can extend long distances, navigating complex cellular environments before reaching their postsynaptic partner. This guidance is mediated through the growth cone, a specialized sensing device at the tip of the outgrowing axon. Growth cones express a series of guidance receptors that are capable of sensing a variety of long-range (diffusible) and short-range (surface-bound) guidance cues. These guidance cues, which can be attractive or repulsive, are secreted by guidepost cells and intermediate targets. The spatial and temporal presence of the guidance cues, combined with the expression of the receptors in the growth cone, enables the axon to navigate through the labyrinth that is the developing nervous system to reach its target. Upon reaching and contacting its target, the axon transforms into a presynaptic specialization capable of transducing synaptic signals to the postsynaptic target.

QuickTime™ e undecompressore TIFF (Non compresso)sono necessari per visualizzare quest'immagine.

Page 22: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

QuickTime™ e undecompressore TIFF (Non compresso)

sono necessari per visualizzare quest'immagine.

Page 23: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 24: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 25: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 26: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.

Neuromuscular synaptic function depends critically on the precise spatial apposition of presynaptic motor neuron acetylcholine release sites with high-density clusters of acetylcholine receptors (AChRs) in the postsynaptic muscle fiber membrane. During neuromuscular synaptogenesis, AChRs are clustered before innervation, prepatterning a central muscle region where synapses will later be established. Motor neuron signals refine the muscle prepattern by clustering AChRs beneath terminals and dispersing uninnervated clusters so that AChRs become localized to, and are stably maintained at, nascent synapses. Over the last 15 years, work from a number of groups has uncovered the basic signaling mechanisms that underlie these events. Muscle-specific kinase (MuSK), a receptor tyrosine kinase expressed by postsynaptic muscle fibers, is essential for the formation of aneural, prepatterned AChR clusters as well as for the formation and maintenance of later, innervated AChR clusters. The presynaptically released proteoglycan agrin is now more fully understood to be important as an anti-declustering, AChR cluster maintenance factor. A role for the neurotransmitter ACh as a cluster dispersion factor for noninnervated AChR clusters has also recently come to be appreciated.

Page 27: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 28: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 29: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.
Page 30: Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056.