Top Banner
Application of Synchrotron Radiation to Application of Synchrotron Radiation to Chemical Dynamics Research Chemical Dynamics Research Shih-Huang Lee 李李李李 () National Synchrotron Radiation Research Center (NSRRC) 李李李李李李李李李李 Oct. 21, 2010
62

Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Jan 01, 2016

Download

Documents

Evelyn Wiggins
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Application of Synchrotron Radiation to Application of Synchrotron Radiation to Chemical Dynamics ResearchChemical Dynamics Research

Shih-Huang Lee(李世煌)National Synchrotron Radiation Research

Center (NSRRC)國家同步輻射研究中心

Oct. 21, 2010

Page 2: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

OutlineOutline

IntroductionSynchrotron facilityCrossed molecular-beam apparatusPhotodissociation of propene (CH3-CH=CH2)Crossed-beam reaction of O + C2H4

Conclusion

Page 3: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

IntroductionIntroduction

Ionization detection of reaction products is

ideal for molecular beam experiments in

chemical reaction dynamics research.

Electron Impact Ionization

Photoionization

Page 4: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Electron Impact Ionization

Advantage - Universal - Cheap Disadvantage - Severe dissociative ionization - No quantum state and species selectivity

- Limited detection efficiency, especially for TOF measurement, because of space charge problem

Page 5: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Photo-ionization by Direct VUV Ionization

Advantage- Universal

- Small dissociative ionization- Somewhat state selective / species selective

- Low detector background for low IP products- Potentially higher detection efficiency

Disadvantage - Low photon fluxes in the VUV region

- low availability and expensive

Page 6: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Detection efficiency for a typical electron impact ionizer:

* l = 1 cm

Ie = 1 mA (~ 1016 electrons / cm2 s)

  M + e- M+ + 2e-

d[M+]/dt = Ie [M]

  * Probability of a molecule to be ionized in one second

= 1××10-16 cm2/electron pi = Ie = 1016 ×× 10-16 = 1 s-1

  * For a molecule with 1.0 ×× 105 cm/s (1000 m/s), the

probability to be ionized (resident time t = 1 ×× 10-5 s)

  IIe e t =t = 1 1 ×× 10 10-5-5

Page 7: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Detection efficiency for a typical VUV Ionizer:

* l = 1 mm

I nsrrc = 1016 photons / s

A = 1 mm2 = 0.01 cm2

srrc = 1018 photons /cm2 s

= 10-17 cm2/photon

* Ionization probability of a molecule per second

pi = srrc ×× = 10 s-1

* For a molecule with 1.0 ×× 105 cm/s (1000 m/s), the

probability to be ionized (resident time t = 1 ×× 10-6 s)

pi t = 1 × 10-5

Page 8: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Synchrotron at NSRRC, TaiwanC

he

mic

al

Dy

na

mic

s

Be

am

lin

e

Page 9: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Chemical Dynamics Beamline (U9 White Light Beamline)

Page 10: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

U9-undulator (U9-聚頻磁鐵 )

Page 11: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Undulator (聚頻磁鐵 )

Page 12: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

1st 3rd

2nd

4th

Page 13: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Harmonics Suppressor (Gas filter)

Employed Medium: He, Ne, Ar, Kr, Xe

noble gas

pump

pump pump

pump

pump

SR

Page 14: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 15: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Performance of Harmonic Suppressor

0 2 4 6 8 10 12 14

0.01

0.1

1

10

100

Ring current 146.5mAGap 60mmGas Ar

I/I0 = 10-3 @ 10 Torr

Ph

oto

cu

rre

nt

/ A

Ar Pressure / Torr

Page 16: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

F

unda

men

tal P

hoto

n E

nerg

y / e

V

Undulator Gap / mm

Fundamental Photon Energy vs U9-GAPFundamental Photon Energy vs U9-GAP

Page 17: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 18: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

U9 White Light Beamline at NSRRC 

Light Source (U9 undulator)

Undulator period : 9 cm

Number of period (N): 48

Energy range : 5 ~ 50 eV

Energy resolution : E / E ~ 4 %

Photon flux: ~ 1016 photons/sec 

Page 19: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 20: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Crossed-Molecular-Beam Machine

Page 21: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

How to increase detection sensitivity

Neutral flight distance is shorten as 10 cm (15 cm in Berkeley). Sensitivity gains about 2.3 times.  Quadrupole rod assembly is enlarged by a factor of 1.7 (1.25 〃 v.s. 0.75 〃 ). Transmission is ~ 2.8 times larger.

In comparison with the Berkeley ALS endstation. The sensitivity is ~ 6.5 times better.

He refrigerator is used to evacuate the ionization region to an ultrahigh vacuum (< 5×10-12 torr). S/N gains 10 times than before for H2 detection.

Page 22: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

(I) Photodissociation of propene at 157 nm

CH3-CH=CH2 + 157 nm C3H5 + H

C3H4 + H + H

C3H4 + H2

C3H3 + H2 + H

C2H4 + CH2

C2H3 + CH3

C2H2 + CH4

C2H2 + CH3 + H

Procedure:

1. Measure product time-of-flight spectra

2. Do simulation using a trial P(Et)

3. Fit experimental data to the best

4. Obtain kinetic energy distribution P(Et)

Page 23: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0

90

180

270

0

90

180

270

-80 -60 -40 -20 0 20 40 60 80 100

270

180

90

0() ()

MAV

A = M

BV

B

VB

VA A BAB+h

Velocity (arb. units)

= 0 (isotropic) = -1 (v ) = 2 (v // )

Velocity distributions of products after photodissociation

Three typical angular distributions of products after photodissociation

I(Et ,) = 1/4P(Et)[1+(Et)p2(cos)]

Page 24: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 50 100 150 200 250

C3H

5 (IP = 8.2 eV)

Ion c

ount

Flight time (s)

m/z = 41

@ 30o, 8.8 eV

0 50 100 150 200 250 300

m/z = 41

@ 5o, 8.8 eV

0 10 20 30 40 500

100

200

300

400

500

600

H (IP = 13.6 eV)

Ion

coun

t (a.

u.)

Flight time (s)

m/z = 1

@ 30o, 14 eV C

3H

5+H

C3H

4+H+H

C3H

4+H+H

& C3H

3+H

2+H

& C2H

2+CH

3+H

20 40 60 800.0000

0.0005

0.0010

0 20 40 60 800.00

0.02

0.04

0.06

0.08

0.10

H

P(E

t)

Et (kcal/mol)

C3H

5+H (0.014)

C3H

4+H+H (0.073)

C3H

4+H+H (0.073)

& C3H

3+H

2+H (0.19)

& C2H

2+CH

3+H (0.65)

Only the leading part of H-atom correlates with C3H5 and most H atoms are attributed to triple dissociations.

Good S/N ratio!

(EI will cause severe dissociative ionization)

Page 25: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 5 10 15 20 25 300

200

400

600

800

1000

1200

1400

H2 (IP = 15.4 eV)

Ion

coun

t (a.

u.)

Flight time (s)

m/z = 2

@ 30o, 17 eV

The detection for atomic and molecular hydrogen is very tough due to the short resident time (high speed) in the ionization region. The increase of detection sensitivity and the decrease of detector background improve the S/N ratio of atomic and molecular hydrogen products. The condition is better than the ALS machine.

Good S/N ratio!

0 20 40 60 80 1000.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

C3H

4+H

2

P(E

t)

Et (kcal/mol)

Page 26: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

C3H

4+H

2

C3H

5 cracking

C3H

4+H+H

C3H

4 (IP = 9.5~10.4 eV)

m/z = 40

@ 10o, 9.5 eV

m/z = 40

@ 10o, 11.5 eV

0 50 100 150 200 250

Flight time (s)

Ion c

ount

m/z = 40

@ 30o, 9.5 eV

0 50 100 150 200 250 300

m/z = 40

@ 30o, 11.5 eV

Two components due to H2 and 2H eliminations are observed notably at lab angle 30o and 9.5 eV.

Page 27: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

C3H

3 (IP = 8.7~10.8 eV)

m/z = 39

@ 10o, 9.5 eV

C3H

3+H

2+H

C3H

4 cracking

m/z = 39

@ 10o, 11.5 eV

0 50 100 150 200 250

Flight time (s)

Ion c

ount

m/z = 39

@ 30o, 9.5 eV

0 50 100 150 200 250 300

m/z = 39

@ 30o, 11.5 eV

The dissociative ionization of C3H4 becomes severe as detected with electron impact ionization. The selective photoionization (9.5 eV) can avoid completely dissociative ionization of C3H4.

Page 28: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

C2H

3+CH

3

C2H

2+CH

3 +H

CH3 (IP = 9.8 eV)

Ion c

ount

m/z = 15

@ 30o, 11 eV

C2H

3 (IP = 8.3 eV)

m/z = 27

@ 30o, 10 eV

0 50 100 150

Flight time (s)

m/z = 15

@ 60o, 11 eV

0 50 100 150 200 250 300

m/z = 27

@ 60o, 10 eV

These two radicals are hard to be detected using EI ionization owing to severe dissociative ionization. Because all reaction products are measured, we know most CH3 arises from C2H2+CH3+H dissociation.

Page 29: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

CH2 (IP = 10.4 eV)

Ion c

ount

m/z = 14

@ 30o, 11 eV

C2H

4 (IP = 10.5 eV)

m/z = 28

@ 30o, 12 eV

0 50 100 150

Flight time (s)

m/z = 14

@ 60o, 11 eV

0 50 100 150 200 250 300

m/z = 28

@ 60o, 12 eV

Apparently only a dissociation channel contributes to CH2 and C2H4 because they can be fitted satisfactorily using single P(Et). CH2 is identified to be from the methyl moiety via the photolysis of isotopic variant CD3C2H3.

Page 30: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

CH4 (IP = 12.6 eV)

Ion c

ount

m/z = 16

@ 30o, 14 eV

C2H

2+CH

4

C2H

2+CH

3+H

C2H

2 (IP = 11.4 eV)

m/z = 26

@ 30o, 11.5 eV

0 50 100 150

Flight time (s)

m/z = 16

@ 60o, 14 eV

0 50 100 150 200 250 300

m/z = 26

@ 60o, 11.5 eV

The formation of methane (CH4) occurs rarely in photodissociation of hydrocarbons. In this work methane is observed in the photolysis of propene at 157 nm. Most C2H2 arises from triple dissociation.

Page 31: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 10 20 30 40 500.00

0.01

0.02

0.03

0.04

0.05

0.06

C2H

2+CH

3+H

P(E

t)

Et (kcal/mol)

0 10 20 30 40 500.00

0.01

0.02

0.03

0.04

0.05

0.06

C2H

4+CH

2

P(E

t)

Et (kcal/mol)

0 10 20 30 40 500.00

0.01

0.02

0.03

0.04

0.05

0.06

C2H

3+CH

3

P(E

t)

Et (kcal/mol)

C2H4+CH2, C2H3+CH3, and C2H2+(CH3+H) channels have similar P(Et).It is difficult to distinguish them using electron impact ionization.

0 20 40 60 80 1000.00

0.01

0.02

0.03

C2H

2+CH

4

P(E

t)

Et (kcal/mol)

Page 32: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Averaged kinetic energy release, kinetic fraction and branching ratio.

Product channel

Eavail

(kcal/mol)

<Et>

(kcal/mol)

ft

(%)

Branching(%)

    1st  2nd

   

C3H5+H 93.3 49.7   0 53.3 1

C3H4+H+H 37.8 16.5   ~7 b ~62 7

C3H4+H2 142.0 25.4   0 17.9 0.2

C3H3+H2+H 52.7 25.4   ~7 b ~61 17

C2H4+CH2 80.4 11.1   0 13.8 6

C2H3+CH3 79.5 11.3   0 14.2 4

C2H2+CH4 149.7 26.3   0 17.6 5

C2H2+CH3+H 44.7 11.6   ~7 b ~42 60

Page 33: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0

90

180

270

0

90

180

270270

180

90

0() ()

= 0 (isotropic) = -1 (v ) = 2 (v // )

Three typical angular distributions of products after photodissociation

I(Et ,) = 1/4P(Et)[1+(Et)p2(cos)], p2(cos) = (3cos2-1)/2

(Et) = 2 I(Et ,) = 3/4P(Et)cos2

(Et) = 0 I(Et ,) = 1/4P(Et)

(Et) = -1 I(Et ,) = 3/8P(Et)sin2

I(Et ,//) = 1/4P(Et)[1+(Et)] @ = 0o

I(Et ,) = 1/4P(Et)[1-(Et)/2] @ = 90o

(Et) = 2[I(Et ,//)–I(Et ,)] / [I(Et ,//)+2I(Et ,)]

Page 34: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 30 60 90 120 1500

300

600

900

C2H

2+CH

3+H

C2H

2+CH

4

m/z = 26 (C2H

2)

@ 30o, 11.5 eV //

Flight time / s

0 20 40 60 80 1000

50

100

150

200

250

Ion

co

un

t (a

rb. u

nits

)

m/z = 16 (CH4)

@ 30o, 13.8 eV //

0 20 40 60 800.00

0.05

0.10

0.15

0.20

0.25

0.30

(E

t)

Et / kcal mol-1

CH4+C

2H

2

(Et) = 2[I(Et ,//)–I(Et ,)] / [I(Et ,//)+2I(Et ,)]

Page 35: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Averaged angular-anisotropy parameters for various dissociation channelsin photolysis of CH3CHCH2 and CD3CHCH2 at 157 nm

Channel <> Channel <> Channel <>

C3H5+H ~ 0 C3H2D3+H ~ 0 C2H3+CD3 0.05

C3H4+H2 -0.03 C3H3D2+D ~ 0 C2H2D+CHD2 0.03

C2H4+CH2 0.05 … … C2HD2+CH2D 0.03

C2H3+CH3 0.06 C3HD3+H2 -0.07 C2D3+CH3 0.03

C2H2+CH4 0.12 C3H2D2+HD -0.03 … …

C2H2+CH3+H 0.05a C3H3D+D2 ~ 0 C2HD3+CH2 0.08

a from C2H2 due to triple dissociation

Page 36: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Photo-excited state of propene at 157 nmPhoto-excited state of propene at 157 nm

Electronic states of propene nearby 157 nm:

-3s(11A"), -3p(21A'), -3p(21A"), -3p(31A")

The photo-excited state of propene at 157 nm is -3p(21A') that produces a transition dipole moment lying in the C-C=C plane.

Page 37: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

(II) Crossed-beam reaction of O(3P/1D) + C2H4 @ Ec = 3 kcal/mol

O(3P) + C2H4 → CH2CHO + H

→ CH3 + HCO

→ CH2CO + H2

O(1D) + C2H4 → CH2CO + 2H

→ CH3 + HCO

→ CH2CO + H2

Page 38: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Components of the discharge device

Va

lve In

su

lato

r

Inn

er

ele

ctro

de

Ins

ula

to

r Ad

ap

te

r

Ou

ter

ele

ctro

de

Page 39: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Layout of the transient high-voltage discharge circuit

Page 40: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Discharge current on an oscilloscope

300 mV on the scope → 30 mA discharge current

Page 41: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

12 13 14 150

50

100

150

I = (3P)p(3P) + (1D)p(1D)

p(3P):p(1D) = 96:4

O(1D)

O(3P)

O+ io

n si

gnal

s (a

. u.)

Photon energy / eV

O atoms from 3% O2/He by discharge

0

50

100

150

200

Rel

ativ

e io

niza

tion

cros

s se

ctio

ns (

a. u

.)

rel

(3P)

rel

(1D)

Page 42: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Primary beam (0o source): Discharge media @ 100 psi

1. 20% O2 + 80% He (1D:3P = 0.0017)2. 3% O2 + 13% Ar + 85% He (1D:3P = 0.035)

Velocity = 1285 m/s

Secondary beam (90o source):Sample: neat ethylene @ 50 psiVelocity = 880 m/s

Collision energy Ec = 3.0 kcal/mol

Page 43: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 44: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0

200

400

600

0 50 100 150 2000

200

400

600

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0

200

400

600

800

data O(3P)+C

2H

4CH

2CHO+H

O(3P)+C2H

4CH

3+HCO

total

-18° -10° 10° 20°

Rel

ativ

e io

n si

gnal

(ar

b. u

nits

)

30° 40° 50° 60°

70°

Flight time / s

80° 100°

m/z = 15 for the sample 20% O2/He

108°

PI @ 12.8 eV O(1D) = 0.17%

Page 45: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0

200

400

600

0 50 100 150 2000

200

400

600

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0

200

400

600

800

-18° data O(3P)+C

2H

4CH

2CHO+H

O(3P)+C2H

4CH

3+HCO

O(1D)+C2H

4CH

3+HCO

total

-10° 10° 20°

Rel

ativ

e io

n si

gnal

(ar

b. u

nits

)

30° 40° 50° 60°

70°

Flight time / s

80° 100°

m/z = 15 for the sample 3% O2+13% Ar/He

108°

PI @ 12.8 eV O(1D) = 3.5%

Page 46: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 5 10 15 200

2

4

6

8

10

0 5 10 15 20 0 5 10 15 20 0 45 90 135 180

0

2

4

6

8

10 0° 30° 60° 90°

P(

)

P(E

t)

120°

Et / kcal mol-1

150° 180°

O(3P) + C2H

4 CH

2CHO + H

/ degree

Page 47: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 48: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 3 6 9 120

2

4

6

8

10

0 3 6 9 12 0 3 6 9 12 0 45 90 135 180

0

2

4

6

8

10 0° 30° 60° 90°

P(E

t)

120°

Et / kcal mol-1

150° 180°

O(3P) + C2H

4 CH

3 + HCO

P(

)

/ degree

Page 49: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 50: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 5 10 15 20 250

2

4

6

8

10

0 5 10 15 20 25 0 5 10 15 20 25 0 45 90 135 180

0

2

4

6

8

10 0° 30° 60° 90°

P(E

t)

120°

Et / kcal mol-1

150° 180°

O(1D) + C2H

4 CH

3 + HCO

P(

)

/ degree

Page 51: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 52: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 50 100 150 200

0

20

40

60

80

100

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 250

0

20

40

60

80

100

-10°

data

O(1D)+C2H

4CH

2CO+2H

O(1D)+C2H

4CH

2CO+H

2

O(3P)+C2H

4CH

2CO+H

2

total

10° 20° 30°

Re

lativ

e io

n s

ign

al (

arb

. un

its)

40°

Flight time / s

50° 60°

m/z = 42 for the sample 20% O2/He

70°

PI @ 11.1 eV O(1D) = 0.17%

Page 53: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 50 100 150 200

0

100

200

300

400

500

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 250

0

100

200

300

400

500

data

O(1D)+C2H

4CH

2CO+2H

O(1D)+C2H

4CH

2CO+H

2

O(3P)+C2H

4CH

2CO+H

2

total

-10°

m/z = 42 for the sample 3% O2+13% Ar/He

10° 20° 30°

Rel

ativ

e io

n si

gnal

(ar

b. u

nits

)

40°

Flight time / s

50° 60° 70°

O(1D) = 3.5%PI @ 11.1 eV

Page 54: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 20 40 60 800

2

4

6

8

10

0 20 40 60 80 0 20 40 60 80 0 45 90 135 180

0

2

4

6

8

10 0° 30° 60° 90°

P(E

t)

120°

Et / kcal mol-1

150° 180°

O(3P) + C2H

4 CH

2CO + H

2

P(

)

/ degree

Page 55: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 56: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 20 40 60 800

2

4

6

8

10

0 20 40 60 80 0 20 40 60 80 0 45 90 135 180

0

2

4

6

8

10 0° 30° 60° 90°

P(E

t)

120°

Et / kcal mol-1

150° 180°

O(1D) + C2H

4 CH

2CO + H

2

P(

)

/ degree

Page 57: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 58: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

0 5 10 15 20 250

2

4

6

8

10

0 5 10 15 20 25 0 5 10 15 20 25 0 45 90 135 180

0

2

4

6

8

10 0° 30° 60° 90°

P(E

t)

120°

Et / kcal mol-1

150° 180°

O(1D) + C2H

4 CH

2CO + 2H

P(

)

/ degree

Page 59: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Page 60: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

(x)

(o)

(o)

(o)

(-1.9)

(-8.7) CH2(3B1)+H2CO

(x)

(?)

T.L. Nguyen, L. Vereecken, X.J. Hou, M.T. Nguyen, and J. Peeters, J. Phys. Chem. A 109, 7489 (2005)

Page 61: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

O(1D) + C2H4

(ethylene oxide)

(x)

(o)(o)

(o)

(45.4)

Page 62: Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.

Conclusions • Universal detection has been really achieved using

the powerful chemical dynamics endstation associated with the U9 white light beamline.

• Product branching ratios, kinetic energy, and angular distributions in chemical reactions have been successfully measured in this endstation.

• This endstation is an important site for studying complicated chemical reactions.