Top Banner

of 24

Application of Geomechanics in Longwall Operation

Apr 03, 2018

Download

Documents

rannscribd
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 Application of Geomechanics in Longwall Operation

    1/24

    APPLICATION OF GEOMECHANICS I N LONGWALL OPERATION

    D. S. ChoiConoco, IncorporatedPonca City, Oklahoma

    Z

    Permission i s hereby given to p ubl is h with appropr iate acknowledgments,excerp ts or summaries not t o exceed one-fourth of the e ntire text of the paper.Permission to print i n more extended form subsequent to publication by the Institu temu st be obtained from the E xecut ive Director of the Society of Mining Engineersof AIME.If and when this paper is published by the Suc iety of Mining Engineers of AOME, i tmay embody certain changes made by agreement between the Technical PublicationsCom mittee and the author, so that the form in wh ich i t appears here is not necessarilythat inwhich it may b e pub lished later.These $reprints are available for sale. M ail orders to PREPRINTS, Society of MiningEngineers, Caller No. D, Litt leton, Colorado 80.929.

    PREPRINT AVAILABILITY LIST IS PUBLISHED PERlODICAbbY IN

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    2/24

    INTRODUCTION

    Coal i.s expected t o become an inc r eas i ngl y impor tan t source of ene rgy i nth e fu tu re . Coal produ ct ion has a l read y increased f rom about 650mi l l i on t ons i n 2975 t o about 875 mi l l i on t ons i n 1984 (Wi lk inson ,1985) . The de c l i n in g t r e nd of l a bo r p r odu c t i v i t y i n t he e a r l y s e ve n t i e swas a so ur ce of conce rn f o r Co ns ol id ati on Coal Company (Consol). Toimprove pr od uc ti vi ty , a grad ual change from room-and-pillar mining t olongwall mining has been t ak in g pla ce with in Consol . Consol produces 45m i l l i on t ons o f c oa l a nnua l l y w i th about 70 percent of t he product ioncoming from underground mines.

    Consol introduced longwall mining. i n th e ea r ly seventTes and cur ren t ly

    ope ra te s abcut 20 longwall f aces . The longwal l f aces a r e i n mines i nth e Appalachian reg ion i n the S t a t e s of West Vi rg i n ia , Pennsylvania , andOhio. The succ ess f u l ope ra t ion of longwall f aces has cont r ibuted t o ar e c ove r y o f p r odu c t i v i t y and t o a n improvement of mine safety.

    I n t h i s pape r , sa fe ty and pro duc t iv i t y d a ta of underground coa l mices

    from 1950 to 1982 ar e br i e f l y reviewed t o show th e impact of th e enact-ment of t h e Coal Mine Eea lt h and Safe ty Act of 1969 on th e co al indus-try. I n add i t io n, some r e s u l t s of geomechanics work i n longwall miningt o improve p r o duc t i v i t y a nd s a f e t y a r e p r e s en t e d .

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    3/24

    SAFETY PRODUCTIVITY

    Hi s to r ic a l l y , the coa l indus t ry has improved i t s sa fe ty record throughinnovat ion and mechaniza t ion and t ra in ing . Tn the f i f t i e s a n d s i x t i e s ,sa fe ty improvement came from th e adopti on of roof b o l t su pp ort s, con tin-uous miners , s h u t t l e ca rs , and conveyor b e l t s i n room-and-pi llar mining.I n pl ac e of wood t im bers , roof b ol t i ng became th e pr imary supp ort systemi n co a l mines, f r ee ing up t h e nar row en t r i e s f o r con t inuous miningmachines. Roof b o l t i n g sup port was fu r th e r improved over th e expansions h e l l an ch or t y p e b o l t b y t h e i n t r o d u c t i o n of t h e r e s i n g ro ut ed b o l t .The r e s i n g r ou te d b o l t r e du ce s t h e h ig h s t r e s s c o n c e n tr a t io n a t t h e b o l ta nc ho r and e l i m i n a t e s t h e p o t e n t i a l f o r l o s s of t h e a pp l i ed b o l t t en -s ion . Under roof bo l t suppor ty l a rg e cont inuous miners wi th sh ut t l eca r s and be l t conveyors have s t e ad i l y improved t h e i n dus t ry s a f e t yr e co r d a s pr e se n te d i n F i g ur e 1. The f a t a l i n j u r y r a t e p e r m i l l i o n t o n sof p roduc t ion dec l i ned l i ne a r ly a t a r a t e o f a bo ut .035 p e r m i l l i o n t o n sper year between 1950 and 1970 (IR of MSHA and i t s predeces so r s ) .

    The pr od uct iv i ty of underground co a l mines had a l s o inc reased a t a r a t eof 0 .42 t ons pe r man s h i f t pe r yea r du r ing t h i s pe r jod a s shown i nFigure 2 (Min eral s Year Books and Keystone Coal In du st ry Mantials), I tdecreased from 1970 t o 1978 a t a r a t e of 1.1 t ons pe r man s h i f t pe r yea rpa r t ly because of th e enac tment of mining ru le s and reg ula t io ns such a sth e 1969 Coal Mine He alth and Sa fe ty Act.

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    4/24

    To improve pro du ct iv i t y, Consol s t a r t e d t o employ the 1ongwal .l miningmethod. The method pe rm its an improvement i n sa f e ty and pr od uc t i vi tybec ause p r oduc t ion c a n be r e s t r i c t e d t o one f a c e w i t h c l o s e s upe r v i s i on

    ' and th e fa ce workers a r e p ro t ec t ed under t he s t e e l canopy formed by th ef a c e s u p po r ts . I n a d d i t i o n , t h e f a s t moving s h u t t l e c a r s a r e e l i m in a t e dfrom t he f a c e a r e a a nd c on t inuous t r a ns po r t a t i o n i s pr ov id ed . On t h eo t h e r ha nd , some e a r l y l o n gw a ll s i n s t a l l e d d u r i n g t h e f i f t i e s and e a r l ys i x t i e s , which were des igned wi thout p rope r cons ide ra t i o n of va r io usge o l og ic c c nd i t i ons d i d no t meet t h e i r po t e n t i a l (M oroni, 1973 ) . Thegeo tech nica l problems encountered d ur ing t he ado pt ion of longwal l miningi n t h e e a r l y s e v e n t i e s w i l l be d i s c uss e d .

    STRENGTH OF COAL MEASURE ROCK

    S i nc e no c l o s ed f o rm a n a l y t i c a l s o l u t i o n s f o r c a l c u l a t i n g s t r a t a move-ment and f a i l u r e a r e ava i l ab l e , ma themat i cal model ing by means ofd i g i t a l c o m p u t e r s i s a l o g i c a l c ho i c e f o r a n a na l y s i s o f complex mines t r a t a and opening geometry. Rowever, modeling i s of l . imited va lu ebe c aus e o f t h e I n e b i l i t y of a c c u r a t e l y de te r m in i ng t he p r op e r t j e s ofg e o lo g ic m a t e r i a l i n - s i t u .

    The rock above and below a coal seam i s peneral ly weak and incompetents h a l e 3 r d c l ays ton e . Obta ining meaningfu l phy s i ca l p r op e r t i e s f roml ab o r at o ry t e s t s i s v er y d i f f i c u l t .

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    5/24

    A d e t a i l e d d e s c r i p t i o n o f r o c k c o re i s a good ya r d s t i c k f o r j udgi ng t h ephy s ica l condi t io n of the rock format ions . The re ce nt ly publ i shed guidebook t o co r ed r ock can be used t o i d en t i f y t he r ock t ypes a ccu r a t e l y andco ns is t en t ly (Ferm and Smith, 1980). I n a d d i t i o n t o t h e c o r r e c t i d en ti .-f i c a t i o n , r oc k q u a l i t y d e s i g n a t i o n h e l p s t o e s t i m a t e t h e c o n d i t i o n ofth e coa l measure rocks . F igure 3 i s a p l o t o f RQD a g a i n s t t h e d i a m e t r a lindex compress ive s t r e ng th obta ined from rock core s near a coal seam.Four groups a re f ound i n t he p l o t : c l ays t one , s ha l e , s ands t one , andl im e st on e . T h e re f o re , t h e c o r r e c t i d e n t i f i c a t i o n of t h e ro c k f or m at io ncan he l p i n f i n d i ng p robl em a r eas .

    Geologic log analyses as w e l l a s l a b t e s t s c an pr o vi de u s e f u lcomparisons. Usu all y a small t e s t 9 pe cim en d oe s n o t t r u l y r e p r e s e n t t h e

    ,beh avio r of rock masses sur rounding mine openings . Thus, f i e l d t e s t sa r e neces s a r y t o de t e r mine t h e r e s pons e of t h e weak c oa l measu re rockf o r any des ig n purpose and a back c al cu la t i on method can be used f o rapp l i c a t i on t o s i m i l a r m in ing cond i t i ons . Thus, a fo ll ow-up s t udy i nt he f i e l d i s of te n r equi red f o r improvements i n 1 .ongwall des ign .

    SIZE OF CFIAIN PILLAR

    Most longwal l pan els a r e developed wi t h t h e use of mining equipmentdes igned f o r room-and-pillar mining. The headga t e f o r one l ongwal lp a ne l and t h e t a i l g a t e f o r t h e n ex t a r c d ev elo pe d a s a s e t of e n t r i e s a t

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    6/24

    the same t ime. Thus, th e ta i l g a te en t r y i s v u ln er a bl e t o roo f f a l . 1 ~because i t i s inf lue nce d by th e previ ous mined-out pa ne l and must bemain ta ined for a longer t i m e t han t he headga te en t ry . Proper s i z ing oft h e c o a l p i l l a r s i n t h e he ad ga te and t h e t a i l g a t e e n t r i e s i s importantto p ro tec t t h e t a i lg a te en t ry having weak roof rock even where th e roofi s supported by roof b o l t s and wooden cr i b se t s . A method f o r computingth e minimum si z e of co al pi l l a r s w a s pre sen ted i n "Design of LongwallSystems" (Choi and McCain, 1982).

    The r e s u l t s of the ana ly s i s has been t es t ed a t var io us mfnes. Thefol lowing i s an example i n which the s t r e s s bu i ld up and re su l t i ng rooff a l l s w ere c l o se l y m oni to red. The lon gwa ll pan el was 183m (600 f e e t )v i d e w i t h 1.7n ( 6 6 inch) mining he ig ht and 213 t o 244m (700 t o 800. f e e t )

    2

    overburden . Coal p i l l a r s were inst rumented wi th s t res smete rs to f indt h e i n c r e a s e i n s t r e s s a s t h e l on gw al l f a c e r e t r e a t e d . F ig u re 4 showsth e l ayou t o f the ins t rumented p i l l a rs . F igures 5 and 6 a r e p l o t s oft h e stress i ncre ase aga in s t t h e pos it f .on of the longwall face . Thev e r t i c a l s t r e s s c on ti nu ed t o i n c r e a s e a s t h e f a c e pa ss ed t h e i ns tr um en t-ed ar ea by 61 to 122m (200 t o 400 f e e t ) . The magnitude ~f the increasewas on th e orde r of 6.9 MPa (1,000 p s i) exce pt f o r one st r e s s meter (D) .The measured st r e s s i s wit hin the. the or et fc nl abutment pressur e of 8.6MPa ( I , 250 ps i ) . I t i s a l s o i n p o r t a n t t o obse rve t ha t t he i nc rea se i ns t r e s s was of th e order of 1.7 MPa (250 p s i ) when t h e longw all wasa l i gned w i t h t he s t r e s s m et er s . T ha t s t r e s s i nc rea se d i d no t i nduce anyro of f a i l u r e i n t h e t a i l g a t e e n tr y . A s t he longwall re t r ea ted by , t he

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    7/24

    roo f o f t he c ro s scu t s betw een t he t r ack and t he b e l t en t r i e s f a i l e dwi thout except ion as shown i n Fi gu re 7 . The roof f a i l u r e grows from theb e l t en t ry s i d e t oward t he t r ac k en t ry a s expect ed f rom t he cond i t i on ofthe s ide-~butrnent pres sur e build-up. The exa ct r a t e of progre ss of thef a i l u r e v a r ie d c o ns i de r ab l y b u t w a s accompanied by an ample prewarningbefore fa i lu re . The most ex tens ive fa i l u re was in a four-way in t e r -s e c t i o n of t h e t r a c k e n t ry . I t f a i l ed midway between t he t r ac k a n d t h eescape e n t r i e s th rough th e four-way in t e rs ec t io n i n one day .

    The s t r e s s j n cr e a s e and t h e r oo f f a i l u r e a n a l y s i s i s u s e f u l i n t hedes ign of any o th er longwal l fac es under s i mi l a r condi t ion s where thes ide-abutment p res sur e causes the fa i l u r e of t h e roof fo rmat ion cons i s -t e n t l y . T h a t i s , t h e measured s t r e s s l e a d s t o a way t o determine t hein-s i tu p roper ty of th e roof fo rmat ion by back ca l cu la t ion . In addi-t i on , t he obse rva t ions i nd i ca t e t h a t a row of coa l h l ocks of 25.6 by25.6m ( 8 4 by 84 f e e t ) i s s u f f i c i e n t t o s u pp o rt t h e a bu tm en t p r e s s u r e~ s s o c i a t e d i th a n a d j ac e n t p an el . T h is a s p e c t i s di scussed in conjunc-tion with ground movement.

    WIDTH OF FACE

    According t o a rec en t survey (Peake, 1984) , t he average wid th of1.ongwall fa ce s inc re as ed from 159 . l m (522 f ee t ) t o 167.3111 548 .9 f e e t )from 1979 t o 1982. It i s e xp ec te d t h a t t h i s t r e n d w i l l cont inue because

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    8/24

    high load ca r ry ing supp or t s and l a rge f ace conveyors a r e ava i l a b le andbecause the wider f a ces permi t inc reased coa l r ecovery . I n a d d i t i o n t h edr iv ing o f deve lopment e n t r i es f o r longwal l pane l s t ends t o l a g behindth e pane l min ing fu r t he r promoting th e use o f wider f aces .

    To inv es t ig a t e t he in f luence o f t he f a.ce wid th on th e f a ce cond i t ion , i ti s d es i r ab l e t o m easu re t h e f ro nt -abu tm en t p r e s su r e a t v a r i o u s l o c a t i o n sa l o n g t h e f ace . A s a pr ac t i ca l mat ter , however , th e measurement i sq u i t e d i f f i c u l t be ca us e t h e i n s t a l l a t i o n o f s t r e ss m e t e rs a t t h e widef a c e r e q u i r e s a l ong con t ro l l ed boreho le i n a weak coa l under h ighp r e s su r e . I f t h e f ro n t abu tment p ressu re i s assumed e qua l t o t heside-abutment pres sur e , th e s t r e s s measurements presen ted previou slyi n d i c a t e t h a t t h e i n f l u e nc e of t h e c h a i n p i l l a r s on t h e l o ng w al l f a c e

    .4

    would be l i mi te d t o approximatel-y 61 t o 122m (200 to 400 fe e t ) . Thati s , ar.y f ac e wider th an 122 t o 264m (400 t o 800 f e e t ) under t h e samec o n d i ti o n s may n o t h a ve a n i n c r e a s i n g l y h i g h e r s t r e s s a t t h e c e n t e r o ft h e face. A s t h e f ac e becomes w i d er , t h e i n f l u en ce o f t h e ch a i n p i l l a ron t h e c e n t r a l p o r t i o n of t h e f a c e d i mi ni sh e s.

    I n a d d i t i o n , t h e h y d ra u l i c p r e s s ur e i n t h e l e g s of f a c e s h i e l d s u p p o r t swas measured i n an a t t empt t o def in e the e f f ec t o f t he f ront -abu tmentp r e s su r e . A hi gh front-abutment pr es su re may induce high convergence a tt h e f a c e a nd t h e r e f o r e d e t e r i o r a t i n g f a c e c o n d i ti o n s e v id en ce d byi n c r e a s i n g l e g p r e s s ur e s . F i g u re 8 i s a p l o t o f t h e h y d r a u l i c p r e s s u r e sof t h e f r o n t l e g s of 122 fa c e su pp or ts of a 183m (600-foot) fac e.

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    9/24

    I t shows tha t t he pres sure in crea ses f rom sh ie l ds 1 t o 4 0 , becomes moreo r l e s s cons t an t between s h i e ld s 41 and 8 0 , and decreases f rom sh ie lds81 t o 122. I t appear s t h a t t h e cen t r a l zone w i th a cons t an t l e g p re s -su re requ i res a c ons tan t suppor t load because the zone i s independent oft h e s u pp o rt i n f l u e n c e o f t h e c h a i n p i l l a r s . T h is o b s e rv a t i on a l s o l e a d st o t h e c o nc l us i on , t h a t t h e c e n t r a l p o r t i o n of t h e f a c e i s n o t i n f l u -enced when th e fa ce width becomes wider than 122m (400 f e e t ) i n t h i scase.

    ROOF ROCK BREAKUP AND GROUND MOVDCNT

    S i nc e t h e c o a l i s removed c l ean ly wi th no p i l l a r s tumps bel .ng l e f t2behind the longwal l face , s t r on g format ions i n th e roof may cr ea t e a

    l a r g e o pe ni ng b eh in d t h e r e t r e a t i n g s u pp o rt l i n e . A s t he open ingbecomes la rg er , a la rg e amount of s t r a i n energy i s s t o r e d i n t h e r o ofwhich can be re le ased i n a fash ion s im i l a r t o co a l bumps. S ince mos t o fConsol t s mines have severa l s t ro ng fo rna t io ns such a s l imes t one ands an ds to ne i n t h e r o o f , it i s e s s e n t i a l t o mo ni to r t h e br ea ku p o f t h e

    roof formations. A method of p ro je ct in g th e roof breakup with t he useof a computer model was deve loped (Choi and PcCain, 1983).

    Dur ing the breakup of t he s t ro ng fo rma t ions i n t he r oo f , t he l e gs o ffa ce support experienc e high pre 'ssure. Most of th e unsu cces sful a t -t empts a t l ongwal l min ing i n t he ear l y s i x t i e s a r e a t t r i h u t e d t o t h e

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    10/24

    high pressure as soc ia t ed wi th the roof breakup. Cur rent ly the f acesuppor t i s des igned t o be more rugged and s t ron ger i n ord er t o avoidf a i l u r e .

    Consol rou ti ne ly mo nitors t h e ground movement t o de te ct th e roof breakupwhen a longwall i s intgoduced t o a new area . Figure 9 i s t h e p l o t ofground movement along a pa nel ce nt er l i n e from i t s s t a r t up p o s it i o n .Un t i l t h e pane l r e t r ea t e d 48.7m (160 f e e t ) , t h e r e w a s no ground movementa t a l l ( cepe a ) . Dur ing one mine s h i f t , t he l egs of t h e f ace s upport sy ie lded and s ur fa ce subs idence occur red r apid ly a s shown by b i n th ef ig ur e. Af t er the brea k of th e roof format ion, t he ground movementbecomes gentler and slower as i nd i ca t ed by c . The major movement occursa f t e r t h e f a c e r e t r e a t s a d i s t a n c e a pp ro xi ma te ly e q u a l t o t h e o v erb urd en

    >

    th ickne ss , ind ica t in g th a t th e h igher roof format ions have broken andal lowed the sur fa ce t o subs ide a s shown i n F igure 10. The surfacemovement th en becomes grad ual wi th no no t ic ea bl e ov ers t re ss i ng of th ef a c e s u p p o r t s a s t h e l on g wa ll f a c e r e t r e a t s . I t i s po i n t ed ou t ,however, t h a t t h e cas es of a , b , c , and d had almost t h e same ar ea ofsur fac e subs idence . During th a t per iod , the overburden rock formations

    were breaking up making a higher f r ac tured zone above the coa l seam.The maximum sub side nce th en o cc urr ed immediately a s t h e fa c e moved( cas e e ) and cont inued a s the panel was re t r ea te d. With theaccumulat ion of th es e da ta it i s now rout ine t o in t rodu ce the longwal ls yste m a t o t h e r l o c a t i o n s i n t h e a r e a.

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    11/24

    A s mentioned be fo re , t h e measurement of ground movement was t o det erm ine

    the support c apac i ty o f coa l p i l l a r s . F igure 11 shows the ve r t i c a lmovement of t he s ur fa ce ove r a 213m (700-foot) overburden p an el . Eventhough the roo f i n t he c ros scu t s f a i l e d , t he subsidence p r o f i l e i nd i -ca t e s t ha t t he coa l p i l l a r s a r e suppor t i ng the s ide-abutment p r e s su re .Fur thermore , t he t a i l g a t e e n t ry was no t sub jec t ed t o add i t i o na l p r e s su recoming from t he pre vi ou sl y mined-out pan el.

    CONCLUSIOPJS

    The paper summarizes some r e s u l t s of ground c on tr ol work ca rr ie d out i np lanning f o r longwal l min ing. The , resu l t s cont r ibu ted t o th e succ ess f u lopera t ions of longwal l s i n Consol 's mines . I t i s expec ted t h a t longwal lmining w i l l be adep ted t o va r io us min ing cond i t i ons and w i l l con tinue t ogain an increa sed por t io n of underground c oa l product ion.

    The work described i s a p a r t o f t h e e f f o r t i n pro mot in g s a f e t y andproduc t iv i t y i n undergtound co a l mines . S ince t he e a r l y s even t i e s , suchda ta have been co l l e c t ed t o he lp t he l ongwa l l s ope ra t e s a f e ly andef f i c i en t l y . Most of da t a g iven in th e paper were observed repea ted lyover long mining cycles . We ar e very ap pr ec ia t i ve t o Consol managementf o r t h e i r pa t i ence and encouragemen t i n co l l e c t i ng th e base da t a .

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    12/24

    REFERENCES

    Anon., 1970-1981, "I nj ur y Exper ien ce i n Coal Mining," IC8613, IR1062,IR1074, IR1075, IR1076, IR1097, IR1108, IR1108, IR1112, IB1122, IR1133,IR1134, Mine S afe ty and Health Administ rat ion end predec essor agencies:MESA and USBM.

    Anon., 1950-1976, Mi ne ra l Year Book, Bureau of Mines, Washington, D.C.,Government Printing O f f i c e .

    Anon., 1978-1982, Keystone Coa l In d u s t r y Manual, EIcGraw-IIi11, New York.

    Choi, D. S . and McCain, D. L., 1982, "Design of Longwall Systems,"2

    Trans. SME-AIEE, Vol . 268, pp 1761-1764.

    Choi, D. S. and McCain, D . L., 1983, "Ground C on tr ol Asp ect s of Longval lCoa l Minin g," Proc . of RETC, Vol. 1, Chicago, pp 178-190.

    F e r n , J. C. and Smith, G. C ., 1980, "A Guide t o Cored Rocks i n t hePi t t sb ur gh Basin," Report of t he BuHines Con trac t No. 50188115,

    Moroni, E. T., 1973, "Lonp ial l Experiences i n the I l l i n o i s No. 6 Seam"I l l . Mining I n s t i t u t e , S p r i n g f i e l d , Ill . . , October, pp 28-34.

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    13/24

    Peake, C. V . , 1984, "Longwall Productivity Shows Solid Growth," Coal-~ g e , ugust, pp 6 1 .

    Pi lkinson, J . F . , 1 9 8 5 , "0utlook 1985: Heavy St oc kp ile s Squeeze Pr ic es ,"Coal Age, January, pp 50-60.

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    14/24

    Source: Injury Experience in Coal Mining. InformationalReports of MSHA, or Its Predecessors.

    Figure I. Fatal Injury Rates BituminousCoal Industry Underground Mines1950- 1982

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    15/24

    F igu re 2. Productivity Bituminous Coal IndustryUnderground M nes 1950-1982

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    16/24

    Diarnetral Index Strength, MPa ( psi )

    Figure 3. Rock Qual i ty Designation vs.Diametral Compressive Strengtho f Coal Measure Rock

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    17/24

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    18/24

    Face Position, m ( f t )

    Figure 5 . Stressmeters A 8 B

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    19/24

    Face Position, m ( f t1

    Figure 6. Stressmeters C 81 D

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    20/24

    loo

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    21/24

    Shield Number

    F igu re 8. Front Leg Pressure

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    22/24

    - 5.2 0 15.2 30.5 47.7 6 .O 76.2(- 50) (50) ( 1 00) (150) (200) (250)Distance From Start-up Position, m ( f t 1

    Figure 9. Ground Movement Along PanelCenter with 37 m Overburden

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    23/24

    Figure 10. Ground Movement Along PanelCenter with 213 m Overburden

    0-e'8V .30( 1 )a

    Q)0LZ8 )w.-u, -61-5 (2)a

    .91-(3) a b c d e1.22 I1 I(4)-76.2 0 76.2 152.4 228.6 3048(-250) (250) (500) (750) (1000)

    Distance Fr om Start-u p Position, m (fi)

    I

  • 7/29/2019 Application of Geomechanics in Longwall Operation

    24/24

    --Panel Center

    I I I I

    Distance From Panel Center, m ( f t )

    Figure I I. Ground Movement AcrossLongwall Panel with 213m