Top Banner
Problem Statement Theoretical Results Experimental Results Approximation Algorithms for Traffic Grooming in WDM Rings K. Corcoran 1 S. Flaxman 2 M. Neyer 3 C. Weidert 4 P. Scherpelz 5 R. Libeskind-Hadas 6 1 University of Oregon, USA 2 Ecole Polytechnique F´ ed´ erale de Lausanne, Switzerland 3 University of North Carolina, USA 4 Simon Fraser University, Canada 5 University of Chicago, USA, Supported by the Hertz Foundation 6 Harvey Mudd College, USA. This work was supported by the National Science Foundation under grant 0451293 to Harvey Mudd College
37

Approximation Algorithms for Traffic Grooming in WDM Rings

Jul 05, 2015

Download

Technology

flaxter

Presentation prepared for IEEE International Conference on Communications 2009

Paper is online at http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5198761

Abstract: "This paper addresses the problem of traffic grooming in WDM rings in which all traffic emanates from a single node and all other nodes are destination nodes. This “one-to-many” scenario arises in metropolitan access networks in which one
node serves as a “hub” connecting the ring to a larger network as well as in video-on-demand and other multimedia services
where a single source node serves a collection of subscriber nodes. The ring comprises a given number of wavelengths of
uniform capacity and a variable number of tunable Add-Drop Multiplexers (ADMs) at each node. Given a set of requests at
the destination nodes, where each request comprises a bandwidth demand and a profit for fulfilling the request, our objective is
to select a subset of the requests and pack (“groom”) them onto the wavelengths such that no wavelength’s capacity is exceeded
and the total profit of the selected requests is maximized. Although this problem is NP-complete, we give polynomial time
approximation algorithms with excellent theoretical performance validated with experimental results."
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Approximation Algorithms for Traffic Groomingin WDM Rings

K. Corcoran1 S. Flaxman2 M. Neyer3 C. Weidert4

P. Scherpelz5 R. Libeskind-Hadas6

1University of Oregon, USA

2Ecole Polytechnique Federale de Lausanne, Switzerland

3University of North Carolina, USA

4Simon Fraser University, Canada

5University of Chicago, USA, Supported by the Hertz Foundation

6Harvey Mudd College, USA. This work was supported by the National Science Foundation under grant

0451293 to Harvey Mudd College

Page 2: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Single-Source WDM Rings

� WDM ring with given set ofwavelengths, each with fixedcapacity C

� Single source/hub from which allother destination nodes receivedata

� Source node can transmit on allwavelengths

� Each destination node has somenumber of tunable ADMs

� A path from the source to adestination has a pre-determinedroute (e.g. all clockwise)

Page 3: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Single-Source WDM Rings

� WDM ring with given set ofwavelengths, each with fixedcapacity C

� Single source/hub from which allother destination nodes receivedata

� Source node can transmit on allwavelengths

� Each destination node has somenumber of tunable ADMs

� A path from the source to adestination has a pre-determinedroute (e.g. all clockwise)

jackie
Pencil
jackie
Pencil
Page 4: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Single-Source WDM Rings

� WDM ring with given set ofwavelengths, each with fixedcapacity C

� Single source/hub from which allother destination nodes receivedata

� Source node can transmit on allwavelengths

� Each destination node has somenumber of tunable ADMs

� A path from the source to adestination has a pre-determinedroute (e.g. all clockwise)

jackie
Pencil
Page 5: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Single-Source WDM Rings

� WDM ring with given set ofwavelengths, each with fixedcapacity C

� Single source/hub from which allother destination nodes receivedata

� Source node can transmit on allwavelengths

� Each destination node has somenumber of tunable ADMs

� A path from the source to adestination has a pre-determinedroute (e.g. all clockwise)

jackie
Pencil
Page 6: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Single-Source WDM Rings

� WDM ring with given set ofwavelengths, each with fixedcapacity C

� Single source/hub from which allother destination nodes receivedata

� Source node can transmit on allwavelengths

� Each destination node has somenumber of tunable ADMs

� A path from the source to adestination has a pre-determinedroute (e.g. all clockwise)

jackie
Pencil
jackie
Pencil
Page 7: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Single-Source WDM Rings

� WDM ring with given set ofwavelengths, each with fixedcapacity C

� Single source/hub from which allother destination nodes receivedata

� Source node can transmit on allwavelengths

� Each destination node has somenumber of tunable ADMs

� A path from the source to adestination has a pre-determinedroute (e.g. all clockwise)

jackie
Pencil
jackie
Pencil
Page 8: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The Tunable Ring Grooming Problem

� Each node may make a request r forpersonalized data to be sent from thesource

� request r consists of:� integer size: demand(r)� value: profit(r)

� A request may be partitioned ontomultiple wavelengths in integral parts

� Multiple requests (or parts of requests)can be “groomed” onto the samewavelength

� Objective: Groom requests ontowavelengths to maximize total profit of allsatisfied requests

Page 9: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The Tunable Ring Grooming Problem

� Each node may make a request r forpersonalized data to be sent from thesource

� request r consists of:� integer size: demand(r)� value: profit(r)

� A request may be partitioned ontomultiple wavelengths in integral parts

� Multiple requests (or parts of requests)can be “groomed” onto the samewavelength

� Objective: Groom requests ontowavelengths to maximize total profit of allsatisfied requests

Page 10: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The Tunable Ring Grooming Problem

� Each node may make a request r forpersonalized data to be sent from thesource

� request r consists of:� integer size: demand(r)� value: profit(r)

� A request may be partitioned ontomultiple wavelengths in integral parts

� Multiple requests (or parts of requests)can be “groomed” onto the samewavelength

� Objective: Groom requests ontowavelengths to maximize total profit of allsatisfied requests

Page 11: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The Tunable Ring Grooming Problem

� Each node may make a request r forpersonalized data to be sent from thesource

� request r consists of:� integer size: demand(r)� value: profit(r)

� A request may be partitioned ontomultiple wavelengths in integral parts

� Multiple requests (or parts of requests)can be “groomed” onto the samewavelength

� Objective: Groom requests ontowavelengths to maximize total profit of allsatisfied requests

Page 12: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The Tunable Ring Grooming Problem

� Each node may make a request r forpersonalized data to be sent from thesource

� request r consists of:� integer size: demand(r)� value: profit(r)

� A request may be partitioned ontomultiple wavelengths in integral parts

� Multiple requests (or parts of requests)can be “groomed” onto the samewavelength

� Objective: Tune ADMs and groomrequests onto wavelengths to maximizetotal profit of all satisfied requests

Page 13: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Sample Instance of the Tunable Ring Grooming Problem

Figure: Capacity C = 4 for each wavelength. Objective: Tune ADMsand groom requests onto wavelengths to maximize total profit of allsatisfied requests.

Page 14: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Sample Instance of the Tunable Ring Grooming Problem

Figure: A solution. Profit = 650. Is it optimal?

Page 15: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Sample Instance of the Tunable Ring Grooming Problem

Figure: Profit = 650 Figure: Profit = 950

Page 16: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Overview of Results

� The Tunable Ring Grooming Problem is NP-complete in thestrong sense

� Problem remains NP-complete even for special cases

� Only one wavelength, only one ADM per node, at least twoADMs per node

� Polynomial time approximation schemes for these specialcases

� The “general case” that the number of ADMs is one or moreappears to be the most challenging

� New approximation algorithm for the general case

Page 17: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Overview of Results

� The Tunable Ring Grooming Problem is NP-complete in thestrong sense

� Problem remains NP-complete even for special cases� Only one wavelength, only one ADM per node, at least two

ADMs per node

� Polynomial time approximation schemes for these specialcases

� The “general case” that the number of ADMs is one or moreappears to be the most challenging

� New approximation algorithm for the general case

Page 18: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Overview of Results

� The Tunable Ring Grooming Problem is NP-complete in thestrong sense

� Problem remains NP-complete even for special cases� Only one wavelength, only one ADM per node, at least two

ADMs per node

� Polynomial time approximation schemes for these specialcases

� The “general case” that the number of ADMs is one or moreappears to be the most challenging

� New approximation algorithm for the general case

Page 19: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Overview of Results

� The Tunable Ring Grooming Problem is NP-complete in thestrong sense

� Problem remains NP-complete even for special cases� Only one wavelength, only one ADM per node, at least two

ADMs per node

� Polynomial time approximation schemes for these specialcases

� The “general case” that the number of ADMs is one or moreappears to be the most challenging

� New approximation algorithm for the general case

Page 20: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Overview of Results

� The Tunable Ring Grooming Problem is NP-complete in thestrong sense

� Problem remains NP-complete even for special cases� Only one wavelength, only one ADM per node, at least two

ADMs per node

� Polynomial time approximation schemes for these specialcases

� The “general case” that the number of ADMs is one or moreappears to be the most challenging

� New approximation algorithm for the general case

Page 21: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case

� Let C denote the capacity of a wavelength and let q be aninteger such that every request has demand at most C

q , i.e.

� If a request can demand as much as capacity C , then q = 1� If every request demands at most 1

2 of C , then q = 2

� Main Result: A polynomial time approximation algorithmthat guarantees solutions within q

q+1 of optimal, i.e.

� If q = 1, profit is guaranteed to be within 1/2 of optimal� If q = 2, profit is guaranteed to be within 2/3 of optimal� If q = 10, profit is guaranteed to be within 10/11 of optimal

Page 22: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case

� Let C denote the capacity of a wavelength and let q be aninteger such that every request has demand at most C

q , i.e.

� If a request can demand as much as capacity C , then q = 1

� If every request demands at most 12 of C , then q = 2

� Main Result: A polynomial time approximation algorithmthat guarantees solutions within q

q+1 of optimal, i.e.

� If q = 1, profit is guaranteed to be within 1/2 of optimal� If q = 2, profit is guaranteed to be within 2/3 of optimal� If q = 10, profit is guaranteed to be within 10/11 of optimal

Page 23: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case

� Let C denote the capacity of a wavelength and let q be aninteger such that every request has demand at most C

q , i.e.

� If a request can demand as much as capacity C , then q = 1� If every request demands at most 1

2 of C , then q = 2

� Main Result: A polynomial time approximation algorithmthat guarantees solutions within q

q+1 of optimal, i.e.

� If q = 1, profit is guaranteed to be within 1/2 of optimal� If q = 2, profit is guaranteed to be within 2/3 of optimal� If q = 10, profit is guaranteed to be within 10/11 of optimal

Page 24: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case

� Let C denote the capacity of a wavelength and let q be aninteger such that every request has demand at most C

q , i.e.

� If a request can demand as much as capacity C , then q = 1� If every request demands at most 1

2 of C , then q = 2

� Main Result: A polynomial time approximation algorithmthat guarantees solutions within q

q+1 of optimal, i.e.

� If q = 1, profit is guaranteed to be within 1/2 of optimal� If q = 2, profit is guaranteed to be within 2/3 of optimal� If q = 10, profit is guaranteed to be within 10/11 of optimal

Page 25: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case

� Let C denote the capacity of a wavelength and let q be aninteger such that every request has demand at most C

q , i.e.

� If a request can demand as much as capacity C , then q = 1� If every request demands at most 1

2 of C , then q = 2

� Main Result: A polynomial time approximation algorithmthat guarantees solutions within q

q+1 of optimal, i.e.

� If q = 1, profit is guaranteed to be within 1/2 of optimal� If q = 2, profit is guaranteed to be within 2/3 of optimal� If q = 10, profit is guaranteed to be within 10/11 of optimal

Page 26: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case: The Algorithm

Page 27: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case: The Algorithm

1 Sort requests by non-increasing density into a list S

2 Let A = S if total demand ≤ CW qq+1 , otherwise let A be the

minimal prefix of S with total demand > CW qq+1

3 Pack A onto wavelengths with First Fit Decreasing (FFD)

4 if some request in A was not packed then

5 Let r denote first request not packed by FFD6 Let B be the set containing r and all requests which were

packed with demand ≥ demand(r)7 Discard the request with the least profit from B8 if r was not discarded then

9 Pack r in place of the discarded request

Page 28: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case: The Algorithm

1 Sort requests by non-increasing density into a list S

2 Let A = S if total demand ≤ CW qq+1 , otherwise let A be the

minimal prefix of S with total demand > CW qq+1

3 Pack A onto wavelengths with First Fit Decreasing (FFD)

4 if some request in A was not packed then

5 Let r denote first request not packed by FFD6 Let B be the set containing r and all requests which were

packed with demand ≥ demand(r)7 Discard the request with the least profit from B8 if r was not discarded then

9 Pack r in place of the discarded request

Page 29: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case: The Algorithm

1 Sort requests by non-increasing density into a list S

2 Let A = S if total demand ≤ CW qq+1 , otherwise let A be the

minimal prefix of S with total demand > CW qq+1

3 Pack A onto wavelengths with First Fit Decreasing (FFD)

4 if some request in A was not packed then

5 Let r denote first request not packed by FFD6 Let B be the set containing r and all requests which were

packed with demand ≥ demand(r)7 Discard the request with the least profit from B8 if r was not discarded then

9 Pack r in place of the discarded request

Page 30: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case: The Algorithm

1 Sort requests by non-increasing density into a list S

2 Let A = S if total demand ≤ CW qq+1 , otherwise let A be the

minimal prefix of S with total demand > CW qq+1

3 Pack A onto wavelengths with First Fit Decreasing (FFD)

4 if some request in A was not packed then5 Let r denote first request not packed by FFD6 Let B be the set containing r and all requests which were

packed with demand ≥ demand(r)7 Discard the request with the least profit from B8 if r was not discarded then

9 Pack r in place of the discarded request

Page 31: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case: Analysis

� The approximation algorithm is proved correct and analyzed inthe paper

� The running time is O(R log R + RW ) where R is the numberof requests and W is the number of wavelengths

Page 32: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

The General Case: Analysis

� The approximation algorithm is proved correct and analyzed inthe paper

� The running time is O(R log R + RW ) where R is the numberof requests and W is the number of wavelengths

Page 33: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Heuristics and Experiments

� Heuristic “on top” of approximation algorithm� Performs q/(q + 1)-approximation algorithm for general case� Attempts to improve solution using heuristic rules, including

splitting

� Experiments using heuristic

� Heuristic profit divided by optimal profit� Optimal found with linear programming

Page 34: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Heuristics and Experiments

� Heuristic “on top” of approximation algorithm� Performs q/(q + 1)-approximation algorithm for general case� Attempts to improve solution using heuristic rules, including

splitting

� Experiments using heuristic� Heuristic profit divided by optimal profit� Optimal found with linear programming

Page 35: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Experimental Results: Parameters

Parameter Possible valuesWavelength capacity C 4, 8, 16Number of wavelengths 5Number of requests 16, 32

Probability α that a request hastwo ADMs (one ADM other-wise)

α = 0, 14, 1

2, 3

4, 1

Demand limited to fraction 1/qof capacity

q = 1, 2

Density of request Constant or variable(∈ U[1/2, 2))

Table: Parameters used in generating random instances

Page 36: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Sample Results

� When q = 1, approximation algorithm guarantees ratio of 12

0

0.1

0.2

0.3

0.4

0.5

0.6

.99-1.00.96-.97.94-.95.92-.93.90-.91.88-.89<= .87

Fra

ctio

n of

inst

ance

s

Approximation ratio

Tunable Results: Worst Case

Figure: Worst ratios found in experiments. Parameters: 5 wavelengths,wavelength capacity C = 16, q = 1, 1

2 of nodes have 1 ADM andremaining have 2 ADMs

Page 37: Approximation Algorithms for Traffic Grooming in WDM Rings

Problem Statement Theoretical Results Experimental Results

Future Work

� Generalizing to allow requests to demand more than awavelength’s capacity

� Tighter approximation bounds

� What if the direction of travel for a request is notpre-determined? Can we still find good approximationalgorithms?

� Using splitting in algorithm, not just heuristic