Top Banner

of 44

Applied System Identification for Constructed Civil Structures Lecture

Apr 06, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    1/44

    AppliedSystem

    Identification

    or ons ruc e v ruc ures

    DionysiusSiringoringo,Ph.D

    u u

    ,

    v.

    yJuly22,2010

    SeriesoflectureonAsiaPacificSummerSchool onSmartStructuresandControl

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    2/44

    Outline

    n ro uc on

    Definition

    Objectives

    ExperimentalMethods Classification

    TypeofExcitation TypeofResponse

    Classification:Parametricvs Nonparametric TypeofModel:Structuralvs Modalvs NonPhysical NumericalModel Domain:Timevs Frequencyvs CrossTimeFrequency

    Uncertainties

    Exam lesofA lication

    Discussions

    and

    Closure 2

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    3/44

    1.Introduction:Definition

    Aprocesstodeveloporimprovemathematicalrepresentationofastructuralsystemusingexperimentallyobtainedstructuralresponse(s).

    Mathematicalre resentationofastructurals stem:Mass,

    Stiffness,Damping,Flexibility,Connectivity

    response/deflection,strainresponse etc.

    ,

    structuralsystem,thetermstructuralidentificationiscommonlyused.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    4/44

    1.Introduction:Objectives

    WhySystemIdentificationforconstructedstructures?

    1. Mo e Va at ono new yconstructe structures

    verifyassumptionsindesignmodel(e.g.boundarycondition,nonlinear

    behavior,energydissipationmechanism/damping)

    verifyperformanceofcontrolsystem(e.g.baseisolation,TunedMass

    Damper,etc)

    2. ModelUpdating

    obtainFEMcalibratedstructuralmodel

    a just

    structura

    parameters

    a ter

    retro it

    or

    mo i ication

    detectstructuralchangespossiblyduetodefectordamage

    recognize

    environment/loading

    influence

    or

    pattern

    on

    the

    structure

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    5/44

    1.Introduction:Objectives

    WhySystemIdentificationforconstructedstructures?

    4. Earth uakeEn ineerin

    performance

    of

    structure

    during

    earthquake postearthquakestructuralassessment

    5. Wind Engineering verification/comparison withwindtunnelresults

    aerodynamic

    performance

    (e.g.

    aerodynamic

    damping

    of

    long

    span

    bridges)

    6. SoilStructureInteraction

    characterizeandquantifyparameterofsurroundingsoilmedium

    7. TrafficstructureInteraction

    characterizestructuralresponseduetocertaintypeofvehicle/train

    detectchangesinstructurevehicleinteractionmedium(e.g.pavementeffectonbridgeresponse,railwaytrackeffectontraincomfortmeasure)

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    6/44

    1.Introduction:Scopes GlobalandLocal

    ofinstrumentedbridgesforglobalassessmentofthe

    structure

    YokohamaBayBridge

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    7/44

    1.Introduction:Scopes GlobalandLocal

    Examp eo

    Loca

    Structura

    I ent cat on

    :Eva uat on

    o

    amp ng

    onstaycableofcablestayedbridgetoassestheeffectivenessof

    cabledampersystem.

    CableHydraulicdamperStonecuttersBridge

    Singlemodedecayresponse

    ofthecable:f=0.49Hz

    -3

    -2.5

    -2

    -1.5

    =0.055487

    )log(m/s2/s)

    peak

    valley

    average

    Freevibrationtestofstaycablebypulland

    releasetest.

    80 100 120 140 160 180 200 220-5

    -4.5

    -4

    -3.5

    Time (s)

    Log(PeakAcc

    Cabledamping

    (logarithmicdecrement

    :

    d=0.055)

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    8/44

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    9/44

    2.ExpMethods:TypeofExcitation

    Theexcitationcanbeclassifiedas:

    1. Dynamicorstatic(i.e.accordingtowhetherornottheyengage

    ner a e ec s

    2. Accordingtocontrollability,and

    .

    1. Controllable(measurableandunmeasurable) staticloads

    2. Uncontrollable(measurableandunmeasurable) staticloads

    3. Controllable(measurable

    and

    un

    measurable)

    dynamic

    loads

    4. Uncontrollablemeasurable dynamicloads

    5. Uncontrollableunmeasurabledynamicinput(ambient

    dynamicexcitation)

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    10/44

    2.ExpMethods:StaticLoads

    Controllable(measurableandunmeasurable) staticloads

    Relativel rareforfullscaleex erimentsonrealstructuresbecauseofthe

    scaleoftheloadrequiredtogenerateameasurableeffect.

    vehicles,eitherstationaryormoving

    Uncontrollable(measurableandunmeasurable) staticloads

    Genera yinc u e

    e ements

    o

    ynamic

    oa

    an

    response

    monitoring,

    particularlyinthecaseoftraffic andwindwhichgeneratequasistatic and

    dynamicresponse.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    11/44

    2.ExpMethods:DynamicLoads ControllableMeasurable

    Forcedvibrationtest(FVT)

    Transferfunctionsorfrequencyresponsefunctions(FRFs)scale

    input(forcing)tooutput(response)viaeithermassorstiffness

    ,

    aboutdissipativeeffects(mathematicallyrealisedasviscous

    damping)

    Examples: massexciters,Electrodynamicshakers,

    u

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    12/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurable

    Manualexcitation

    Impulseresponsefunctions(IRF)orfreevibrationresponse.

    Neither

    mass

    nor

    stiffness

    can

    be

    identified.

    Modal

    frequency

    anddampingcanbeestimatedquiteaccurately.

    Examples:Impacthammer,peoplejump,dropweighttest,

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    13/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurableExcitation

    Controllablebut

    unmeasurable

    dynamic

    loads

    Manualexcitation:ImpactHammerTest

    Givin excitation to a short

    spanbridge

    by

    impact

    hammer

    Free

    vibration

    response

    of

    the

    bridge

    subjected

    toimpacthammer

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    14/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurableExcitation

    Manualexcitation

    :Drop

    Weight

    Test

    bridgebydroppingsandbagweight

    Note:whiledropweighttestiseffective

    ExampleofFreevibrationresponseofthebridge

    excitedbydroppedweight

    inexciting

    the

    free

    vibration

    response

    ofthestructure,additionaldampingis

    expectedasthedroppedweighttends

    .

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    15/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurableExcitation

    1

    1.5

    anua

    exc a on:

    uan

    re ease

    es

    o

    s ay

    ca e

    Exampleoffreevibration

    res onse of a sta cable

    -1

    -0.5

    0

    0.5

    Accelera

    tion(m/s2)

    80 100 120 140 160 180 200 220-1.5

    Time (s)

    Flowcharttoobtaindampingvalueofastaycable

    FreeVi rationResponse

    RawDataFrequencyResponse

    Filteringmodeofinterest

    Singlemodefreevibration

    response

    Givingexcitationtoastaycablebypulland

    releasedtest

    usingenvelopeofdecayresponse

    Singlemodedampingvalue

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    16/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurable Excitation

    e c eexc a on

    on ro e

    ra c

    Exampleofstrainresponse

    w ena ruc pass nga r ge

    Vehicleexcitation:

    1. Responselargerthanambient

    vibrationresponse.

    2. Stressand

    acceleration

    responses

    can

    beconductedsimultaneously

    3. Effectofvehiclebridgeinteraction

    .

    Exampleofaccelerationresponsewhenatruck

    passinga

    bridge

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    17/44

    Seismic excitation

    2.ExpMethods:DynamicLoads UncontrollableMeasurableExcitation

    Transferfunctionsorfrequencyresponsefunctions(FRFs)between seismic

    input(baseexcitation)tooutput(structureresponse).Structuralproperties,modal ro ertiesandmodal artici ationfactorcanbeestimated.

    Example:instrumentedbridgesandbuildingsinJapanandCaliforniaUS.

    Example:Yokohama

    Bay

    Bridge,

    instrumented

    cable

    stayed

    bridge

    near

    Tokyo

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    18/44

    2.ExpMethods:DynamicLoads UncontrollableunmeasurableExcitation

    Ambientexcitation:wind,traffic,andunmeasured

    microtremor.

    Correlationsbetween

    response

    are

    used

    to

    estimate

    modal

    ro erties.Modesha esunscaled.Treatedasstochastic

    systemidentification.

    Example:periodicambientvibrationmeasurementand

    instrumentedbridgesandbuildings.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    19/44

    2.ExpMethods:DynamicLoads UncontrollableunmeasurableExcitation

    xamp eo

    am en

    exc a on

    :w n

    n uce

    v ra on

    o

    suspensionbridge.Toweraccelerationresponse

    Treatedasstationaryrandomprocess.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    20/44

    2.ExpMethods:DynamicLoads UncontrollableunmeasurableExcitation

    .

    Bridgeresponsesubjectedtoopentrafficusuallytreatedasstationaryrandomprocess,

    Example

    of

    vertical

    acc

    and

    the

    spectrum

    of

    a

    medium

    span

    highway

    bridge

    to

    traffic.

    sincet einputisun nown.E ecto ve ic emassisusua yneg ecte .However,incase

    ofshortspanbridge,theeffectofvehiclemassmaynotbenegligibleandinfluencethe

    identifiedbridge

    frequency.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    21/44

    2.ExpMethods:TypeofResponseExcitation

    ,

    D namic:

    Acceleration Relativeofabsolutedisplacement

    Velocity

    Inclination Strain

    Stress

    a er

    ressure Structuralandenvironmentaltemperature

    WindDirection

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    22/44

    3.AnalysisMethods:Classification

    Parametrican

    Non

    parametric

    Mo e s

    Structuralmodel

    and

    initial

    estimate

    of

    model

    parameters

    are

    knownapriori.Measuredresponsesarefittedtoobtainthe

    bestestimateofmodelparameters.

    NonParametricModel

    Modelstructureisnotspecifiedapriori.Structuralresponses

    systemand

    quantities

    such

    as

    cross/auto

    correlations,

    transfer

    function/frequencyresponsefunction.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    23/44

    Exam le

    of

    Parametric

    Model

    3.AnalysisMethods:Classification

    OutputErrorMinimizationforsystemidentificationusingseismicresponse.

    modelisrequired

    F=objectivefunction

    Example:comparisonbetweenrecordedMinimizethedifferencebetweenthe

    measuredmodalparametersandmodel

    decksubjectedtoseismicexcitationgeneratedmodalparametersbyupdating

    parametersofthemodel iteratively

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    24/44

    3.AnalysisMethods:Classification

    StateSpaceSystemidentificationusingseismicresponse.

    modelandrealizationofobservability matrix,systemmatricesA,B,RandDcanbe

    obtainedand

    modal

    parameters

    are

    realized.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    25/44

    3.AnalysisMethods:TypesofModel

    .

    Systemismodeledintermsofmass,stiffness,orflexibility,and

    dampingmatrices.

    Geometric

    distribution

    of

    mass,

    stiffness

    and

    damping

    are

    known

    Structuralconnectivitybetweendegreeoffreedomispreserved

    )()()()( tBztKutuCtuM =++ &&&Equationofmotion:

    tCMKM

    IA

    =

    11

    0exp

    SystemmatrixAinstatespaceformfor

    discretedata:

    [ ] [ ]( 1) ( ) ( )x k A x k B z k + = +

    k R x k D z k = +

    Equationofmotionindiscretedynamicsystem,wheresystem

    matrixAistobeindentified

    Goal:ToIndentifysystemmatrixAinitsoriginalform,fromwhichthemass,stiffness

    anddamping

    matrices

    can

    be

    retrieved.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    26/44

    3.AnalysisMethods:TypesofModel

    .

    Systemisdefinedinmodalcoordinatesdescribingthevibratorymotionofstructuresintermsofmodalfrequency,modaldampingandmodeshapes(alsomodephaseangleforcomplexmodes)

    Geometricdistributionofmass,stiffnessanddampingand

    informationon

    structural

    connectivity

    are

    not

    preserved.

    Describestheresonantspatial(modeshapes)andtemporalofthes ruc ure.

    Modalparametersareanalogoustoeigensolutionofstucturalmass

    and

    stiffness.Equationofmotionindiscretedynamicsystem,

    wheresystemmatrixAistobeindentified

    x x z+ = +

    [ ]( ) ( ) [ ] ( )y k R x k D z k = +

    Goal:ToIndentifysystemmatrixA bysolvingthe

    Eigenvalue problemand

    determine

    the

    modes.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    27/44

    3.AnalysisMethods:TypesofModel

    .

    Doesnothavephysicalrelationshipwiththestructure(i.e.nospatialinformation no eometr distributionofmass stiffness anddam in

    Simplyaparametercurvefitofthegivenmathematicalmodeltothemeasured

    data.

    Examples:AutoRegressiveMovingAverage(ARMA)anditsvariants,RationalPolynomialModeletc.

    Somecanbeconvertedtomodalmodelform.

    Example:AutoRegressiveMovingAverage(ARMA)Modelwheretheautoregressive

    coefficientscanberelatedtomodalparameters

    )()()()( 0111

    1 tyadt

    tdyadt

    tydadt

    tydn

    n

    nn

    n++

    L

    )()()()(

    0111tub

    dt

    tdub

    du

    tudb

    du

    tudb

    mmmm++=

    L

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    28/44

    3.AnalysisMethods:Domain

    1. FrequencyDomain

    TransferFunction

    /Frequency

    Response

    Function/

    Impulse

    ResponseFunction.

    AverageNormalizedPowerSpectrumDensity(ANPSD)

    ComplexExponentialFrequencyDomainMethod(Schmerr

    Eigensystem RealizationAlgorithminFrequencyDomain(ERAFD)(Juang &Suzuki1988)

    Frequency

    Doma n

    Decompos t on

    Br nc er et

    a .

    2001

    28

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    29/44

    3.AnalysisMethods:Domain

    2. TimeDomain

    IbrahimTimeDomain(ITD)(Ibrahim&Mikulcik 1973)

    LeastSquaredComplexExponentialMethod(LSCE)(Brown

    Polyreference ComplexExponentialMethod(PRCE)(Vold etal.

    1982) Eigensystem RealizationAlgorithm(ERA)(Juang &Pappa 1985)

    StochasticSubspaceIdentification(Overschee &DeMoor

    29

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    30/44

    3.AnalysisMethods:Domain

    Representsfrequencyevolutionastimeprogresses.

    Can detect nonlinearit and nonstationar si nals

    ShortTimeFourierTransform(STFT)

    Waveletbasedsystemidentification

    EmpiricalModeDecomposition HilbertHuangTransform

    signals)

    30

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    31/44

    3.AnalysisMethods:DirectandIndirectMethodTimeDomain

    WhentheIRF/FRFisavailable,theycanbeuseasinputdirectlyto

    s stemidentificationmethod.

    IndirectMethod

    When

    the

    IRF/FRF

    is

    unavailable

    such

    as

    in

    case

    of

    ambient

    v ra onmeasuremen ,ana ona me o snee e o

    constructsyntheticIRF,ex.throughcrosscorrelation(Natural

    ExcitationTechnique(NEXT)or throughRandomDecrement.

    RawData NEXT ERA

    Randec ITD

    31

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    32/44

    3.AnalysisMethods:Checklist

    Typesof

    Inputs

    and

    Outputs

    System

    Identification

    Method

    Controllabledynamicloads

    MeasuredInput(s)

    assexc teran a er rans er unct ons nput utput ys

    InstrumentedImpact

    Hammer

    SingleInput SingleOutput(SISO)orSingleInputMulti

    Output(SIMO)

    system

    Unmeasured In ut s

    Manualexcitation(people jumping) ImpulseResponseFunction/FreevibrationResponse

    Snapback, or step relaxation ImpulseResponseFunction/FreevibrationResponse

    Swingingbelltoexciteacathedraltower ImpulseResponseFunction/FreevibrationResponse

    Uncontrollabledynamicloads

    MeasuredInput(s)

    seismicexcitation(SingleInput) Transferfunction,SISOorSIMO

    seismicmultipleexcitation(MultipleInput) Transferfunctionmatrix, MIMO

    Uncontrollabledynamic

    loads

    UnmeasuredInput(s)

    ambientvibrationtest(operationalmodal

    analysis) Stationarybroadbandassumption

    windexcitation OutputCrosscorrelation

    trafficexcitation CovarianceDrivenSystemIdentification

    microtremorwith

    unmeasured

    input Data

    Driven

    Stochastic

    Subspace

    Identification 32

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    33/44

    4.Uncertainties

    Uncertaintyisunavoidableinunderstandingtheresultsofsystemidentification. Modalpropertiesaresusceptibleto

    .

    Howtoquantifytheconfidenceoftheidentifiedmodalproperties?

    .

    2. MonteCarloSimulation

    3. BootstrapMethod

    33

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    34/44

    4.Uncertainties:Errorpropagationanalysisusingperturbation

    CorrelationMatrix

    Input[Up]

    InformationMatrix = Ryy()=Ryy(0)+RyyCorrelationMatrix:

    InformationMatrix

    [Ryy],[Ryu],

    [Ruu]

    Output[Yp] SingularValue

    Yp()=Yp(0)+Yp Ryu()=Ryu(0)+Ryu = +

    Rhh()=Rhh(0)+RhhSingularValue

    Decom osition

    RealizationofSystem

    Matrix[A]

    ecompos on RealizationofSystem

    Matrix

    A()=A(0)+AObjectives:

    Realizationof

    Modal

    Parameters

    , ,

    RealizationofModal

    Parameters

    () = (0) + To

    define and

    quantifythe

    error

    on

    themodalparametersastheeffect

    ofinputandoutput noise

    34

    () = (0) + () = (0) +

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    35/44

    4.Uncertainties:Bootstrap Analysis

    boundsofidentifiedmodalparametersbyNEXTERA

    Randomlyselected Ensemble1 ERA

    CCF1,CCF2,CCF3,CCFN

    Randomlyselected

    componen

    CCF1,CCF5,CCF3,CCFMComputeCCFaverage

    Ensemble2 ERA

    1,1,1

    McomponentCCF7,CCF2,CCF1,CCFMComputeCCFaverage

    .

    2,2,2

    .

    Randomlyselected EnsembleP

    (Mcomponent)

    .

    .

    ERA

    .

    .

    CCF4,CCF6,CCF2,CCFM

    ComputeCCF

    average

    p,p,p

    CCF:CrosscorrelationfunctionEstimatemeanvalueand

    95%Confidencebound

    35

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    36/44

    4.Uncertainties:Bootstrap Analysis

    confidencelevelcanbeobtained

    Examp eso ri ge1s requencystatistica istri utionon i erentstructura con itions

    usingBootstrap

    Method

    36

    withcertainstatisticalcharacteristics.Thereforedecisionmadeonstructural

    condition

    involved

    statistical

    confidence.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    37/44

    5.Examples:AmbientVibrationMeasurementofSuspensionBridge

    BridgeType:

    3SpanSuspensionBridge

    Simplysupportedatthe

    Tower Height : 130m

    Tower width :21m atbase

    Length:

    1,380m

    Span: 330720330m

    montop

    Girdermaterial: Streamlinedsteelbox

    Towermaterial: Steelbox(welded)

    TotalDeckWidth: 20m Completed : 1998

    37

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    38/44

    5.Examples:AmbientVibrationMeasurementofSuspensionBridge

    s ng

    o a

    arame ers

    38

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    39/44

    5.Examples:AmbientVibrationMeasurementofSuspensionBridge

    Structuralidentification

    :effect

    of

    friction

    force

    and

    aerodynamic

    forces

    on

    identified

    frequencyanddamping(Nagayama et.al2005)

    39

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    40/44

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    40

    l S i i d d S d ifi i f C bl S d id

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    41/44

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    Adatadrivenidentificationmethodwasappliedconsideringmultipleinputexcitation

    andmultiple

    responses

    (MIMO

    System)

    41

    5 E l S i i I d d S t Id tifi ti f C bl St d B id

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    42/44

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    Withdenseinstrumentationandgoodqualityofseismicrecordsweidentifybridge

    modalparameters

    until

    high

    order

    42

    5 E l S i i I d d S t Id tifi ti f C bl St d B id

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    43/44

    Observationofthe erformanceofseismicisolationdevicesusin 1st lon itudinal

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    mode(Siringoringo &Fujino 2008)

    (b)TypicalMixedSlipStickMode(Earthquake19950703)(a)TypicalslipslipMode (Earthquake19900220)

    FromthefirstlongitudinalmodewecanobservebehaviorofLinkBearingConnection

    during

    earthquake.

    Differentbehaviour ofLinkBearingConnectionattheendpierswasobservedduring

    43

    .

    It

    was

    found

    that

    the

    expected

    slip

    slip

    mode

    only

    occurred

    during

    large

    earthquake.

    S t d R di M t i l

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    44/44

    SuggestedReadingsMaterials:

    ,

    ,

    ,

    .AppliedSystemIdentification byJer NanJuang

    MonitoringandAssessmentofStructuresbyGSTArmer

    TheStateoftheArtinStructuralIdentificationofConstructedFacilities(ASCEReport1999)

    Q

    &

    SQuestions andSharing? DionysiusSiringoringo

    . .u y . .

    44