Top Banner
www.omdl.t w STUT STUT OPTOELETRONICS OPTOELETRONICS & MICROWAVE MICROWAVE DEVICE DEVICE LABORATORY LABORATORY Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Soo-Kun Jeon, Jae-Gu Lim, Jun-Serk Lee, Cheol-Hoi Kim, and Joong-Seo Park The effect of the last quantum barrier on the internal quantum efficiency of InGaN-light emitting diode APPLIED PHYSICS LETTERS 93, 101112 (2008) Y.C. Chiang
16

APPLIED PHYSICS LETTERS 93, 101112 (2008)

Jan 02, 2016

Download

Documents

Meghan Malone

The effect of the last quantum barrier on the internal quantum efficiency of InGaN-light emitting diode. Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Soo-Kun Jeon, Jae-Gu Lim, Jun-Serk Lee, Cheol-Hoi Kim, and Joong-Seo Park. APPLIED PHYSICS LETTERS 93, 101112 (2008). Y.C. Chiang. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Soo-Kun Jeon, Jae-Gu Lim, Jun-Serk Lee, Cheol-Hoi Kim, and Joong-Seo Park

The effect of the last quantum barrier on the internal quantum efficiency of InGaN-light emitting diode

APPLIED PHYSICS LETTERS 93, 101112 (2008)

Y.C. Chiang

Page 2: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Outline

• Motive

• Experimental

• Results and Discussion

• Conclusions

• Extend discussion

• Reference

2

Page 3: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Motive

Improvementin the internal quantum efficiency (IQE) is related low due to :strong piezoelectric field in MQWsHigh dislocation density by heterosubstrate

Unintentional Mg impurityMg-doped GaN profile :

deep acceptor activation process diffusion

3

Page 4: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Motive

Improvementin the internal quantum efficiency (IQE) is related low due to :strong piezoelectric field in MQWsHigh dislocation density by heterosubstrate

Unintentional Mg impurityMg-doped GaN profile :

deep acceptor activation process diffusion

4

Page 5: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Experimental

5

n-GaN

c-plane Sapphire

30nm-buffer layer

2μm-un-doped GaN

In0.27Ga0.73N/GaN

p-GaN

n-contact2μm n-GaN

ITO

p-contact

n~3E18/cm3

In0.3Ga0.7N/GaN

S1 : GaN-LQB (150 Å)

S2 : In0.03Ga0.97N/GaN LQB(150 Å)

Five periodsInGaN/GaN(20 Å/100 Å)

p~2E19/cm3

LQB x=0%,1.5%,3%,and 5%

chip size: 600 x 250 μm2

Page 6: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Results and Discussion(1/5)

FIG. 1. Color online rms roughness(■) and V-shaped pit density(▲) MQWs as indium mole fraction of In(x)Ga(1−x)N-LQB.

LQB In含量提高使其較匹配Mg無法由 dislocation竄入井區

V-pit差異不大由 Mg濃度可看出無太大差別

6

Ref. page 11

Page 7: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Results and Discussion(2/5)

(b) 10x10 μm2 AFM surface images of MQWs with GaN-LQB. (c) In0.03Ga0.97N-LQB

7

Page 8: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

8

A simple schematic diagram to illustrate the growth mechanism: (a) As grown InGaN/GaN, (b) TMIn treatment and inter diffusion

① treading dislocations from the buffer layer

② strain relaxation associated with stacking faults on the surface ③ the embedded inclusions within large V-shaped defects that originate at the InGaN-to-GaN interface

Page 9: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

9

(c) Indium cluster remove, and (d) Indium as surfactant for the grow GaN barrier layer.

Smooth surface

Page 10: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Results and Discussion(3/5)

FIG. 2. SIMS profiles of Mg and indium elements of LEDs with GaN-LQB S1 and In0.03Ga0.97N-LQB (S2).

Mg~1.2E19/cm3

來自 p-GaN diffusion

10

Page 11: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Results and Discussion(4/5)

FIG. 2. SIMS profiles of Mg and indium elements of LEDs with GaN-LQB S1 and In0.03Ga0.97N-LQB (S2).

5.8E17/cm3

3.8E18/cm3

11

Back

Page 12: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Results and Discussion(5/5)

(b) PL and EL (chip size: 600 x 250 μm2 at 20 mA) (c) spectra of S1(■) and S2(▲) .

S2 High than S1 72% S2 High than S1 15%

不確定是在哪個井區發光,為了要區別所以另外做 475nm

12

Page 13: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Deep-Level

13

深層能階

淺層能階

淺層能階

Back

Page 14: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

A high indium contained LQB made smoother surface of MQWs and shaper interface between MQWs and P-GaN layer by the surfactant role of indium.

A high indium contained LQB could drop the IQE of LED due to the increase in electron overflow to the p-GaN. Reducing unintentional Mg impurity diffusion into an active layer

would be more important.

14

Conclusions

Page 15: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

Extend discussion

當銦含量逐漸提高,為何使鎂擴散情況降低 ?猜測:因為 LQB 的銦↑使其和 well 的不匹配情形稍微降低,也因此 dislocation density 也相對降低,導致鎂比較沒辦法藉由這些缺陷進入到井區。

銦含量提高使 MQWs 表面平整的真正製程原因 ?( 不詳 )

15

Page 16: APPLIED PHYSICS LETTERS 93, 101112  (2008)

www.omdl.tw

STUTSTUT    OPTOELETRONICSOPTOELETRONICS    &&    MICROWAVEMICROWAVE    DEVICEDEVICE   LABORATORYLABORATORY

References

• Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Soo-Kun Jeon, Jae-Gu Lim, Jun-Serk Lee, Cheol-Hoi Kim, and Joong-Seo Park, “The effect of the last quantum barrier on the internal quantum efficiency of InGaN-light emitting diode,” APPLIED PHYSICS LETTERS 93, 101112 (2008).

• 史光國 編譯 , “ 現代半導體發光及雷射二極體材料技術 ,” 全華科技圖書股份有限公司 , 2004.

16