Top Banner
Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table 3.1 Chapter 4: Figures 4.4, 4.5, 4.6 (Eq.) Chapter 5: Figures 5.1, 5.2, 5.3 (5th ed.) Chapter 6: Figures 6.1, 6.2, 6.4, 6.6
45

Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Jan 01, 2016

Download

Documents

Avice Cook
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Aquatic Physiology

RespirationgilldiffusionhemoglobinpH

Regulationgas bladderosmosis ion balanceexcretion

Chapter 3: Figures 3.1, 3.2, 3.3, Table 3.1

Chapter 4: Figures 4.4, 4.5, 4.6 (Eq.)

Chapter 5: Figures 5.1, 5.2, 5.3 (5th ed.)

Chapter 6: Figures 6.1, 6.2, 6.4, 6.6

Page 2: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Week 7:

Aquatic Regulationbuoyancy

Page 3: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

elasmobranchs and coelacanthslipid/oil-filled liver

1/3 of body wt90% oil

~ food reserve ~ buoyancy at any depth, P

also cartilagerigid fins for lift

Page 4: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

South American lungfish

Australian lungfish

African bichir

Asianclimbing perch

North American gar

physoclistous physostomous

osteichthyans:air/gas bladder

Figure 5.1, 5th ed. only.

gas bladder

~ air/gas reserve~ buoyancy declines w/depth, P

Page 5: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

PV = nRT (ideal gas law)

pressure x volume = # gas molecules x constant x temperature

aquatic environment: 10 m decrease in depth ~ 1 atm increase in pressure

gas bladder:

neutralbuoyancy

½ @ 10 m

1/3 @ 20 m

pressure volume 1/4 @ 30 m

P ~ 1/V

sink...

Page 6: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

pike perch

physostomous (open to gut/ mouth) physoclistous (closed to gut/mouth)

Gas Bladder: 2 types

surface to 100 m > 100 m depths

Page 7: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

rete (mirabile)gas gland

physostomous (open to gut/ mouth) physoclistous (closed to gut/mouth)

25x rete length ~ 10x max. depth

Page 8: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

gas bladder gas gland and rete system

deepsea snaggletoothAstronesthesto 200 m

rete mirabile =“wonderful net”

Page 9: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

rete (mirabile)gas gland

Figure 5.2 [5.1] Figure 5.3 [5.2 4th and 3rd Eds.]

high pressure gas diffusion

Page 10: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

very high pressure

2. salting out (HCO3-)

decrease in blood volume (V)and increases pressure (P)

1. Root effect (H+)increases O2 (n)and increases pressure (P)

PV = nRT

rete (mirabile)

bicarbonate equillibrium

Page 11: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

glucose:a. lactate (salting out)b. hydrogen (Root effect)c. carbon dioxide (inflation)

surfactant increases surface wall tension to prevent pressure collapses (see in lungs)

Gas bladder

otherwise impermeableexpandable

gas gland

pressure: very high less high lower

Page 12: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Aquatic Physiology

RespirationgilldiffusionhemoglobinpH

Regulationgas bladderosmosis ion balanceexcretion

Chapter 3: Figures 3.1, 3.2, 3.3, Table 3.1

Chapter 4: Figures 4.4, 4.5, 4.6 (Eq.)

Chapter 5: Figures 5.1, 5.2, 5.3 (5th ed.)

Chapter 6: Figures 6.1, 6.2, 6.4, 6.6

Page 13: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Week 7:

Aquatic Regulationosmoregulation

Page 14: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

osmosisdiffusion across a semi-permeable membrane

pressure builds

regulation...

high to low (dilution)

impermeable to solutes = ions/salts: Na+ Cl-

H+ HCO3-

NH4+ NH3

permeable to water

Page 15: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

freshwater (+)

(+ + +)

gain water

hyper-osmotic [more]

fw fish

fish 3x > freshwater environment

Page 16: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

seawater (+ + +)

(+)

lose water

fish : swfish 3x < saltwater environment

hypo-osmotic [less]

Page 17: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

osmoregulatory structures

1. gill

2. kidney

Page 18: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Figure 6.1

osmoregulation

1. gill

2. kidney

Page 19: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

more simplified...

Page 20: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

freshwater (+)

(+ + +)1. gains water

osmosis

2. loses water (dilute urine)

kidney production

3. loses salts

4. salts in

gill active transport/exchange

hyper-osmotic

Page 21: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

saltwater (+ + +)

(+)

osmosis

2. drinks water3. gains salts

4. salts out

gill ATP active transport

1. lose water

some divalent salts Ca2+, Mg2+ out in urineno well-developed kidney

hypo-osmotic

Page 22: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

urea, salts

elasmobranchs and coelacanths

retain urea [saltwater]

(+ + +)

saltwater (+ + +)

iso-osmotic = equal

Page 23: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Osteichthyes Chondrichthyes Birds

Nitrogen waste:

produced stored

Page 24: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

nitrogen pathways

size smaller largersolubility higher lowerorgan for excretion gill kidneyexpense lower hightoxicity higher lowerwater required yes nototal N/molecule 1 2use in regulation ion exchange iso-osmosis

Page 25: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

elasmobranchs and coelacanths

(+ + +)

saltwater (+ + +)

iso-osmotic = equal

1. gains salts in food

2. salts out via rectal gland

Page 26: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Figure 6.1

osmoregulation

1. gill

2. kidney

Page 27: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

base of lamellae

main osmoregulatory structure

chloride cells

Page 28: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Figure 6.2

SW chloride cell (alpha)~ “rectal gland”

move salts outagainst a concentration gradient

Page 29: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Figure 6.4

FW chloride cell (beta) move salts inagainst a concentration gradient

Page 30: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

diadromy

~3 days

chloride cellssalt transport

kidneyurine function

behavior

Page 31: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Week 7:

Aquatic Regulationexcretion

Page 32: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

osmoregulatory structures

1. gill

2. kidney

excretion:carbon dioxidenitrogenhydrogen

Page 33: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

Figure 6.6

5th Ed. = NH3

gill

Page 34: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

gill excretion:carbon dioxide

Page 35: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

gill excretion:nitrogen

NH3 + H+ = NH4+

ammonia ammonium ion

Page 36: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

nitrogen pathways

size smaller largersolubility higher lowerorgan for excretion gill ~ NH4

+ kidneyexpense lower hightoxicity higher lowerwater required yes nototal N/molecule 1 2use in regulation ion exchange iso-osmosis

Page 37: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

gill excretion:nitrogen Na+ for NH4

+

sodium for ammonium same electrochemical (+) charge

Page 38: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

gill excretion:hydrogen

1.

sodium for hydrogen same (+) charge

3 pathways: 2. 3.

Page 39: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

freshwater (+)

(+ + +)1. gains water

osmosis

2. loses water (dilute urine)

kidney production

3. loses salts

4. salts in via NH4+ and H+ exchange for Na+

gill active transport/exchange

hyper-osmotic

Page 40: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

chloride for bicarbonate ion same (-) charge

electrochemical gradients (+ and -)

Page 41: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

osmoregulatory structures

1. gill

2. kidney

excretion:watersalts

conservation:watersalts

Page 42: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

tetrapods

fishes

kidney nephron

capsule = filter (salts)

loop = reabsorb water: constriction salts: wave

Page 43: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

organ nephron unit (100s to 1000s)

Page 44: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

nephron

capsule:

loop:

ammoniaurea

ureawater

salts

enzymes

Page 45: Aquatic Physiology Respiration gill diffusion hemoglobin pH Regulation gas bladder osmosis ion balance excretion Chapter 3: Figures 3.1, 3.2, 3.3, Table.

tetrapods

fishes

kidney nephron

capsule = filter (salts)

loop = reabsorb water: constriction salts: wave

no constriction to concentrate urine