Top Banner
Application of High-Energy Physics Technologies to PET (Positron Emission Tomography) Chin-Tu Chen, Ph.D. Committee on Medical Physics & Department of Radiology Pritzker School of Medicine & Biological Sciences Division The University of Chicago National Science Foundation Visit, June 26, 2007
31

Application of HighEnergy Physics Technologies to PET

Feb 18, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Application of HighEnergy Physics Technologies to PET

Application of High­Energy Physics Technologies to 

PET(Positron Emission Tomography)

Chin­Tu Chen, Ph.D.Committee on Medical Physics & Department of RadiologyPritzker School of Medicine & Biological Sciences Division

The University of Chicago

National Science Foundation Visit, June 26, 2007

Page 2: Application of HighEnergy Physics Technologies to PET

HEP & PETHEP & PET  Similarities and differencesSimilarities and differences

  

 SimilaritiesGeometry and granularity Detector (Crystals & scintillator)Sensor (PM,APD)Electronics:Fast (40 MHz), compactEvent rate & Data volume (Gbit/s)

DifferencesEnergy range (10GeV­511keV)No synchronisation­­> free running electronics Multiple vertices

CMS

PET Scanner

BiomedicalImaging

200 400 600 800 1000

28,700 ph/MeVER = 10.1%

Cou

nts

Energy (keV)

Calorimeter

HEP

P. Le Du/Saclay

Page 3: Application of HighEnergy Physics Technologies to PET

From HEP to Medical ImagingFrom HEP to Medical Imaging

New scintillating crystals and detection materials New scintillating crystals and detection materials – CMS (WPbO4) CMS (WPbO4)   Luap …(Crystal Clear col) Luap …(Crystal Clear col)

Photodetectors : Photodetectors : Highly segmented  and compact Highly segmented  and compact             ­­  PMT ­­  PMT   APD  APD   SiPM SiPM

– APD : SSC/SDC (1991) APD : SSC/SDC (1991)   CMS (1996)  CMS (1996)   MicroTEP MicroTEP  TEP TEPElectronics & signal treatemntElectronics & signal treatemnt  Highly integrated Highly integrated– Fast, low noise,low power preamp Fast, low noise,low power preamp – Digital filtering and signal analysisDigital filtering and signal analysis

Trigger/DAQ Trigger/DAQ    – High level of parallelism and event filtering algorithmsHigh level of parallelism and event filtering algorithms– Pipeline and parallel read­out, trigger and on­line treatmentPipeline and parallel read­out, trigger and on­line treatment  

Simulation & ComputingSimulation & Computing– Modern and modular simulation software using worldwide recognized standards Modern and modular simulation software using worldwide recognized standards 

(GEANT)(GEANT)

Where techniquestechniques are transferred to developments in biomedical fieldMedical Imaging has so far only partially benefited from new technologies developed for High Medical Imaging has so far only partially benefited from new technologies developed for High Energy Physics detectorsEnergy Physics detectors

P Le Du/Saclay

Page 4: Application of HighEnergy Physics Technologies to PET

P a t ie n t  1 P a t ie n t  2

M R P E T M R P E T

PET: Molecular Imaging of Life and Life Processes

Live Brain Dead Brain

Page 5: Application of HighEnergy Physics Technologies to PET

PET Principle

P      N + e+ + n + energy

E = mc2

Page 6: Application of HighEnergy Physics Technologies to PET

Production of Isotopes (Mini­Cyclotron)

18O (p,n) 18F

Page 7: Application of HighEnergy Physics Technologies to PET

15O   

13N   

11C    

18F

64Cu

82Rb

124I

PET Isotopes

PET Tracers

[15O]­O2    [15O]­H2O

[15O]­H2O [15O]­CO

[13N]­NH3  [18F]­FDOPA 

[13N]­glutamate [18F–]

[11C]­acetate  [18F]­FDG

[11C]­palmitate

 [11C]­methionine

Page 8: Application of HighEnergy Physics Technologies to PET

18Fluoro­2­deoxy­D­glucose

H O

O

O H

O H

1 8F

O H

P L A S M A T I S S U E

F D G F D G F D G – 6 – P

g lu c o s e g l u c o s e g l u c o s e – 6 – P

C O2 + H

2O[1 8F ] – F D G

Page 9: Application of HighEnergy Physics Technologies to PET
Page 10: Application of HighEnergy Physics Technologies to PET

Normal Alzheimer’ s Disease

RV LV

L IV E R

LU N G SP M

AP PROJECTION

Page 11: Application of HighEnergy Physics Technologies to PET
Page 12: Application of HighEnergy Physics Technologies to PET
Page 13: Application of HighEnergy Physics Technologies to PET

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50

striatum

cerebellum

cps

Time(min)

Biochemical Imaging with Small AnimalsBiochemical Imaging with Small Animals

microPETmicroPET

[11C]WIN 35,428

N

11CH3 O

F

OCH3

Page 14: Application of HighEnergy Physics Technologies to PET

Human PET: 3­4mm; Target: 1mmAnimal PET: 1­2 mm; Target: <0.5mm

Fast Dynamic Image AcquisitionHigh Resolution & High Sensitivity

High­Performance & Low­Cost (HPLC)

Page 15: Application of HighEnergy Physics Technologies to PET

Multi­Modality Image Integration

Fusion of PET & MRI

Page 16: Application of HighEnergy Physics Technologies to PET

PET/CT Imaging

Page 17: Application of HighEnergy Physics Technologies to PET

Siemens “Molecular Imaging”

Multi­Modality Integrative System

PET/MRIPET/SPECT/CT

ForAnimal Imaging

PET/SPECT

Page 18: Application of HighEnergy Physics Technologies to PET

Multi­ModalityBayesian Image Reconstruction 

1. Co­registration of PET/SPECT with CT/MRI2. Incorporation of high­resolution information from the co­      registered CT/MR images into a Bayesian image recons­      truction framework to enhance image quality of PET/SPECT5. Using the co­registered CT/MR images as an anatomic map      in correction for attenuation and scatters in PET or SPECT

Upper Two:  Filtered BackProj.Lower Two:  Multi­Modality  Image Reconstru.   Chen, Kao, et al

Page 19: Application of HighEnergy Physics Technologies to PET

A Benchtop Prototype for 

High­Throughput 

Animal Imaging

HRRT modules• LSO crystals with DOI 

capability◆ good spatial resolution 

– ~2.42mm crystal pitch

– ~10mm DOI resolution◆ good detection sensitivity◆ high count rate

• large detection sensitive area◆ ~25.2cm ×17.4cm◆ 72×104 crystals per layer

• off­shelf, well tested, cost­effective design

• adjustable energy and coincidence windows

Page 20: Application of HighEnergy Physics Technologies to PET

\

Flexible Configuration

Fully 3D Reconstruction without Angular Rotation

Page 21: Application of HighEnergy Physics Technologies to PET

Stationary Compact Dual­Panel PET with Very High Sensitivity

Page 22: Application of HighEnergy Physics Technologies to PET

High-Throughput Compact PET

FOV FOV

RFOV = 56.3mm

Compact Conventional57.3mm 85.9mm

True Compact,no PSF

Convent’lscanner

Compact, with PSF

Page 23: Application of HighEnergy Physics Technologies to PET

DOI Detectors

✦ Phoswich detectors

✦ photo­diodes (or SiPM/MPPC)

LSO GSO/LSO PMT

scintillator (BGO) PMT

photo diode/SiPM

Page 24: Application of HighEnergy Physics Technologies to PET

Time-of-Flight Tomograph

• Can localize source along line of flight - depends on timing resolution of detectors

• Time of flight information can improve signal-to-noise in images - weighted back-projection along line-of-response (LOR)

D

 x  = uncertainty in position along LOR       = c . t/2

 x

Karp, et al, UPenn

Page 25: Application of HighEnergy Physics Technologies to PET

Benefit of TOFno TOF 300 ps TOF

1 M

cts

5 M

cts

10 M

cts

5Mcts

1Mcts1Mcts TOF5Mcts TOF

Better image qualityFaster scan time

   Karp, et al, UPenn

Page 26: Application of HighEnergy Physics Technologies to PET

TOFPET DREAMPET without TOF (>99%)

One Commercial TOFPET System Available with 750 picosec TOF (11.25 cm LOR Resolution)

30 picosec TOF4.5 mm LOR Resolution

10 picosec TOF1.5 mm LOR Resolution

3 picosec TOF0.45 mm LOR Resolution

HistogrammingNo “Image Reconstruction”

Page 27: Application of HighEnergy Physics Technologies to PET

    Pipeline ArchitecturesPipeline Architectures

LHC Future PET

Digitisation

Pipeline

Event builder

P. Le Du/Saclay

Page 28: Application of HighEnergy Physics Technologies to PET

Proposal of Proposal of Front End ArchitectureFront End Architecture

 Trigger logic processes “raw fast information” Free­running sampling ADC Digital filter used to extract pulse amplitude and

    high resolution timing Pipelined processing architecture to avoid deadtimes Only one “channel” to compute either the energy and time

charge preamplifier

E,T,Q

Pipelined register

 clock  50 MHz

7 bits

ADC

digital filterphotodetector

APDPMT LOCAL

BUFFER

Other ROI channels

shaper CR­RC

crystal

Trigger logic

A B C

1

2

3

4

5

6

7

8

  ROI Data

DataAcquisition

SiPM

Pixelised

P. Le Du/Saclay

Page 29: Application of HighEnergy Physics Technologies to PET

High Energy Physics

Space and Radiation Medical

Technology Transfer

 

High Energy Physics

Space and Radiation

Medical Technology Transfer

Geant4 – A Common Simulation Platform 

 

GATE  ­­Geant4 Application for 

Tomographic Emission Higgs event at LHC (CMS) with Geant4

Page 30: Application of HighEnergy Physics Technologies to PET
Page 31: Application of HighEnergy Physics Technologies to PET

SiPM/PET Collaboration at ANL/UC