Top Banner
Approximate List-Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)
35

Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Approximate List-Decoding and

Uniform Hardness Amplification

Russell Impagliazzo (UCSD)Ragesh Jaiswal (UCSD)

Valentine Kabanets (SFU)

Page 2: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Hardness Amplification

Given a hard function we can get an even harder function

f FHard function Harder function

Page 3: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Hardness

f

{0, 1}n

s

{0, 1}n

• A function f is called δ-hard for circuits of size s (Algorithm with running time t), if any circuit of size s (Algorithm with running time t) makes mistake in predicting the function on at least δ fraction of the inputs

δ.2n

Page 4: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

XOR Lemma

f

f f f

XOR

0/1

0/1

{0, 1}n{0, 1}nk

k

fk

fk:{0, 1}nk {0, 1}fk(x1,…, xk) = f(x1) … f(xk)

XOR Lemma: If f is δ-hard for size s circuits, then fk is (1/2 - ε)-hard for size s’ circuits (ε = e-Ω(δk), s’ =

s·poly(δ, ε))

Page 5: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

XOR Lemma Proof: Ideal case

C

A

C (which computes f for at least (1 - δ) fraction of inputs)

(which computes fk for at least (½ + ε) fraction of inputs)

whp

Page 6: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

XOR Lemma Proof

C

A

C (which computes f for at least (1 - δ) fraction of inputs)

Advice (|Advice|=poly(1/ε))

C1 Cl

One of them computes f for at least (1 - δ) fraction of inputs

l = 2|Advice| = 2poly(1/ε)

(which computes fk for at least (½ + ε) fraction of inputs)

whp

A “lesser” nonuniform reduction

Page 7: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Optimal List Size Question: What is the reduction in the

list size we should target? A good combinatorial answer using

error correcting codes

C

A

C1 Cl

whp

Page 8: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

XOR-based Code [T03]Think of a binary message msg on M=2n bits as a truth-table

of a Boolean function f.The code of msg is of length Mk where code(x1,…,xk) = f(x1)

… f(xk)

msg

x (|x| = n)

x = (x1, …, xk)

f(x1) … f(xk)

code

f(x)

Page 9: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

List Decoder

m XOR Encoding c w Decoding

m1,…,ml

Decoder•Local•Approximate•List

≈ (1/2 + )

≈ (1 - δ)

Information theoretically l should be O(1/2)

channel

Page 10: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

The List Size

•The proof of Yao’s XOR Lemma yields an approximate local list-decoding algorithm for the XOR-code defined above

• But the list size is 2poly(1/) rather than the optimal poly(1/)

• Goal: Match the information theoretic bound on list-decoding i.e. get advice of length log(1/)

Page 11: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

The Main Result

Page 12: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

The Main Result

C ((½ + ε)-computes fk)

A

C ((1 - δ)-computes f)

• ε = poly(1/k), δ = O(k-0.1)• Running time of A and size of C is at most poly(|C|, 1/ε)

whp

Advice(|Advice| = log(1/ε))

Page 13: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

The Main Result

C ((½ + ε)-computes fk)

A

C ((1 - δ)-computes f)

• ε = poly(1/k), δ = O(k-0.1)• Running time of A and size of C is at most poly(|C|, 1/ε)

w.p. poly(ε)

Page 14: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

The Main Result

We get a list size of poly(1/ε) … which is optimal but…

ε is large: ε = poly(1/k)

C((½ + ε)-computes fk)

A

C ((1 - δ)-computes f)

A’

C1Cl

At least one of them (1 - ρ)-computes f

l = poly(1/ε)

Advice(|Advice| = log(1/ε))

whpw.p. poly(ε)

Advice efficient XOR Lemma

Page 15: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Uniform Hardness Amplification

Page 16: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Uniform Hardness Amplification

What we want

f hard wrt BPP g harder wrt BPP

What we get

f hard wrt BPP/log g harder wrt BPPAdvice efficient XOR Lemma

Page 17: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Uniform Hardness Amplification

What we can do:

f Є NP: hard wrt BPP f’ Є NP: hard wrt BPP/log[BDCGL92]

g Є ?? harder wrt BPP

Advice efficient XOR Lemma

• g not necessarily Є NP but g Є PNP||

• PNP||: poly-time TM which can make polynomially many parallel Oracle queries to an NP oracle

h Є PNP||: hard wrt BPP

Simple average-case reduction

g Є PNP||: harder wrt BPP

1/nc ½ - 1/nd

Trevisan gives a weaker reduction (from 1/nc to (1/2 – 1/(log n)α) hardness) but within NP.

Page 18: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Techniques

Page 19: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Techniques

Advice efficient Direct Product Theorem

A Sampling Lemma Learning without Advice

Self-generated advice Fault tolerant learning using faulty advice

Page 20: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Direct Product Theorem

f

f f f

concatenation

0/1

{0, 1}k

{0, 1}n

{0, 1}nk

k

fk:{0, 1}nk {0, 1}k

fk(x1,…, xk) = f(x1) | … | f(xk)

fk

• Direct Product Theorem: If f is δ–hard for size s circuits, then fk is (1 - ε)-hard for size s’ circuits (ε = e-Ω(δk), s’ = s·poly(δ, ε))

• Goldreich-Levin Theorem: XOR Lemma and Direct Product Theorem are saying the same thing

Page 21: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

XOR Lemma from Direct Product Theorem

CDP (poly(ε)-computes fk)

A2

C ((1 - δ)-computes f)

•ε = poly(1/k), δ = O(k-0.1)

•Using Goldreich-Levin Theorem

C ((½ + ε)-computes fk)

A1

whp

w.p. poly(ε)

Page 22: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

LEARN from [IW97]

LEARN [IW97]

CDP (-computes fk)

Advice: n/2 pairs of (x, f(x)) for independent uniform x’s

C ((1 - δ)-computes f)

whp

•ε = e-Ω(δk)

Page 23: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Goal

LEARN [IW97]

CDP (-computes fk)

Advice: n/2 pairs of (x, f(x)) for independent uniform x’s

C ((1 - δ)-computes f)

whp

•ε = e-Ω(δk)

LEARN’

w.p. poly() No advice!!!

•ε = poly(1/k), δ = O(k-0.1)

• We want to eliminate the advice (or the (x, f(x)) pairs). In exchange we are ready to make some compromise on the success probability of the randomized algorithm

Page 24: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Self-generated advice

Page 25: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Imperfect samples We want to use the circuit CDP to

generate n/ pairs (x, f(x)) for independent uniform x’s

We will settle for n/ pairs (x,bx) The distribution on x’s is statistically close

to uniform and for most x’s we have bx= f(x).

Then run a fault-tolerant version of LEARN on CDP and the generated pairs (x,bx)

Page 26: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

How to generate imperfect samples

Page 27: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

A Sampling Lemma

nk

2nk

x1 x2xkx3

•D is a Uniform Distribution

Page 28: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

A Sampling Lemma

nk

G

x1 x2xkx3

•|G| >= 2nk

•Stat-Dist(D, U) <= ((log 1/)/k)1/2

Page 29: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Getting Imperfect Samples

G: subset of inputs on which CDP(x) = fk(x) |G| >= 2nk

Pick a random k-tuple x, then pick a random subtuple x’ of size k1/2 With probability x lands in the “good” set

G Conditioned on this, the Sampling Lemma

says that x’ is close to being uniformly distributed

If k1/2 > the number of samples required by LEARN,then done!

Else…

Page 30: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Direct Product Amplification

CDP CDP’ which poly(ε)-computes fk’

where (k’)1/2 > n/ε2

??

CDP CDP’ such that for at least poly(ε) fraction of k’-tuples, x CDP’(x) and fk’(x) agree on most bits

Page 31: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Putting Everything Together

Page 32: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

CDP for fk CDP’ for fk’

DP Amplification

Sampling

Fault tolerant LEARN

pairs (x,bx)

circuit C (1-)-computes f

with probability > poly()

Repeat poly(1/) times to get a list containing a good circuit for f, w.h.p.

Page 33: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Open Questions

Page 34: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Open Questions

Advice efficient XOR Lemma for smaller For ε > exp(-kα) we get a quasi-polynomial list size

Can we get an advice efficient hardness amplification result using a monotone combination function m (instead of )? Some results: [Buresh-Oppenheim, Kabanets,

Santhanam] use monotone list-decodable codes to re-prove Trevisan’s results for amplification within NP

Page 35: Approximate List- Decoding and Uniform Hardness Amplification Russell Impagliazzo (UCSD) Ragesh Jaiswal (UCSD) Valentine Kabanets (SFU)

Thank You